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In this paper, we introduce a new risk measure, the so-called Conditional Tail Moment. It is defined as the moment of order a ≥ 0 of the loss distribution above the upper α-quantile where α ∈ (0, 1). Estimating the Conditional Tail Moment permits to estimate all risk measures based on conditional moments such as Conditional Tail Expectation, Conditional Value-at-Risk or Conditional Tail Variance. Here, we focus on the estimation of these risk measures in case of extreme losses (where α → 0 is no longer fixed). It is moreover assumed that the loss distribution is heavy-tailed and depends on a covariate. The estimation method thus combines nonparametric kernel methods with extreme-value statistics. The asymptotic distribution of the estimators is established and their finite sample behavior is illustrated both on simulated data and on a real data set of daily rainfalls.

Introduction

One of the most popular risk measures is the Value-at-Risk (VaR) introduced in the 1990's, see [START_REF] Jorion | Value at risk: the new benchmark for managing financial risk[END_REF] for a review. In statistical terms, the VaR at level α ∈ (0, 1) corresponds to the upper α-quantile of the loss distribution. The Value-at-Risk however suffers from several weaknesses. First, it provides us only with a pointwise information: VaR(α) does not take into consideration what the loss will be beyond this quantile. Second, random loss variables with light-tailed distributions or heavy-tailed distributions may have the same Value-at-Risk [START_REF] Tasche | Expected shortfall and beyond[END_REF]. Finally, Value-at-Risk is not a coherent risk measure [START_REF] Artzner | Coherent measures of risk[END_REF] since it is not subadditive in general 1 .

A coherent alternative risk measure is the Conditional Tail Expectation (CTE) [START_REF] Artzner | Coherent measures of risk[END_REF], also known as Tail-Value-at-Risk, Tail Conditional Expectation or Expected Shortfall in case of a continuous 2 The Regression Conditional Tail Moment: definition and estimation

A new risk measure

Let Y ∈ R be a random loss variable. For α ∈ (0, 1), the Value at Risk of level α is the quantity VaR(α) satisfying P(Y > VaR(α)) = α. The Value at Risk is the most popular risk measure [START_REF] Jorion | Value at risk: the new benchmark for managing financial risk[END_REF] but many others can be found in the literature:

-The Conditional Tail Expectation [START_REF] Artzner | Coherent measures of risk[END_REF] is defined by CTE(α) := E(Y |Y > VaR(α)).

-The Conditional Tail Variance CTV(α) := E (Y -CTE(α)) 2 |Y > VaR(α) was introduced in [START_REF] Valdez | Tail conditional variance for elliptically contoured distributions[END_REF]. It measures the conditional variability of Y given Y > VaR(α) and indicates how far away the events deviate from CTE(α).

-The Conditional Tail Skewness CTS(α) := E Y 3 |Y > q(α) (CTV(α)) 3/2 was defined in [START_REF] Hong | Conditional tail variance and conditional tail skewness[END_REF].

-The Conditional-Value-at-Risk is defined by CVaR λ (α) := λVaR(α) + (1λ)CTE(α) with 0 ≤ λ ≤ 1. It is clear that CVaR 1 (α) = VaR(α) and CVaR 0 (α) = CTE(α). This risk measure is able to quantify dangers beyond VaR(α) and is moreover coherent for λ = 1. Other fundamental properties can be found in [START_REF] Rockafellar | Optimization of conditional value-at-risk[END_REF].

-The Stop-loss Premium reinsurance risk measure with retention level equal to VaR(α) [START_REF] Cai | Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures[END_REF] is proportional to the difference between CTE(α) and VaR(α): SP(α) := E((Y -VaR(α)) + ) = α (CTE(α) -VaR(α)) , where z + = max(0, z). This measure thus permits to emphasize the dangerous cases.

The first purpose of this paper is to unify the definitions of the above risk measures. To this end, a new risk measure is introduced, the Conditional Tail Moment CTM a (α) := E(Y a |Y > VaR(α)), where a ≥ 0 is such that the moment of order a of Y exists. It is easy to check that all the above risk measures of level α can be rewritten as Φ(VaR(α), CTM 1 (α), CTM 2 (α), CTM 3 (α)), where the function Φ : R 4 → R is taken in Table 1.

Risk measure Φ(t 0 , t 1 , t 2 , t 3 ) CTE(α)

t 1 CTV(α) t 2 -t 2 1 CTS(α) t 3 /(t 2 -t 2 1 ) 3/2 CVaR(α) λt 0 + (1 -λ)t 1 , λ ∈ [0, 1] SP(α) α(t 1 -t 0 )
Table 1: Links between the new risk measure and classical risk measures More generally, the CTM can be used to define any risk measure based on conditional moments of the loss variable above the VaR of level α. For instance, one could introduce the conditional tail kurtosis thanks via the function Φ(t 0 , t 1 , t 2 , t 3 , t 4 ) = t 4 /(t 2t 2 1 ) 2 .

Extreme losses and regression case

As announced in the introduction, our second purpose is to adapt the classical risk measures to extreme losses and to the case where a covariate X ∈ R p is recorded simultaneously with the loss variable Y . To this end, the fixed level α ∈ (0, 1) is replaced by a sequence (α n ) ∈ (0, 1), such that α n → 0. Furthermore, denoting by F (.|x) the conditional survival distribution function of Y given X = x, we define the Regression Value-at Risk by RVaR(α n |x) := F ← (α n |x) = inf{t, F (t|x) ≤ α n }, and the Regression Conditional Tail Moment of order a by:

RCTM a (α n |x) := E(Y a |Y > RVaR(α n |x), X = x),
where a > 0 is such that the moment of order a of Y exists. Note that in this framework, RVaR(α n |x) is the extreme conditional quantile of level α n ∈ (0, 1), see for instance [START_REF] Beirlant | Nonparametric estimation of extreme conditional quantiles[END_REF][START_REF] Daouia | Kernel estimators of extreme level curves[END_REF][START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF][START_REF] Gardes | Conditional extremes from heavy-tailed distributions: an application to the estimation of extreme rainfall return levels[END_REF][START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF][START_REF] Wang | Estimation of high conditional quantiles for heavy-tailed distributions[END_REF]. It is then quite easy to adapt the classical risk measures to extreme losses and to the presence of a covariate by applying the desired function (see Table 1) to the vector

(RVaR(α n |x), RCTM 1 (α n |x), RCTM 2 (α n |x), RCTM 3 (α n |x)).
This yields the following risk measures: RCTE(α n |x), RCTV(α n |x), RCTS(α n |x) , RCVaR(α n |x) and RSP(α n |x).

Inference

Let (X i , Y i ), i = 1, . . . , n, be independent copies of the random pair (X, Y ). To estimate the RCTM, we start from the following straightforward equality

RCTM a (α n |x) = 1 α n ϕ a (ϕ ← 0 (α n |x)|x), (1) 
where for y > 0, ϕ a (y|x) = E (Y a I{Y > y}|X = x) is the conditional moment of order a ≥ 0. Estimation of the RCTM thus relies on the estimation of the conditional moment. We propose to use a classical kernel estimator (see [START_REF] Parzen | On estimation of a probability density function and mode[END_REF][START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF]) given by φa,n (y|x) =

n i=1 K h (x -X i )Y a i I{Y i > y} n i=1 K h (x -X i ), (2) 
where I{.} is the indicator function and h = h n is a non-random sequence such that h → 0 as n → ∞. We have also introduced K h (t) = K(t/h)/h p where K is a density on R p . In this context, h is called the window-width. Since φa,n (.|x) is a non increasing function, we can define an estimator of ϕ ← a (α|x) for α ∈ (0, 1) by φ← a,n (α|x) = inf{t, φa,n (t|x) < α}.

