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(2) Université de Strasbourg & CNRS, IRMA, UMR 7501, 7 rue René Descartes,
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Abstract

In this paper, we introduce a new risk measure, the so-called Conditional Tail Moment. It

is defined as the moment of order a ≥ 0 of the loss distribution above the upper α-quantile

where α ∈ (0, 1). Estimating the Conditional Tail Moment permits to estimate all risk mea-

sures based on conditional moments such as Value-at-Risk, Conditional Tail Expectation,

Conditional Value-at-Risk or Conditional Tail Variance. Here, we focus on the estimation of

these risk measures in case of extreme losses (where α→ 0 is no longer fixed). It is moreover

assumed that the loss distribution is heavy-tailed and depends on a covariate. The estima-

tion method thus combines nonparametric kernel methods with extreme-value statistics. The

asymptotic distribution of the estimators is established and their finite sample behavior is

illustrated both on simulated data and on a real data set of daily rainfalls in the Cévennes-

Vivarais region (France).

Keywords: Conditional tail Expectation, Heavy-tailed distributions, Kernel estimator, Asymp-
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1 Introduction

One of the most popular risk measures is the Value-at-Risk (VaR) introduced in the 1990’s, see [28]
or [25] for a review. In statistical terms, the VaR at level α ∈ (0, 1) corresponds to the upper α-
quantile of the loss distribution. The Value-at-Risk however suffers from several weaknesses. First,
it provides us only with a pointwise information: VaR(α) does not take into consideration what
the loss will be beyond this quantile. Second, random loss variables with light-tailed distributions
or heavy-tailed distributions may have the same Value-at-Risk [36]. Finally, Value-at-Risk is not
a coherent risk measure [1, 2] since it is not subadditive in general1.

A coherent alternative risk measure is the Conditional Tail Expectation (CTE) [2], also known
as Tail-Value-at-Risk, Tail Conditional Expectation or Expected Shortfall in case of a continuous

1Recall that a risk measure ρ is subadditive if ρ(Z + T ) ≤ ρ(Z) + ρ(T ) for all random loss variables Z and T .
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loss distribution. The CTE is defined as the expected loss given that the loss lies above the upper
α-quantile of the loss distribution. This risk measure thus takes into account the whole information
contained in the upper tail of the distribution. It has been extensively studied in [2, 6, 36] and is
frequently encountered in financial investment or in the insurance industry [5, 26].

Other existing risk measures include: the Conditional Tail Variance (CTV) [37], the Conditional
Tail Skewness (CTS) [23] respectively defined as the variance or skewness of the loss distribution
above the upper α-quantile, the Conditional-Value-at-Risk (CVaR) [33] defined as the weighted
average between VaR and CTE, and the Stop-loss Premium reinsurance risk measure (SP) with
retention level equal to VaR [6], see Section 2 for a precise definition.

In this paper, we first introduce a new tool for unifying the estimation of the above mentioned
risk measures: the Conditional Tail Moment (CTM). It is defined as the moment of order a > 0 of
the random loss distribution above the VaR at level α. We shall show that estimating the CTM
permits to estimate all risk measures based on conditional moments of arbitrary orders above
the VaR. For instance, it is clear that the Conditional Tail Moment of order one reduces to the
Conditional Tail Expectation. Our second contribution is to investigate the estimation of the CTM
in case of extreme losses (α→ 0) making heavy use of the extreme-value theory. Even though links
between extreme-value theory and risk measures have already been investigated [12, 13, 14, 27],
the estimation of risk measures is usually achieved in the statistical literature for fixed values of α,
see for instance [9, 29]. Our third contribution is to propose an estimator of extreme risk measures
able to deal with covariates. In this context, the new risk measure is referred to as the Regression
Conditional Tail Moment (RCTM). For instance, in finance, the loss distribution can be affected
by many factors, such as interest rates or inflation. In meteorology, one is interested in the extreme
rainfalls as a function of the geographical location [10, 16].

The paper is organized as follows. The definition of the RCTM and its link with classical risk
measures are given in Section 2. Asymptotic properties are established in Section 3. The efficiency
of our estimators is then illustrated on simulated and real data in Section 4. Proofs are postponed
to the Appendix.

