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Abstract — One of the fundamental theorem in information 

theory is the so-called sampling theorem also known as 

Shannon-Nyquist theorem. This theorem aims at giving 

the minimal frequency needed to sample and reconstruct 

perfectly an analog band-limited signal. Compressive 

sensing (or compressed sensing, compressive sampling) or 

CS in short is a recent theory that allows, if the signal to be 

reconstructed satisfies a number of conditions, to decrease 

the amount of data needed to reconstruct the signal. As a 

result this theory can be used for at least two purposes: i) 

accelerate the acquisition rate without decreasing the 

reconstructed signal quality (e.g. in terms of resolution, 

SNR, contrast …) ii) improve the image quality without 

increasing the quantity of needed data. 

Even if medical ultrasound is a domain where several 

potential applications can be highlighted, the use of this 

theory in this domain is extremely recent. 

In this paper we review the basic theory of compressive 

sensing. Then, a review of the existing CS studies in the 

field of medical ultrasound is given: reconstruction of 

sparse scattering maps, pre-beamforming channel data, 

post-beamforming signals and slow time Doppler data. 

Finally the open problems and challenges to be tackled in 

order to make the application of CS to medical US a 

reality will be given.

Keywords: compressive sensing, sparse, beamforming, 

ultrasound 

I. INTRODUCTION 

Whereas the Shannon theorem fixes the limit for the 
sampling frequency of a signal to twice its maximum 
frequency component fmax, the recently introduced compressed 
sensing (CS) theory allows – under certain assumptions – to 
recover a signal sampled far below this limit [1-3]. Compressed 
sensing (also known as compressive sensing or compressive 
sampling) can be applied for two main purposes. i) it can lower 
the amount of data needed and thus allows to speed up 
acquisition. An example in the field of medical imaging of 

such application is dynamic MRI [4] ii) it can improve the 
reconstruction of signals/images in fields where constraints on 
the physical acquisition set up yields very sparse data sets. A 
typical example is seismic data recovery in geophysics [5]. 

The application of this theory to the field of medical ultrasound 
is extremely recent even though there are applications that are 
excellent candidates such as e.g. triplex acquisitions [6] for 
CFM/B mode/Doppler or 3D imaging using matrix arrays. The 
objective of this paper is to give the reader an overview of the 
different attempts to show the feasibility of CS in medical 
ultrasound. The classification of the studies is done according 
to the data that are considered to be sparse (the scatterer 
distribution itself, the pre-beamforming channel data, the 
beamformed RF signal and even Dopple data). For each 
example the potential of using CS is highlighted as well as the 
specificity in terms of modeling or numerical implementation.  

The paper is organized as follows: in section II the CS theory is 
recalled, section III presents different applications of CS in 
medical ultrasound and finally section IV gives a short 
discussion and conclusion  

II. COMPRESSIVE SENSING THEORY 

Compressive sensing (CS) [2] allows the reconstruction of a 

signal 
n∈x �  from a linear combination of a small number of 

random measurements 
m

∈y �  m < n. 

In a general setting, the measurements y  may be acquired in 

the so-called "sensing basis" Φ , which depends on the 
acquisition device. As an example, in MRI, Φ  is the Fourier 
basis. 

= Φy x (1) 

where Φ is an m x n matrix. The columns of Φ have an entry 
one at random positions and zero elsewhere, thereby modeling 
the random selection of the measurements. 

At the heart of CS is the assumption that x  has a sparse 
representation in some model orthonormal basis Ψ , i.e.: 

= Ψx v (2) 
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where v has only s < m < n non zero coefficients. The signal 

v is called s-sparse. CS theory shows that this sparsity allows 

an exact recovering of v with overwhelming probability for a 

certain class of matrices ΦΨ  [1]. In particular, the sensing 
basis has to be incoherent with the model basis Ψ  [7], which is 
ensured by the randomness of the non-zeros components of Φ . 
Finally the problem can be written as follows: 

= ΦΨ =y v Av (3) 

where A is an m x n full rank matrix (i. e. the m raws of A are 
independent).  

In these settings, the CS problem thus amounts to solve (3) for 
v , under the constraint that v  is sparse. Once v  is estimated, 

the signal x , can then be computed from (2). 