Remarking that ϕ 0 (y|x) = F (y|x), the RVaR of level α n is thus estimated by RVaR n (α n |x) = φ← 0,n (α n |x).

We thus recover the extreme conditional quantile estimator studied in [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF][START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF]. The RCTM of order a is estimated by

RCTM a,n (α n |x) = 1 α n φa,n ( φ← 0,n (α n |x)|x). (4) 
An estimator of each of the above mentioned risk measures is thus given by

Φ( RVaR n (α n |x), RCTM 1,n (α n |x), RCTM 2,n (α n |x), RCTM 3,n (α n |x)), (5) 
where the function Φ is chosen in 

(α n |x) = φ1,n ( φ← 0,n (α n |x)|x)/α n .
The joint asymptotic distribution of the RCTM and RVaR estimators, and consequently of all the above mentioned estimators, is established in the next section.

Main results

Our main assumption is the following: (F.1) We assume that the conditional survival distribution function of Y given X = x is heavytailed and admits a probability density function.

To summarize, (F.1) amounts to assuming that the conditional distribution of Y given X = x is in the Fréchet maximum domain of attraction. Assumption (F.1) is also equivalent to stating that for all y > 0, F (y|x) = P(Y > y|X = x) is regularly varying at infinity (see [START_REF] Bingham | Regular Variation[END_REF]) with index -1/γ(x) denoted by F (.|x) ∈ RV -1/γ(x) i.e for all λ > 0,

lim y→∞ F (λy|x) F (y|x) = λ -1/γ(x) .
In this context, γ(.) is a positive function of the covariate x and is referred to as the conditional tail index since it tunes the tail heaviness of the conditional distribution of Y given X = x. It also appears that, under (F.1), a sufficient condition for the existence of RCTM a (1/.|x) is a < 1/γ(x). As established in Lemma 1, condition (F.1) also implies that, for all a

∈ [0, 1/γ(x)), ϕ a (.|x) ∈ RV a-1/γ(x) . Since, moreover, F (.|x) ∈ RV -1/γ(x) , we have RCTM a (1/.|x) ∈ RV aγ(x)
. This is equivalent to state that for a ∈ [0, 1/γ(x)) and for all y > 0,

RCTM a (1/y|x) = y aγ(x) ℓ a (y|x), (6) 
with a positive index aγ(x) and, for x fixed, ℓ a (.|x) is a slowly-varying function at infinity, i.e for all λ > 0,

lim y→∞ ℓ a (λy|x) ℓ a (y|x) = 1. (7) 
To establish the asymptotic normality of (4), the following additional conditions are required. First, as remarked in [START_REF] Bingham | Regular Variation[END_REF], p.15, since slowly-varying functions are of interest only asymptotically, one can assume without loosing generality that in (6)

(F.2) ℓ a (.|x) is normalized for all a ∈ [0, 1/γ(x)).
In such a case, the Karamata representation (see [START_REF] Bingham | Regular Variation[END_REF], Theorem 1.3.1) of the slowly-varying function can be written as

ℓ a (y|x) = c a (x) exp y 1 ε a (u|x) u du , (8) 
where c a (.) is a positive function and ε a (y|x) → 0 as y → ∞. Thus, ℓ a (.|x) is differentiable and the auxiliary function is given by ε a (y|x) = yℓ ′ a (y|x)/ℓ a (y|x). This function plays an important role in extreme-value theory since it drives the speed of convergence in [START_REF] Chen | Extreme value behavior of aggregate dependent risks[END_REF] and more generally the bias of extreme-value estimators. Therefore, it may be of interest to specify how it converges to 0. In [START_REF] Goegebeur | Local estimation of the second order parameter in extreme value statistics and local unbiased estimation of the tail index[END_REF], the auxiliary function is supposed to be regularly varying and the estimation of the conditional regular variation index is addressed. Here, we limit ourselves to assuming that for all a ∈ (0, 1/γ(x)), (F.3) |ε a (.|x)| is continuous and ultimately non-increasing.

A Lipschitz condition on the probability density function g of X is also required. For all (x, x ′ ) ∈ R p × R p , the distance between x and x ′ is denoted by d(x, x ′ ) and the following assumption is introduced:

(L) There exists a constant c g > 0 such that |g(x) -g(x ′ )| ≤ c g d(x, x ′ ).
The next assumption is standard in the kernel estimation framework.

(K) K is a bounded density on R p , with support S included in the unit ball of R p .

For ξ > 0, the largest oscillation at point (x, y) ∈ R p × R + * of the conditional moment of order a ∈ [0, 1/γ(x)) is given by

ω(x, y, a, ξ, h) = sup ϕ a (z|x) ϕ a (z|x ′ ) -1 , z ∈ [(1 -ξ)y, (1 + ξ)y] and x ′ ∈ B(x, h) ,
where B(x, h) denotes the ball centred at x with radius h. Finally, for all finite set E, let L(E) = {e i + e j , (e i , e j ) ∈ E × E} ∪ E. We are now in position to establish our main result.

Theorem 1 Suppose (F.1), (F.2), (L) and (K)

hold. Let us introduce 0 ≤ a 1 < a 2 < • • • < a J
where J is a positive integer. For all x ∈ R p such that g(x) > 0 and γ(x) < 1/(2a J ), let us introduce a sequence (α n ) with α n → 0 and nh p α n → ∞ as n → ∞. If there exists ξ > 0 such that

nh p α n h ∨ max a∈L({0,a1,...,a J }) ω(x, ϕ ← 0 (α n |x), a, ξ, h) 2 → 0,
then, the random vector

nh p α n    RCTM aj ,n (α n |x) RCTM aj (α n |x) -1 j∈{1,...,J} , RVaR n (α n |x) RVaR(α n |x) -1    is asymptotically Gaussian, centred, with a (J +1)×(J +1) covariance matrix K 2 2 γ 2 (x)Σ(x)/g(x)
where for (i, j) ∈ {1, . . . , J} 2 we have Σ J+1,j (x) = a j , Σ i,J+1 (x) = a i , Σ J+1,J+1 (x) = 1 and

Σ i,j (x) = a i a j (2 -(a i + a j )γ(x)) (1 -(a i + a j )γ(x)) .
Theorem 1 permits to establish the asymptotic normality for any regression estimator of a risk measure based on arbitrary moments above an extreme conditional quantile. In particular, RCTE n (α n |x), RCVaR λ,n (α n |x) and RSP n (α n |x) only involve the first order moment, their asymptotic normality can be derived under the assumption γ(x) < 1/2:

Corollary 1 Suppose (F.1), (F.2), (L) and (K) hold. For all x ∈ R p such that g(x) > 0 and γ(x) < 1/2, let us introduce a sequence (α n ) with α n → 0 and nh p α n → ∞ as n → ∞. If there exists ξ > 0 such that

nh p α n h ∨ max a∈{0,1,2} ω(x, ϕ ← 0 (α n |x), a, ξ, h) 2 → 0, then nh p α n RCTE n (α n |x) RCTE(α n |x) -1 d -→ N 0, 2γ 2 (x)(1 -γ(x)) 1 -2γ(x) K 2 2 g(x) , nh p α n RCVaR λ,n (α n |x) RCVaR λ (α n |x) -1 d -→ N 0, γ 2 (x)(λ 2 + 2 -2λ -2γ(x)) 1 -2γ(x) K 2 2 g(x) , nh p α n RSP n (α n |x) RSP(α n |x) -1 d -→ N 0, γ 2 (x) 1 -2γ(x) K 2 2 g(x)
.