2 The Regression Conditional Tail Moment: definition and

estimation

2.1 A new risk measure

Let Y ∈ R be a random loss variable. For α ∈ (0, 1), the Value at Risk of level α is the quantity
VaR(α) satisfying

P(Y > VaR(α)) = α.

The Value at Risk is the most popular risk measure [28] but many others can be found in the
literature:
- The Conditional Tail Expectation [2] is defined by:

CTE(α) := E(Y |Y > VaR(α)).

- The Conditional Tail Variance was introduced in [37] and is given by:

CTV(α) := E
(
(Y − CTE(α))2 |Y > VaR(α)

)
.
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It measures the conditional variability of Y given Y > VaR(α) and indicates how far away the
events deviate from CTE(α).
- The Conditional Tail Skewness was defined in [23] by:

CTS(α) := E
(
Y 3 |Y > q(α)

)/
(CTV(α))3/2.

- The Conditional-Value-at-Risk is defined by:

CVaRλ(α) := λVaR(α) + (1− λ)CTE(α),

with 0 ≤ λ ≤ 1. It is clear that CVaR1(α) = VaR(α) and CVaR0(α) = CTE(α). This risk measure
is able to quantify dangers beyond VaR(α) and is moreover coherent [34]. Other fundamental
properties can be found in [33].
- The Stop-loss Premium reinsurance risk measure with retention level equal to VaR(α) [6]

SP(α) := E((Y −VaR(α))+) = α (CTE(α)−VaR(α)) ,

where z+ = max(0, z), is proportional to the difference between CTE(α) and VaR(α). This mea-
sure thus permits to emphasize the dangerous cases.

The first purpose of this paper is to unify the definitions of the above risk measures. To this end,
a new risk measure is introduced. The Conditional Tail Moment (CTM) defined by:

CTMa(α) := E(Y a|Y > VaR(α)),

where a ≥ 0 is such that the moment of order a of Y exists. It is easy to check that all the above
risk measures of level α can be rewritten as Φ(VaR(α),CTM1(α),CTM2(α),CTM3(α)), where the
function Φ : R4 7→ R is taken in Table 1.

Risk measure Φ(t0, t1, t2, t3)
CTE(α) t1

CTV(α) t2 − t21
CTS(α) t3/(t2 − t21)3/2

CVaR(α) λt0 + (1− λ)t1, λ ∈ [0, 1]
SP(α) α(t1 − t0)

Table 1: Links between the new risk measure and classical risk measures

More generally, the CTM can be used to define any risk measure based on conditional moments of
the loss variable above the VaR of level α. For instance, one could introduce the conditional tail
kurtosis thanks via the function Φ(t0, t1, t2, t3, t4) = t4/(t2 − t21)2.

2.2 Extreme losses and regression case

As announced in the introduction, our second purpose is to adapt the classical risk measures to
extreme losses and to the case where a covariate X ∈ Rp is recorded simultaneously with the loss
variable Y . To this end, the fixed level α ∈ (0, 1) is replaced by a sequence (αn) ∈ (0, 1), such that
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αn → 0. Furthermore, denoting by F̄ (.|x) the conditional survival distribution function of Y given
X = x, we define the Regression Value-at Risk by:

RVaR(αn|x) := F̄←(α|x) = inf{t, F̄ (t|x) ≤ α},

and the Regression Conditional Tail Moment of order a by:

RCTMa(αn|x) := E(Y a|Y > RVaR(αn|x), X = x),

where a > 0 is such that the moment of order a of Y exists. Note that in this framework,
RVaR(αn|x) is the extreme conditional quantile of level αn ∈ (0, 1), see for instance [3, 10, 11,
16, 17, 39]. It is then quite easy to adapt the classical risk measures to extreme losses and to the
presence of a covariate by applying the desired function (see Table 1) to the vector

(RVaR(αn|x),RCTM1(αn|x),RCTM2(αn|x),RCTM3(αn|x)).

This yields the following risk measures: RCTE(αn|x), RCTV(αn|x), RCTS(αn|x) , RCVaR(αn|x)
and RSP(αn|x).