For matrices A  with a specified isometry constant of the so-

called "restricted isometry property" (RIP), Candès et al. [1] 

showed that the CS problem may be solved through the 

following  0-minimization problem P0: 

P0 
0

ˆ arg min     
n

subject to
∈

= =
v

v v y Av
�

�

(4) 

where the  0 norm is { }
0

: , 0ii v= ≠v
�

Equation (4) thus implies that from all the possible solutions of 
(3), we seek the sparsest one. In general, solving (4) is NP 
hard. Sub-optimal greedy algorithm attempt to solve this 
problem by successively adding non zero components to a 
sparse approximation of v . (see [8]). 

By imposing a more restrictive bounds on the isometry 

constant, the sparsest solution x̂ of (3) can be found by solving 

the following basis pursuit (BP) problem P1 [9, 10]:  

P1 
1

ˆ arg min     
n

subject to
∈

= =
v

v v y Av
�

�

(5) 

where the  1 norm is 
1 1

n

ii
v

=
=�v

�
. 

The  0- 1 equivalence, using the RIP, was presented by Candès 
in [9] (see also [1]). 

The framework described above assumes that we are given 
exact samples of the signal to be recovered. This is seldom the 
case in practice, since the measurements are very often 
corrupted by noise. In the case of measurements with additive 
noise, we have: 

= +y Av e (6) 

where e  represent a noise term of bounded energy 
2

≤ εe
�

, 

P1 can be then recast as [9, 11]: 

P2 
1 2

ˆ arg min     
n

subject to
∈

= = − ≤ ε
v

v v y y Ax
� �

�

(7) 

In practical applications the signal is generally not exactly 
sparse but most of its coefficients in (2) are small. When signal 
coefficients v decays exponentially in absolute value, the signal 

is called ‘compressible’. The solution found by P1 (5) or P2 (7) 
gives the approximation of v by keeping its S largest entries. 

For solving P1 and P2, mainly two classes of methods have 
been employed. The first one consists in deterministic 

optimization algorithms. The second one uses stochastic 
(Bayesian) algorithms. With this approach, statistical a priori
laws are associated to each of the unknown variables, further 
combined using the Bayes law to find the a posteriori
probability to be maximized. 

������ � ���������� (8) 

In (8), p(y|v) represents the likelihood and p(v) contains prior 
information about the unknown v. Note that if the noise is 
considered Gaussian and the prior law on v is a Laplacian, the 
maximization of the posterior probability in (8) is equivalent to 
the classical LASSO optimization. 

III. APPLICATION TO ULTRASOUND IMAGING

A central concern in CS is that the data under consideration 
should have sparse expansion in some dictionaries (e.g., 
Fourier basis, wavelet basis, dictionary learned from data, 
etc...), i.e., the number of non-zero coefficients of the image or 
signal in this representation basis should be as small as 
possible. Moreover, US echographic data may be considered at 
various stages of the image formation pipeline. In a 
conventional configuration, the set of raw radio-frequency (RF) 
signals received at each transducer element (i.e. channel RF 
data) is beamformed to build the beamformed RF image. 
Detection applied to the latter yields the envelope-detected 
image, and finally the log-envelope image corresponding 
(possibly after some interpolation) to the conventional B-mode 
display is obtained. As a consequence, one of the main features 
of the existing studies is the type of signal/image to be 
reconstructed and the choice of the representation where the 
US data are assumed to be sparse. Another important 
characteristic of these studies corresponds to the formalization 
of the reconstruction problem and related algorithm (e.g., 
Bayesian modeling, deterministic basis pursuit, or matching 
pursuit). 

A. Sparse diffusion map

Several groups of authors [12-18] have chosen to model the 

medium under investigation itself as a sparse distribution of 

scatterers. The discrete scattering model is commonly used in 

the literature and is the basis for the most used ultrasound 

simulation program (Field II [19, 20]). However considering 

that most of the scatterers have an echogenecity close to zero 

is more unusual.  

The approach proposed by [12, 13] aims at producing, with 

only one single plane wave transmission, an image having 

equivalent spatial resolutions as with conventional imaging. 

The potential of the approach is to provide fast imaging. 

Indeed in such a situation the highest possible temporal 

resolution (1 image per transmitted pulse) would be reached. 