The RCTV(α n |x) estimator involves the computation of a second order moment, its asymptotic normality requires the stronger condition γ(x) < 1/4.

Corollary 2 Suppose (F.1), (F.2), (L) and (K) hold. For all x ∈ R p such that g(x) > 0 and γ(x) < 1/4, let us introduce a sequence (α n ) with α n → 0 and nh p α n → ∞ as n → ∞. If there exists ξ > 0 such that

nh p α n h ∨ max a∈{0,...,4} ω(x, ϕ ← 0 (α n |x), a, ξ, h) 2 → 0, then nh p α n RCTV n (α n |x) RCTV(α n |x) -1 d -→ N 0, 8(1 -γ(x))(1 -2γ(x))(1 + 2γ(x) + 3γ 2 (x)) (1 -3γ(x))(1 -4γ(x)) K 2 2 g(x)
.

Similarly, the RCTS(α n |x) estimator involves the computation of a third order moment, its asymptotic normality requires the even stronger condition γ(x) < 1/6.

Corollary 3 Suppose (F.1), (F.2), (L) and (K) hold. For all x ∈ R p such that g(x) > 0 and γ(x) < 1/6, let us introduce a sequence (α n ) with α n → 0 and nh p α n → ∞ as n → ∞. If there exists ξ > 0 such that

nh p α n h ∨ max a∈{0,...,6} ω(x, ϕ ← 0 (α n |x), a, ξ, h) 2 → 0, then nh p α n RCTS n (α n |x) RCTS(α n |x) -1 d -→ N 0, V (x) K 2 2 g(x) ,
where

V (x) = 18(1 -13γ(x) + 50γ 2 (x) -44γ 3 (x) -23γ 4 (x) -3γ 5 (x)) (1 -3γ(x))(1 -4γ(x))(1 -5γ(x))(1 -6γ(x)) .
In Theorem 1, the condition nh p α n → 0 provides a lower bound on the level of the risk measure to estimate. This restriction is a consequence of the use of kernel estimator (2) which cannot extrapolate beyond the maximum observation in the ball B(x, h). In consequence, α n must be an order of an extreme quantile within the sample. To overcome this limitation, we propose to adapt Weissman's estimator [START_REF] Weissman | Estimation of parameters and large quantiles based on the k largest observations[END_REF], initially designed for the estimation of unconditional quantiles, to the estimation of the RCTM:

RCTM W a,n (β n |x) = RCTM a,n (α n |x) α n β n aγn(x)
, where a is a fixed value, 0 < β n < α n and γn (x) is an estimator of the conditional tail-index γ(x) (see [START_REF] Gardes | A moving window approach for nonparametric estimation of the conditional tail index[END_REF][START_REF] Gardes | Estimating the conditional tail index by integrating a kernel conditional quantile estimator[END_REF][START_REF] Gardes | Estimation of the conditional tail index using a smoothed local Hill estimator, Extremes[END_REF][START_REF] Goegebeur | Local estimation of the second order parameter in extreme value statistics and local unbiased estimation of the tail index[END_REF][START_REF] Wang | Tail index regression[END_REF]). As illustrated in the next theorem, the extrapolation factor (α n /β n )

aγn(x)
allows us to estimate RCTM of arbitrary small levels β n .

Theorem 2 Suppose the assumptions of Theorem 1 hold together with (F.3). Let us consider γn (x) an estimator of the tail index such that

nh p n α n (γ n (x) -γ(x)) d → N 0, v 2 (x) , with v(x) > 0. If, moreover, (β n ) n≥1 is a positive sequence such that β n → 0, β n /α n → 0 and √ nh p α n ε a (1/β n |x) → 0 as n → ∞, we then have nh p n α n log(α n /β n )   RCTM W a,n (β n |x) RCTM a (β n |x) -1   d → N 0, (av(x)) 2 .
Let us also note that the asymptotic normality of

RVaR W n (β n |x) = RVaR n (α n |x) (α n /β n ) γn(x)
has been established in [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF]. As a consequence, replacing RVaR n by RVaR W n and RCTM a,n by RCTM W a,n in (5) provides estimators for all risk measures considered in this paper adapted to arbitrary small levels. Their asymptotic normality is a simple consequence of Theorem 2. In the next section, a procedure to select the tuning parameters h and α n is introduced and applied to the estimation of risk measures associated to extreme rainfall data.

Application: Risk measures for extreme rainfall data

The rainfall data is described in subsection 4.1. The implementation of the risk measure estimators requires the selection of two tuning parameters. An automatic procedure is proposed in subsection 4.2. Its finite sample performance is assessed on simulated data in subsection 4.3. Finally, the whole methodology is applied on the real data in subsection 4.4.

Problem and data description

The behaviour and the efficiency of our estimators are illustrated on rainfall observations in the Cévennes-Vivarais region (southern part of France). This data set is provided by the French meteorological service Météo-France and consists in daily rainfalls measured at N = 523 raingauge stations from 1958 to 2000. In this context, the variable of interest Y is the daily rainfall measured in millimeters (mm). The number of measurements at each station t ∈ {1, . . . , N } is denoted by n t , the total number of observations being n = N t=1 n t = 5, 513, 734. The covariate X is the three dimensional geographical location (longitude, latitude and altitude). A subset of the coordinates S = {x t = (x 1,t , x 2,t , x 3,t ); t = 1, . . . , N } of the raingauge stations is depicted in Figure 3. Extreme rainfall statistics are often used when a flood has occurred to assess the rarity of such an event. A typical problem is to estimate the amount that will fall on a day of exceptionally heavy rainfall which is expected to occur every T years. Usually, hydrologists are interested in the value T = 100 corresponding to a centenary event. Statistically speaking, the problem is to estimate the T -year return level which is the quantile of level β = 1/(365.25 × T ) of the daily rainfall. The goal of this study is to go further and estimate the average rainfall over the T -year return level which is the RCTE of level β = 1/(365.25 × T ).