2.3 Inference

Let (Xi, Yi), i = 1, . . . , n, be independent copies of the random pair (X,Y ). To estimate the
RCTM, we start from the following straightforward equality

RCTMa(αn|x) =
1
αn

ϕa(ϕ←0 (αn|x)|x), (1)

where for y > 0,
ϕa(y|x) = E (Y aI{Y > y}|X = x) , (2)

is the conditional moment of order a ≥ 0. Estimation of the RCTM thus relies on the estimation
of the conditional moment. We propose to use a classical kernel estimator (see [31, 35]) given by

ϕ̂a,n(y|x) =
n∑
i=1

Kh(x−Xi)Y ai I{Yi > y}

/
n∑
i=1

Kh(x−Xi), (3)

where I{.} is the indicator function and h = hn is a non-random sequence such that h → 0 as
n → ∞. We have also introduced Kh(t) = K(t/h)/hp where K is a density on Rp. In this
context, h is called the window-width. Since ϕ̂a,n(.|x) is a non increasing function, we can define
an estimator of ϕ←a (α|x) for α ∈ (0, 1) by

ϕ̂←a,n(α|x) = inf{t, ϕ̂a,n(t|x) < α}. (4)

Remarking that ϕ0(y|x) = F̄ (y|x), the RVaR of level αn is thus estimated by

R̂VaRn(αn|x) = ϕ̂←0,n(αn|x).

We thus recover the extreme conditional quantile estimator studied in [10, 11]. The RCTM of
order a is estimated by

R̂CTMa,n(αn|x) =
1
αn

ϕ̂a,n(ϕ̂←0,n(αn|x)|x). (5)
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An estimator of each of the above mentioned risk measures is thus given by

Φ(R̂VaRn(αn|x), R̂CTM1,n(αn|x), R̂CTM2,n(αn|x), R̂CTM3,n(αn|x)), (6)

where the function Φ is chosen in Table 1. The obtained estimators will be denoted by R̂CTEn(αn|x),
R̂CTVn(αn|x), R̂CTSn(αn|x), R̂CVaRλ,n(αn|x) and R̂SPn(αn|x). As an example, the estimated
RCTE is simply given by:

R̂CTEn(αn|x) =
1
αn

ϕ̂1,n(ϕ̂←0,n(αn|x)|x).

The joint asymptotic distribution of the RCTM and RVaR estimators, and consequently of all the
above mentioned estimators, is established in the next section.

3 Main results

Our main assumption is the following:

(F.1) We assume that the conditional survival distribution function of Y given X = x is heavy-
tailed and admits a probability density function.

To summarize, (F.1) amounts to assuming that the conditional distribution of Y given X = x

is in the Fréchet maximum domain of attraction. Assumption (F.1) is also equivalent to stating
that for all y > 0, F̄ (y|x) = P(Y > y|X = x) is regularly varying at infinity (see [4]) with index
−1/γ(x) denoted by F̄ (.|x) ∈ RV−1/γ(x) i.e for all λ > 0,

lim
y→∞

F̄ (λy|x)
F̄ (y|x)

= λ−1/γ(x).

In this context, γ(.) is a positive function of the covariate x and is referred to as the conditional
tail index since it tunes the tail heaviness of the conditional distribution of Y given X = x.
It also appears that, under (F.1), a sufficient condition for the existence of RCTMa(1/.|x) is
a < 1/γ(x). As established in Lemma 1, condition (F.1) also implies that, for all a ∈ [0, 1/γ(x)),
ϕa(.|x) ∈ RVa−1/γ(x). Since, moreover, F̄ (.|x) ∈ RV−1/γ(x), we have RCTMa(1/.|x) ∈ RVaγ(x).
This is equivalent to state that for a ∈ [0, 1/γ(x)) and for all y > 0,

RCTMa(1/y|x) = yaγ(x)`a(y|x), (7)

with a positive index aγ(x) and, for x fixed, `a(.|x) is a slowly-varying function at infinity, i.e for
all λ > 0,

lim
y→∞

`a(λy|x)
`a(y|x)

= 1. (8)

To establish the asymptotic normality of (5), the following additional conditions are required.
First, as remarked in [4], p.15, since slowly-varying functions are of interest only asymptotically,
one can assume without loosing generality that in (7)