The basic idea is to write the direct scattering problem and 

solve the inverse problem under the constraint that the 

scatterer distribution is sparse. This can be written as follows  

( ) ( )
scp e G eθ θ κγ= (9) 

with ( )scp eθ  the scattered pressure received by the 

transducer elements after transmission of a plane wave in 

direction θ , ( )G eθ .represents propagation and interaction
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Figure 4. Experimental results from [21] showing the feasibility of 

the proposed technique to reconstruct pre-beamformed data able to 

lead to good quality B-mode images. The error is spread evenly over 

the entire image and both the strong structures and the speckle are 

reconstructed. 

C. Sparse assumption of the RF images Fourier transform
In this section the reconstruction of post-beamforming 2D RF 
images via CS technique is discussed. The sparsity assumption 
is related here to the assumption of bandlimited RF signal 
acquisition. Thus, the 2D Fourier transform of RF images is 
assumed to be sparse. With the notations introduced in section 
II, Φ stands in this section for the spatial acquisition mask 
(showing the random positions where spatial samples are 
measured), Ψ is the 2D inverse Fourier transform, y are the 
randomly measured post-beamformed RF samples and v is the 
2D Fourier transform of the RF image to be reconstructed. 
Thus, considering an additive Gaussian noise � with zero-mean 
and variance "

2
, the acquisition model is: 

� � 	� 
 � (10) 

With � � ��
� � � ��� � ��, � � ��
� � � ��� � ��and� � ��
� � � ��� � �� representing the vectorized forms of the
corresponding images. 

From a theoretical point of view, the ideal sampling mask Φ
(the most incoherent with the Fourier transform) is a uniform 
random pattern in the two spatial directions. As previously 
mentioned, it has however only a limited interest in US 
imaging. For this reason, a more suitable random sampling 
mask has been proposed in [26-28]. It considers that randomly 
chosen beamformed RF lines are not sampled at all, and is thus 
less incoherent with the Fourier transform. Thanks to this 
sampling scheme, the number of US pulses emitted during the 
acquisition is potentially reduced and as a consequence the 
acquisition time reduced. An example of such a 2D sampling 
mask is shown in Figure 5(for its extension in 3D, see [26, 
28]). 

Figure 5. Random post-beamforming RF sampling mask. The white 

pixels correspond to the measured samples locations. 

The resulting inverse problem in (10) can be solved using a 
conjugate gradient descent method, as shown by the results 
obtained in [28]. However, more accurate results are provided 
in [29, 30] using a Bayesian framework. We give hereafter the 
main details of the Bayesian model proposed in [30] and its 
extension to a regularized form in [29]. Given the inverse 
problem in (10) and keeping in mind that � is a zero-mean 
Gaussian noise, the associated likelihood is: 

������ ��� � �
������ ��� � �

�� �� � 	����� (11) 

Where � �� stands for the standard l2 norm.

At this stage, the inverse problem has two unknowns, the 
variance of the noise and v, the 2D Fourier transform of the RF 
image. For the latter, two assumptions are taken into account in 
order to construct the prior distribution: the Gaussian property 
of the RF images and image sparsity in the Fourier domain. 
Thus, each pixel vi of the Fourier domain has been assigned a 
mixture of a Gaussian statistical law and a mass at the origin. 

���!�"� �#�� � �� � "�$���!��

 "

��#� ��� %� ��!��#� & (12) 

Where w is the prior probability of having a non-zero in the 
Fourier domain. In [30], w was considered a priori uniform 
random. In [29], assuming that the non-zero pixels in the 
Fourier domain of a RF image are located in compact regions 
around the central frequency of the probe, a further spatial 
regularization is taken into account by the prior on w. 

Note that the Gaussian characteristics may be replaced by other 
laws reported in the literature. For example, in the context of 
the application of CS in US imaging, Achim et al. used in [31] 
an #-stable distribution. 

The posterior distribution is maximized using a MCMC 
method (also known as Gibbs sampler). The details concerning 
the sampling of the unknown variables over the iterations are 
given in [29, 30]. We give hereafter a simulation result 
extracted from [29], showing the original simulated image, the 
samples used for reconstruction and the results obtained using 
a gradient descent algorithm and with the Bayesian framework. 
In this case, 10% of the original image pixels are used for 
reconstruction (30% randomly located samples from 30% 
randomly chosen RF lines). 
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