Tuning parameters selection

Our estimators of risk measures depend on the two tuning parameters h and α n . The choice of the bandwidth h, which controls the degree of smoothing, is a recurrent issue in non-parametric statistics. Similarly, in extreme-value theory, the choice of the number of upper order statistics, or equivalently α n is of great importance since it raises a compromise between bias and variance. A high value of α n is expected to lead to a large bias (since we move out of the distribution tail) while a small value of α n leads to a large variance, see for instance Theorem 1. Here, we propose a leave-one-out cross validation type procedure to select simultaneously h and α n . To this end,

let us consider A = {α 1 ≤ • • • ≤ α R } such that α 1 > 1/ min(n j ), j = 1, . . . , N , α R < 0.1 and H = {h 1 ≤ • • • ≤ h M },
such that there is at least one observation in the ball B(x, h 1 ) for all x. The principle of the procedure is to select the empirical pair (h emp , α emp ) ∈ H × A for which two different estimations of the tail index γ(x t ) at each station t approximately coincide. The first estimator, denoted by γn,t , is the well-known Hill estimator [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF], it only depends on α n and is uniquely based on the rainfall measures at station t. The second estimator denoted by γn (x t ) is the conditional tail-index estimator introduced in [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF]. It depends both on α n and h and is computed on all the rainfall measures in the ball B(x t , h) except the measurements at the current station t. To summarize, the main idea is to select the pair (h emp , α emp ) for which the local estimations γ(x t ) and the predicted ones γn (x t ) using the neighbour stations are coherent. To be more specific, the algorithm is the following:

1. Loop on all pairs (h i , α j ) ∈ H × A and on all stations t ∈ {1, . . . , N }.

2. Compute the Hill estimator at station t with level α j to obtain γn,t,j .

3. Compute the conditional tail-index estimator using the measures in B(x t , h i )\{x t } with level α j to obtain γn,i,j (x t ).

4. Compute the distance W hi,αj (x t ) = (γ n,t,jγn,i,j (x t )) 2 .

5. End of the loop.

6. The optimal pair is given by (h emp , α emp ) = arg min (hi,αj )∈H×A median{W hi,αj (x t ) , t ∈ {1, . . . , N }}.

Validation on simulation

The previous procedure is tested on two heavy-tailed distributions, the Fréchet distribution and the Burr distribution. The survival function of the Fréchet distribution is F (y|x) = 1-exp(-y -1/γ(x) ), for y ≥ 0, and the associated RCTE can be written

RCTE(β n |x) = 1 β n RVaR(βn|x) -1/γ(x) 0 t γ(x) exp(-t)dt with RVaR(β n |x) = (-log(1 -β n )) -γ(x) .
The survival function of the chosen Burr distribution is given by F (y|x) = 1 + y 1/γ(x) -1 for y ≥ 0, and the associated RCTE is

RCTE(β n |x) = I RVaR(β n |x) -1/γ(x) 1 + RVaR(β n |x) -1/γ(x) , 1 -γ, 1 + γ with RVaR(β n |x) = β -γ(x) n (1 -β n ) γ(x) ,
and where I(r, p, q) = B(r, p, q) B(p, q) with B(r, p, q) = r 0 w p-1 (1w) q-1 dw being the incomplete beta function and B(p, q) the beta function. In this simulation study, we choose the following conditional tail index:

γ : x ∈ (0, 1) → γ(x) = 1 2 1 10 + sin (πx) 11 10 - 1 2 exp (-64(x -1/2) 2 ) .
Note that γ(x) is close to 1/2 when x = 0.3 or x = 0.7. Let z 1 , z 2 and z 3 be respectively the latitude, longitude and altitude normalised in the unit interval. Two choices of covariates x were used for γ(x): x euc := (z 2 1 + z 2 2 )/2 and x alt := z 3 . The tuning parameters are selected in the sets A = {1/(6 × 365.25), 1/(5 × 365.25), . . . , 1/365.25, 4.10 -3 , 6.10 -3 , . . . , 10 -2 , 2.10 -2 , . . . , 10 -1 } and H = {14, 15, . . . , 30}. Recall that the conditional tail index estimator introduced in [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF] is given by γn

(x) = J j=1 [log RVaR n (τ j α n |x) -log RVaR n (τ 1 α n |x)] J j=1 log(τ 1 /τ j ) ,
where (τ j ) j≥1 is a positive non-increasing sequence of weights. Two sequences are investigated:

1. the harmonic sequence defined for all j = 1, . . . , J by τ Ha j = 1/j with J = 9, 2. the geometric sequence defined for all j = 1, . . . , J by τ G j = (1/j) (j/J) with J = 15.

In both cases, the number of terms J was selected to minimize the asymptotic variance of γn (x). Finally, a bi-quadratic kernel was used:

K(x) := K(z 1 , z 2 ) = 15 16 1 -(z 2 1 + z 2 2 ) 2 I{z 2 1 + z 2 2 ≤ 1}.
To assess the performance of our procedure, it is compared to the Oracle (optimal) choice (h opt , α opt ) which is based on the knowledge of the true tail index function:

(h opt , α opt ) = arg min (hi,αj )∈H×A median{V hi,αj (x t ) , t ∈ {1, . . . , N }}, where V hi,αj (x t ) = (γ(x t )γn,i,j (x t )) 2 is the distance to the true tail index function. The selected parameters are displayed in Table 2. It appears that the cross-validation procedure approximately selects the same tuning parameters as the Oracle for all the considered choices of distribution, covariate and weights. Most importantly, one can observe on Figure 1 that the error distributions on the tail index also nearly coincide. This result indicates that the cross-validation procedure is almost as efficient as the Oracle who knows the solution.

Burr distribution

Fréchet distribution x euc and τ Ha , and computed for β = 1/(365.25 × 100) corresponding to a centenary rainfall. In this case, the quality of the estimation is assessed thanks to the relative error:

Q n (x) =   RCTE W n (β|x) RCTE(β|x) -1   2 .
The two histograms of Q n (x t ), t ∈ {1, . . . , N } obtained with (h emp , α emp ) and (h opt , α opt ) are depicted on Figure 2. Both set of parameters yield approximately the same error distribution.

Estimated risk measures on extreme rainfalls

The cross-validation procedure applied to the real data set with τ Ha j yields h emp = 24 and α emp = 1/(365.25 × 3). The estimated conditional tail index is then computed on a grid of 200 × 200 ungauged locations regularly distributed on the Cévennes-Vivarais region, see Figure 3, top panels. Using the asymptotic distribution of γn (x) established in [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF], Corollary 2, pointwise confidence intervals can also be computed. It appears that, for a confidence level of 95%, one can assume that γ(x) < 1/2. At the opposite, the assumption that γ(x) does not depend on x, i.e. γ(x) is constant on the Cévennes-Vivarais region, cannot be accepted. It is then possible to estimate risk measures associated to a 100-year return period. Here, we focus on RVaR n (β n |x) and RCTE n (β n |x) with 5 Appendix: Proofs

Preliminary results

This lemma provides an equivalent of ϕ a (y|x) when y → ∞. We refer to [7, Corollary 3.2] for a similar result in the unconditional case.