(F.2) `a(.|x) is normalized for all a ∈ [0, 1/γ(x)).
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In such a case, the Karamata representation (see [4], Theorem 1.3.1) of the slowly-varying function
can be written as

`a(y|x) = ca(x) exp
(∫ y

1

εa(u|x)
u

du

)
, (9)

where ca(.) is a positive function and εa(y|x) → 0 as y → ∞. Thus, `a(.|x) is differentiable and
the auxiliary function is given by εa(y|x) = y`′a(y|x)/`a(y|x). This function plays an important
role in extreme-value theory since it drives the speed of convergence in (8) and more generally
the bias of extreme-value estimators. Therefore, it may be of interest to specify how it converges
to 0. In [20], the auxiliary function is supposed to be regularly varying and the estimation of the
conditional regular variation index is addressed. Here, we limit ourselves to assuming that for all
a ∈ (0, 1/γ(x)),

(F.3) |εa(.|x)| is continuous and ultimately non-increasing.

A Lipschitz condition on the probability density function g of X is also required. For all (x, x′) ∈
Rp×Rp, the Euclidean distance between x and x′ is denoted by d(x, x′) and the following assump-
tion is introduced:

(L) There exists a constant cg > 0 such that |g(x)− g(x′)| ≤ cgd(x, x′).

The next assumption is standard in the kernel estimation framework.

(K) K is a bounded density on Rp, with support S included in the unit ball of Rp.

Finally, for y > 0 and ξ > 0, the largest oscillation of the conditional moment of order a ∈
[0, 1/γ(x)) is given by

ωn(y, ξ) = sup
{∣∣∣∣ ϕa(z|x)
ϕa(z|x′)

− 1
∣∣∣∣ , z ∈ [(1− ξ)y, (1 + ξ)y] and d(x, x′) ≤ h

}
.

We are now in position to establish our main result.

Theorem 1 Suppose (F.1), (F.2), (L) and (K) hold. Let us introduce 0 ≤ a1 < a2 < · · · < aJ

where J is a positive integer. For all x ∈ Rp such that g(x) > 0 and γ(x) < 1/(2aJ), let us
introduce a sequence (αn) with αn → 0 and nhpαn →∞ as n→∞. If there exists ξ > 0 such that
nhpαn (h ∨ ωn(ϕ←0 (αn|x), ξ))2 → 0, then, the random vector

√
nhpαn


(

R̂CTMaj ,n(αn|x)
RCTMaj (αn|x)

− 1

)
j∈{1,...,J}

,

(
R̂VaRn(αn|x)
RVaR(αn|x)

− 1

)
is asymptotically Gaussian, centred, with a (J+1)×(J+1) covariance matrix ‖K‖22γ2(x)Σ(x)/g(x)
where for (i, j) ∈ {1, . . . , J}2 we have

Σi,j(x) =
aiaj(2− (ai + aj)γ(x))

(1− (ai + aj)γ(x))

ΣJ+1,j(x) = aj , Σi,J+1(x) = ai, and ΣJ+1,J+1(x) = 1.

Theorem 1 permits to establish the asymptotic normality for any regression estimator of a risk mea-
sure based on arbitrary moments above an extreme conditional quantile. In particular, R̂CTEn(αn|x),
R̂CVaRλ,n(αn|x) and R̂SPn(αn|x) only involve the first order moment, their asymptotic normality
can be derived under the assumption γ(x) < 1/2:
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Corollary 1 Suppose (F.1), (F.2), (L) and (K) hold. For all x ∈ Rp such that g(x) > 0 and
γ(x) < 1/2, let us introduce a sequence (αn) with αn → 0 and nhpαn → ∞ as n → ∞. If there
exists ξ > 0 such that nhpαn (h ∨ ωn(ϕ←0 (αn|x), ξ))2 → 0, then

√
nhpαn

(
R̂CTEn(αn|x)
RCTE(αn|x)

− 1

)
d−→ N

(
0,

2γ2(x)(1− γ(x))
1− 2γ(x)

‖K‖22
g(x)

)
,

√
nhpαn

(
R̂CVaRλ,n(αn|x)
RCVaRλ(αn|x)

− 1

)
d−→ N

(
0,
γ2(x)(λ2 + 2− 2λ− 2γ(x))

1− 2γ(x)
‖K‖22
g(x)

)
,

√
nhpαn

(
R̂SPn(αn|x)
RSP(αn|x)

− 1

)
d−→ N

(
0,

γ2(x)
1− 2γ(x)

‖K‖22
g(x)

)
.