Lemma 1 Under (F.1), if y → ∞, then for a ∈ [0, 1/γ(x)), ϕ a (y|x) = 1 1 -aγ(x) y a F (y|x)(1 + o(1)).
Furthermore, under the additional condition (F.2), the derivative ϕ ′ a (.|x) of the function ϕ a (.|x) exists and is a regularly varying function such that

ϕ ′ a (y|x) = aγ(x) -1 γ(x) ϕ a (y|x) y (1 + o(1)).
Proof. First, integrating by part leads to

a ∞ y z a-1 F (z|x)dz = ϕ a (y|x) -y a F (y|x). (9) 
Using [28, Eq. (0.32)] together with y → y a-1 F (y|x)

∈ RV a-1/γ(x)-1 , a -1/γ(x) -1 < -1 and y → ∞ yield ∞ y z a-1 F (z|x)dz = γ(x) 1 -aγ(x) y a F (y|x)(1 + o(1)).
Replacing in ( 9) and dividing both sides by

1 1-aγ(x) y a F (y|x) lead to ϕ a (y|x) 1 1-aγ(x) y a F (y|x) -1 + aγ(x) = aγ(x)(1 + o(1)),
which concludes the first part of the proof. Next, under (F.2), derivating both sides of (9) yields

ϕ ′ a (y|x) = y a F ′ (y|x) = y a-1 F (y|x) y F ′ (y|x) F (y|x) ,
and using [28, Corollary of Theorem 0.6], it follows that

y F ′ (y|x) F (y|x) = - 1 γ(x) (1 + o(1)),
which concludes the proof.

As a consequence of Lemma 1 and (1), we obtain RCTE(α n |x)/RVaR(α n |x) ∼ 1/(1γ(x)) which is an extension of the unconditional result, see for instance [START_REF] Hua | Second order regular variation and conditional tail expectation of multiple risks[END_REF]. The second lemma is also of analytical nature. It provides a second order asymptotic expansion of the RCTM.

Lemma 2 Suppose (F.1), (F.2) and (F.3) hold and let 0 < β n < α n be two sequences such that α n → 0 as n → ∞. Then,

|log RCTM a (α n |x) -log RCTM a (β n |x) + aγ(x) log(α n /β n )| = O (log(α n /β n )ε a (1/β n )) .
Proof. Using ( 6) and (F.2), we have

log RCTM a (α n |x) = -aγ(x) log(α n ) + log(c(x)) + 1/αn 1 ε a (u|x) u du,
and consequently

∆ n := log RCTM a (α n |x) -log RCTM a (β n |x) + aγ(x) log(α n /β n ) = 1/αn 1/βn ε a (u|x) u du.
From (F.3), we obtain

|∆ n | ≤ |ε a (1/β n )| log(β n /α n )
and the conclusion follows.

Let us remark that the kernel estimator (2) of the conditional expectation can be rewritten as φa,n (y n |x) = ψa,n (y n |x)/ĝ n (x) where ψa,n (y|x

) = 1 n n i=1 K h (x -X i )Y a i I{Y i > y},
is an estimator of ψ a (y|x) = g(x)ϕ a (y|x) and ĝn (x) is the kernel estimator of the density g(x)

ĝn (x) = 1 n n i=1 K h (x -X i ). ( 10 
)
Lemma 3 Suppose (F.1), (F.2), (L) and (K) hold. Let x ∈ R p such that g(x) > 0 and y n → ∞ such that nh p F (y n |x) → ∞.

(i) Let 0 ≤ a < 1/γ(x). If ω(x, y n , a, 0, h) → 0 then E( ψa,n (y n |x)) = ψ a (y n |x)(1 + O(h) + O(ω(x, y n , a, 0, h))). (ii) Let 0 ≤ a 1 < • • • < a J+1 < 1/(2γ(x))
where J is a positive integer and consider sequences (y n,j ), j = 1, . . . , J + 1 such that max j∈{1,...,J+1}

y n,j y n -1 → 0.

If there exists, ξ > 0 such that max a∈L({a1,...,a J+1 }) ω(x, y n , a, ξ, h) → 0 then, the random vector

nh p F (y n |x) ψaj,n (y n,j |x) -E( ψaj,n (y n,j |x)) ψ aj (y n,j |x) j∈{1,...,J+1}
is asymptotically Gaussian, centred, with covariance matrix K 2 2 Σ (1) (x)/g(x) where

Σ (1) i,j (x) = (1 -a i γ(x))(1 -a j γ(x)) 1 -(a i + a j )γ(x) , (i, j) ∈ {1, . . . , J + 1} 2 .
Proof. (i) Since the (X i , Y i ), i = 1, . . . , n are identically distributed, it follows that

E( ψa,n (y n |x)) = R p K h (x -t)ϕ a (y n |t)g(t)dt = S K(u)ϕ a (y n |x -hu)g(x -hu)du, under (K). Let us now consider |E( ψa,n (y n |x)) -ψ a (y n |x)| ≤ ϕ a (y n |x) S K(u)|g(x -hu) -g(x)|du (11) + ϕ a (y n |x) S K(u) ϕ a (y n |x -hu) ϕ a (y n |x) -1 g(x -hu)du. (12) 
Under (L), and since g(x) > 0, we have

(11) ≤ ϕ a (y n |x)c g h S d(u, 0)K(u)du = ϕ a (y n |x)O(h). (13) 
Besides, in view of ( 13),

(12) ≤ ϕ a (y n |x)ω(x, y n , a, 0, h) S K(u)g(x -hu)du = ϕ a (y n |x)g(x)ω(x, y n , a, 0, h)(1 + o(1)), ≤ ψ a (y n |x)ω(x, y n , a, 0, h)(1 + o(1)). (14) 
Combining ( 13) and ( 14) concludes the first part of the proof.

(ii) Let β = 0 in R J+1 , Λ n (x) = (nh p ψ 0 (y n |x)) -1/2 , and consider the random variable

Ψ n = J+1 j=1 β j ψaj,n (y n,j |x) -E( ψaj,n (y n,j |x)) Λ n (x)ψ aj (y n,j |x) , = n i=1 1 nΛ n (x)    J+1 j=1 β j K h (x -X i )Y aj i I{Y i ≥ y n,j } ψ aj (y n,j |x) -E   J+1 j=1 β j K h (x -X)Y aj I{Y ≥ y n,j } ψ aj (y n,j |x)      , =: n i=1 Z i,n .
Clearly, {Z i,n , i = 1, . . . , n} is a set of centred, independent and identically distributed random variables with variance

var(Z 1,n ) = 1 n 2 h 2p Λ 2 n (x) var   J+1 j=1 β j K x -X h Y aj I{Y ≥ y n,j } ψ aj (y n,j |x)   = 1 n 2 h p Λ 2 n (x) β t Bβ,
where B is the (J + 1) × (J + 1) covariance matrix defined by B j,l = A j,l ψ aj (y n,j |x)ψ a l (y n,l |x) , for all (j, l) ∈ {1, . . . , J + 1} 2 and

A j,l = 1 h p cov K x -X h Y aj I{Y ≥ y n,j }, K x -X h Y a l I{Y ≥ y n,l } , = K 2 2 E 1 h p Q x -X h Y aj +a l I{Y ≥ y n,j ∨ y n,l } -h p E(K h (x -X)Y aj I{Y ≥ y n,j })E(K h (x -X)Y a l I{Y ≥ y n,l }),
with Q(.) := K 2 (.)/ K 2 2 also satisfying assumption (K). One can use part (i) of the proof to obtain

A j,l = K 2 2 ψ aj +a l (y n,j ∨ y n,l |x)(1 + O(h) + O(ω(x, y n,j ∨ y n,l , a j + a l , 0, h))) -h p ψ aj (y n,j |x)ψ a l (y n,l |x)(1 + O(h) + O(ω(x, y n,j , a j , 0, h)))(1 + O(h) + O(ω(x, y n,l , a l , 0, h))).
Let ξ > 0 such that max a∈L({a1,...,a J+1 }) ω(x, y n , a, ξ, h) → 0. Remarking that ω(x, y n,j , a j , 0, h) ≤ ω(x, y n , a j , ξ, h) for n large enough, we obtain

A j,l = K 2 2 ψ aj +a l (y n,j ∨ y n,l |x)(1 + O(h) + O(ω(x, y n , a j + a l , ξ, h))) -h p ψ aj (y n,j |x)ψ a l (y n,l |x)(1 + O(h) + O(ω(x, y n , a j , ξ, h)))(1 + O(h) + O(ω(x, y n , a l , ξ, h))).
Now, max (ω(x, y n , a j , ξ, h), ω(x, y n , a l , ξ, h), ω(x, y n , a j + a l , ξ, h)) ≤ max a∈L({a1,...,a J+1 }) ω(x, y n , a, ξ, h), leads to

B j,l = K 2 2 ψ aj +a l (y n,j ∨ y n,l |x) ψ aj (y n,j |x)ψ a l (y n,l |x) 1 + O(h) + O max a∈L({a1,...,a J+1 }) ω(x, y n , a, ξ, h) -h p 1 + O(h) + O max a∈L({a1,...,a J+1 }) ω(x, y n , a, ξ, h) .
Let us recall that, since ψ a (.|x) is regularly varying, it follows that ψ aj (y n,j |x) ∼ ψ aj (y n |x) → 0 for all j ∈ {1, . . . , J + 1}. Lemma 1 thus entails

B j,l = K 2 2 ψ 0 (y n |x) (1 -a j γ(x))(1 -a l γ(x)) 1 -(a j + a l )γ(x) (1 + o(1)) = K 2 2 ψ 0 (y n |x) Σ (1) j,l (x)(1 + o(1)).
Therefore, var(Z 1,n ) ∼ K 2 2 β t Σ (1) (x)β/n. As a preliminary conclusion, the variance of Ψ n converges to K 2 2 β t Σ (1) (x)β. Consequently, using Lyapounov theorem for the asymptotic normality of sums of triangular arrays, it remains to prove that there exists η > 0 such that:

n i=1 E |Z i,n | 2+η = nE |Z 1,n | 2+η → 0.
Straightforward calculations lead to

E |Z 1,n | 2+η = 1 nΛ n (x) 2+η E J+1 j=1 β j K h (x -X) Y aj I{Y ≥ y n,j } ψ aj (y n,j |x) -E   J+1 j=0 β j K h (x -X) Y aj I{Y ≥ y n,j } ψ aj (y n,j |x)   2+η .
Besides, for every pair of random variables (T 1 , T 2 ) with finite (2 + η)th order moments, one has

E |T 1 + T 2 | 2+η ≤ 2 2+η max i={1,2} E |T i | 2+η , leading to E |Z 1,n | 2+η ≤ 2 nΛ n (x) 2+η E J+1 j=1 β j K h (x -X) Y aj I{Y ≥ y n,j } ψ aj (y n,j |x) 2+η .
Lemma 1 and y n,j = y n (1 + o( 1)) for all j ∈ {1, . . . , J + 1} yield

E |Z 1,n | 2+η ≤ 2 nΛ n (x)ψ 0 (y n |x) 2+η × E J+1 j=1 β j K h (x -X) I{Y ≥ y n,j } Y y n,j aj (1 -a j γ(x)) 2+η (1 + o(1)).
Letting ã = max{a 1 , . . . , a J+1 } and ỹn = min{y n,1 , . . . , y n,J+1 }, it follows that for n large enough,

nE |Z 1,n | 2+η ≤ 2n 2(1 -ãγ(x)) nh p Λ n (x)ψ 0 (y n |x)ỹ ã n 2+η J+1 j=1 |β j | 2+η E K x -X h Y ãI{Y ≥ ỹn } 2+η .
Choosing η such that 0 < η < -2 + 1/(ãγ(x)), (i) implies that

E K x -X h Y ãI{Y ≥ ỹn } 2+η = h p K 2+η 2+η E N h (x -X) Y ã(2+η) I{Y ≥ ỹn } , = h p K 2+η 2+η ψ ã(2+η) (ỹ n |x)(1 + o(1)),
since N (.) := K 2+η (.)/ K 2+η 2+η also fulfils assumption (K). Using Lemma 1 and the fact that ỹn = y n (1 + o(1)), we obtain nE |Z 1,n | 2+η = O (Λ η n (x)) → 0 as n → ∞ which concludes the proof. The asymptotic behaviors of the estimators φa,n (.|x) and φ← a,n (.|x) are established in the following two propositions.

Proposition 1 Suppose (F.1), (F.2), (L) and (K) hold. Let x ∈ R p such that g(x) > 0 and

0 ≤ a 1 < • • • < a J+1 < 1/(2γ(x))
where J is a positive integer. Consider y n → ∞ such that nh p F (y n |x) → ∞ as n → ∞ and sequences (y n,j ), j ∈ {1, . . . , J + 1} such that max j∈{1,...,J+1}

y n,j y n -1 → 0.
If there exists ξ > 0 such that nh p F (y n |x) h ∨ max a∈L({a1,...,a J+1 }) ω(x, y n , a, ξ, h) 2 → 0 then, the random vector

nh p F (y n |x) φaj,n (y n,j |x) ϕ aj (y n,j |x) -1 j∈{1,...,J+1}
is asymptotically Gaussian, centred, with covariance matrix K 2 2 Σ (1) (x)/g(x).

Proof. Keeping in mind the notations of Lemma 3, the following expansion holds

Λ -1 n (x) J+1 j=1 β j φaj,n (y n,j |x) ϕ aj (y n,j |x) -1 = ∆ 1,n + ∆ 2,n -∆ 3,n ĝn (x) , (15) 
where

∆ 1,n = g(x)Λ -1 n (x) J+1 j=1
β j ψaj,n (y n,j |x) -E( ψaj,n (y n,j |x))

ψ aj (y n,j |x) , ∆ 2,n = g(x)Λ -1 n (x) J+1 j=1
β j E( ψaj,n (y n,j |x))ψ aj (y n,j |x) ψ aj (y n,j |x) ,

∆ 3,n =   J+1 j=1 β j   Λ -1 n (x) (ĝ n (x) -g(x)) .
Thus, from Lemma 3(ii), the random term ∆ 1,n can be rewritten as

∆ 1,n = g(x) K 2 β t Σ (1) (x)βξ n , (16) 
where ξ n converges to a standard Gaussian random variable. The non-random term ∆ 2,n is controlled with Lemma 3(i): 

∆ 2,n = O hΛ -1 n (x) + O Λ -1 n (x
Finally, ∆ 3,n is a classical term in kernel density estimation, which can be bounded by [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF], Lemma 4:

∆ 3,n = O(hΛ -1 n (x)) + O P (Λ -1 n (x)(nh p ) -1/2 ), = O nh p+2 F (y n |x) 1/2 + O P ( F (y n |x)) 1/2 = o P (1). (18) 
Collecting ( 15)-( 18), it follows that ĝn (x)Λ - is asymptotically Gaussian, centred, with covariance matrix K 2 2 Σ (2) (x)/g(x) where

Σ (2) i,j (x) = γ 2 (x) 1 -(a i + a j )γ(x)
, (i, j) ∈ {1, . . . , J + 1} 2 .

Proof. Introduce for j ∈ {1, . . . , J + 1},

σ n,j (x) = ϕ ← aj (α n,j |x)(nh p α n ) -1/2 , v n,j (x) = α -1 n,j γ(x) 1 -a j γ(x) (nh p α n ) 1/2 , W n,j (x) = v n,j (x) φaj (ϕ ← aj (α n,j |x) + σ n,j (x)z j )|x) -ϕ aj (ϕ ← aj (α n,j |x) + σ n,j (x)z j )|x , t n,j (x) = v n,j (x) α n,j -ϕ aj (ϕ ← aj (α n,j |x) + σ n,j (x)z j )|x ,
where (z 1 , . . . , z J+1 ) ∈ R J+1 . We examine the asymptotic behavior of the cumulative distribution function defined by

Φ n (z 1 , . . . , z J+1 ) = P   J+1 j=1 σ -1 n,j (x)( φ← aj ,n (α n,j |x) -ϕ ← aj (α n,j |x)) ≤ z j   , = P   J+1 j=1 {W n,j (x) ≤ t n,j (x)}   .
Let us first focus on the non-random terms t n,j (x), j ∈ {1, . . . , J + 1}. From Lemma 1, for all a ∈ [0, 1/(2γ(x))), the function ϕ a (.|x) is differentiable and thus, for each j ∈ {1, . . . , J + 1} there exists θ n,j ∈ (0, 1) such that

ϕ aj ϕ ← aj (α n,j |x)|x -ϕ aj ϕ ← aj (α n,j |x) + σ n,j (x)z j |x = -σ n,j (x)z j ϕ ′ aj (r n,j |x), (19) 
where r n,j = ϕ ← aj (α n,j |x)+θ n,j σ n,j (x)z j . It is thus clear that r n,j ∼ ϕ ← aj (α n,j |x) → ∞ and Lemma 1 yields

ϕ ′ aj (r n,j |x) = (a j γ(x) -1)α n,j γ(x)ϕ ← aj (α n,j |x) (1 + o(1)). (20) 
In view of ( 19) and ( 20), we end up with

t n,j (x) = (1 -a j γ(x))v n,j (x)σ n,j (x)α n,j z j γ(x)ϕ ← aj (α n,j |x) (1 + o(1)) = z j (1 + o(1)). (21) 
Let us now turn to the random terms W n,j (x), j ∈ {1, . . . , J + 1}. Clearly, sequences y n,j := ϕ ← aj (α n,j |x) + σ n,j (x)z j , j = 1, . . . , J + 1 and y n := ϕ ← 0 (α n |x) satisfy the assumptions of Proposition 1 and consequently,

W n,j (x) = γ(x) 1 -a j γ(x) ϕ aj (ϕ ← aj (α n,j |x) + σ n,j (x)z j |x) α n,j (nh p α n ) 1/2 φaj (y n,j |x) ϕ aj (y n,j |x) -1 .
Moreover, since ϕ a (.|x) is regularly varying, the following equivalences hold,

ϕ aj (ϕ ← aj (α n,j |x) + σ n,j (x)z j |x) α n,j = ϕ aj (ϕ ← aj (α n,j |x)(1 + o P (1))|x) α n,j = 1 + o P (1).
As a consequence of Slutsky's theorem, the random vector (W n,1 , . . . , W n,J+1 ) is equal to A(x)ξ n where

A(x) = diag γ(x) 1 -a 1 γ(x) , . . . , γ(x) 1 -a J+1 γ(x) ,
and ξ n is a (J + 1)-random vector converging to a centred Gaussian random variable with covariance matrix K 2 2 Σ (1) (x)/g(x). Taking account of (21), we obtain that Φ n (z 1 , . . . , z J+1 ) converges to the cumulative distribution function of a centred Gaussian distribution with covariance matrix

K 2 2 A(x)Σ (1) (x)A(x)/g(x) = K 2 2 Σ (2) (x)/g(x)
which is the desired result.

Proofs of main results

Proof of Theorem 1. Let us introduce for j ∈ {1, . . . , J},

v n,j (x) = (1 -a j γ(x))(nh p α n ) 1/2 γ(x)ϕ ← 0 (α n |x) , σ n,j (x) = ϕ aj (ϕ ← 0 (α n |x)|x)(nh p α n ) -1/2 , σ n,0 (x) = ϕ ← 0 (α n |x)(nh p α n ) -1/2 , t n,j = v n,j (x) ϕ ← 0 (α n |x) -ϕ ← aj ϕ aj (ϕ ← 0 (α n |x)|x) + σ n,j (x)z j |x , W n,j (x) = v n,j (x) φ← aj ,n ϕ aj (ϕ ← 0 (α n |x)|x) + σ n,j (x)z j |x -ϕ ← aj ϕ aj (ϕ ← 0 (α n |x)|x) + σ n,j (x)z j |x , W (0) n,j (x) = v n,j (x) φ← 0,n (α n |x) -ϕ ← 0 (α n |x) , W (0) 
n,0 (x) = σ -1 n,0 (x) φ← 0,n (α n |x) -ϕ ← 0 (α n |x) ,
where (z 0 , z 1 , . . . , z J ) ∈ R J+1 . We examine the asymptotic behavior of the cumulative distribution function defined by

Φ n (z 0 , z 1 , . . . , z J ) = P      J j=1 σ -1 n,j (x)( φaj,n ( φ← 0,n (α n |x)|x) -ϕ aj (ϕ ← 0 (α n |x)|x)) ≤ z j    W (0) n,0 (x) ≤ z 0   , = P      J j=1 W n,j (x) -W (0) n,j (x) ≤ t n,j    W (0) n,0 (x) ≤ z 0   .
Let us first focus on the non-random terms t n,j (x), j = 1, . . . , J. From Lemma 1, for all a ∈ [0, 1/(2γ(x))), ϕ ← a (.|x) is a differentiable regularly varying function such that

(ϕ ← a ) ′ (y n |x) = 1 ϕ ′ a (ϕ ← a (y n |x)|x) = γ(x)ϕ ← a (y n |x) (aγ(x) -1)y n (1 + o(1)), (22) 
as n → ∞. For all j ∈ {1, . . . , J}, a first order Taylor expansion leads to:

ϕ ← aj (ϕ aj (ϕ ← 0 (α n |x)|x)|x) -ϕ ← aj ϕ aj (ϕ ← 0 (α n |x)|x) + σ n,j (x)z j |x = -σ n,j (x)z j q n,j (x), where q n,j (x) = (ϕ ← aj ) ′ (ϕ aj (ϕ ← 0 (α n |x)|x) + θ n,j σ n,j (x)z j |x) with (θ n,1 , . . . , θ n,J ) ∈ (0, 1) J . Since σ n,j (x)/ϕ aj (ϕ ← 0 (α n |x)|x) = (nh p α n ) -1/2 → 0 as n → ∞, (22) entails that q n,j (x) = γ(x)ϕ ← 0 (α n |x) (a j γ(x) -1)ϕ aj (ϕ ← 0 (α n |x)|x) (1 + o(1)).
Hence,

ϕ ← aj (ϕ aj (ϕ ← 0 (α n |x)|x)|x) -ϕ ← aj ϕ aj (ϕ ← 0 (α n |x)|x) + σ n,j (x)z j |x = z j v n,j (x) (1 + o(1)), (23) 
which shows that for all j ∈ {1, . . . , J}, t n,j → z j as n → ∞. Let us now turn to the random terms W n,j (x), j = 1, . . . , J. Clearly,

W n,j (x) = 1 -a j γ(x) γ(x) (nh p α n ) 1/2 φ← aj ,n ϕ aj (ϕ ← 0 (α n |x)|x) + σ n,j (x)z j |x ϕ ← aj ϕ aj (ϕ ← 0 (α n |x)|x) + σ n,j (x)z j |x -1 (1 + o(1)), since, from (23), ϕ ← aj ϕ aj (ϕ ← 0 (α n |x)|x) + σ n,j (x)z j |x ϕ ← 0 (α n |x) = 1 + z j ϕ ← 0 (α n |x)v n,j (x) (1 + o(1)) = 1 + o(1)
.

Furthermore, we have

W (0) n,j (x) = 1 -a j γ(x) γ(x) (nh p α n ) 1/2 φ← 0,n (α n |x) ϕ ← 0 (α n |x) -1 .
As a consequence, applying Proposition 2 with a J+1 = 0, α n,j = ϕ aj (ϕ ← 0 (α n |x)|x) + σ n,j (x)z j for j = 1, . . . , J and α n,J+1 = α n entails

W n,j (x) -W (0) n,j (x) j=1,...,J , W (0) n,0 (x) = M (x)ξ n ,
where M is the (J + 1) × (J + 1) matrix defined by

M (x) =      Ã(x) c 1 (x)
. . .

c J (x) 0 • • • 0 1     
with Ã(x) = diag 1a 1 γ(x) γ(x) , . . . , 1a J γ(x) γ(x) and c j = -1a j γ(x) γ(x) , j ∈ {1, . . . , J} and where ξ n is a (J + 1)-random vector asymptotically Gaussian, centred with covariance K 2 2 Σ (2) (x)/g(x). Since for each j ∈ {1, . . . , J}, t n,j → z j as n → ∞, the cumulative distribution function Φ n converges to a centred Gaussian cumulative distribution function with covariance matrix K 2 2 M (x)Σ (2) (x)M (x) t /g(x) = K 2 2 γ 2 (x)Σ(x)/g(x), which is the desired result.

Proof of Corollary 2. Clearly, from Theorem 1 one has for i = 1, 2,

RCTM i,n (α n |x) = RCTM i (α n |x) 1 + (nh p α n ) -1/2 ξ i,n ,
where the random vector (ξ 1,n , ξ 2,n ) is asymptotically Gaussian, centred with covariance matrix Σ (3) defined by Σ

i,j = ijγ 2 (x) 2 -(i + j)γ(x) 1 -(i + j)γ(x) 

jx

  alt and τ G j x euc and τ G j x alt and τ Ha j h opt = 22 h opt = 24 h opt = 22 h opt = 26 h emp = 24 h emp = 22 h emp = 20 h emp = 24 α opt = 1/365.25 α opt = 1/(365.25 × 2) α opt = 1/(365.25 × 3) α opt = 1/365.25 α emp = 0.001 α emp = 1/365.25 α emp = 1/365.25 α emp = 0.004

β n = 1 /

 1 (365.25 × 100). The associated estimators RVaR W n (β n |x) and RCTE W n (β n |x) are displayed on Figure 3, bottom panels. The estimated 100-year return level RVaR W n (β n |x) is similar to the results obtained in [6] using kriging methods. More interestingly, the RCTE W n (β n |x) can be 150 millimeters higher than the RVaR W n (β n |x) on the mountains area.

K 2 2 g.Figure 1 :Figure 2 :

 212 Figure 1: Histogram of the errors V hopt,αopt (x t ) (solid line, white bars) and V hemp,αemp (x t ) (dotted lines, grey bars) computed on simulated data (Burr distribution on the top panel, Fréchet distribution on the bottom panel). Upper left: x euc and τ Ha j , upper right: x alt and τ G j , bottom left: x euc and τ G j , bottom right: x alt and τ Ha j .

Figure 3 :

 3 Figure 3: Upper left: map of the Cévennes-Vivarais region, horizontally: longitude (km), vertically: latitude (km), the color scale represents the altitude (m), the white dots represent some raingauge stations, upper right: γn (x), bottom left: RVaR W n (β n |x) for a 100-year return period, bottom right: RCTE W n (β n |x) for a 100-year return period.
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 2 Results of the selection procedure

Similar results can be observed on the extrapolated RCTE defined by

RCTE W n (β|x) = RCTE n (α|x) α β γn(x)

  Suppose (F.1), (F.2), (L) and (K)hold. Let x ∈ R p such that g(x) > 0 and let 0 ≤ a 1 < • • • < a J+1 < 1/(2γ(x))where J is a positive integer. Consider α n → 0 such that nh p α n → ∞ as n → ∞. Let (α n,j ), j = 1, . . . , J + 1 be sequences such that

		1 n (x)	J+1 j=1	β j		φaj,n (y n,j |x) ϕ aj (y n,j |x)	-1 = g(x) K 2 β t Σ (1) (x)βξ n + o P (1).
	Finally, ĝn (x)	P -→ g(x) yields		
		nh p F (y n |x)	J+1 j=1	β j	φaj,n (y n,j |x) ϕ aj (y n,j |x)	-1 = K 2	β t Σ (1) (x)β g(x)	ξ n + o P (1),
	and the result is proved.				
	Proposition 2 max j∈{1,...,J+1}	ϕ ← aj (α n,j |x) ϕ ← 0 (α n |x)	-1 → 0,
	If there exists ξ > 0 such that nh p α n h ∨ max a∈L({a1,...,a J+1 }) ω(x, ϕ ← 0 (α n |x), a, ξ, h) the random vector	2 → 0 then,
						nh p α n	φ← aj ,n (α n,j |x) ϕ ← aj (α n,j |x)	-1	j∈{1,...,J+1}

Proof of Corollary 3. Clearly, from Theorem 1 one has for i = 1, 2, 3, RCTM i,n (α n |x) = RCTM i (α n |x) 1 + (nh p α n ) 1/2 ξ i,n , where the random vector (ξ 1,n , ξ 2,n , ξ 3,n ) is asymptotically Gaussian, centred with covariance matrix Σ (4) defined by

From the proof of Corollary 2, it appears that

and thus

Clearly, from Theorem 1,

is asymptotically Gaussian, centred with variance

and the result is proved.

Proof of Theorem 2. The proof is based on the following expansion:

Let us consider the three terms separately. Under the hypotheses of Theorem 2, it is clear that

As a consequence, Q n,2 P → 0 when n → ∞. Finally, Lemma 2 entails Q n,3 = O nh p n α n ε a (1/β n |x) which converges to 0 by assumption.