The RCTV(αn|x) estimator involves the computation of a second order moment, its asymptotic
normality requires the stronger condition γ(x) < 1/4.

Corollary 2 Suppose (F.1), (F.2), (L) and (K) hold. For all x ∈ Rp such that g(x) > 0 and
γ(x) < 1/4, let us introduce a sequence (αn) with αn → 0 and nhpαn → ∞ as n → ∞. If there
exists ξ > 0 such that nhpαn (h ∨ ωn(ϕ←0 (αn|x), ξ))2 → 0, then

√
nhpαn

(
R̂CTVn(αn|x)
RCTV(αn|x)

− 1

)
d−→ N

(
0,

8(1− γ(x))(1− 2γ(x))(1 + 2γ(x) + 3γ2(x))
(1− 3γ(x))(1− 4γ(x))

‖K‖22
g(x)

)
.

Similarly, the RCTS(αn|x) estimator involves the computation of a third order moment, its asymp-
totic normality requires the even stronger condition γ(x) < 1/6.

Corollary 3 Suppose (F.1), (F.2), (L) and (K) hold. For all x ∈ Rp such that g(x) > 0 and
γ(x) < 1/6, let us introduce a sequence (αn) with αn → 0 and nhpαn → ∞ as n → ∞. If there
exists ξ > 0 such that nhpαn (h ∨ ωn(ϕ←0 (αn|x), ξ))2 → 0, then

√
nhpαn

(
R̂CTSn(αn|x)
RCTS(αn|x)

− 1

)
d−→ N

(
0, V (x)

‖K‖22
g(x)

)
,

where

V (x) =
18(1− 13γ(x) + 50γ2(x)− 44γ3(x)− 23γ4(x)− 3γ5(x))

(1− 3γ(x))(1− 4γ(x))(1− 5γ(x))(1− 6γ(x))
.

In Theorem 1, the condition nhpαn → 0 provides a lower bound on the level of the risk measure
to estimate. This restriction is a consequence of the use of kernel estimator (3) which cannot
extrapolate beyond the maximum observation in the ball B(x, h). In consequence, αn must be an
order of an extreme quantile within the sample. To overcome this limitation, we propose to adapt
Weissman’s estimator [40], initially designed for the estimation of unconditional quantiles, to the
estimation of the RCTM:

R̂CTM
W

a,n(βn|x) = R̂CTMa,n(αn|x)
(
αn
βn

)aγ̂n(x)

,

where a is a fixed value, 0 < βn < αn and γ̂n(x) is an estimator of the conditional tail-index
γ(x) (see [15, 18, 19, 20, 21, 38]). As illustrated in the next theorem, the extrapolation factor
(αn/βn)aγ̂n(x) allows us to estimate RCTM of arbitrary small levels βn.

7



Theorem 2 Suppose the assumptions of Theorem 1 hold together with (F.3). Let us consider
γ̂n(x) an estimator of the tail index such that√

nhpnαn(γ̂n(x)− γ(x)) d→ N
(
0, v2(x)

)
,

with v(x) > 0. If, moreover, (βn)n≥1 is a positive sequence such that βn → 0, βn/αn → 0 and√
nhpαnεa(1/βn|x)→ 0 as n→∞, we then have√

nhpnαn
log(αn/βn)

 R̂CTM
W

a,n(βn|x)
RCTMa(βn|x)

− 1

 d→ N
(
0, (av(x))2

)
.

Let us also note that the asymptotic normality of

R̂VaR
W

n (βn|x) = R̂VaRn(αn|x) (αn/βn)γ̂n(x)

has been established in [10]. As a consequence, replacing R̂VaRn by R̂VaR
W

n and R̂CTMa,n by

R̂CTM
W

a,n in (6) provides estimators for all risk measures considered in this paper adapted to
arbitrary small levels. Their asymptotic normality is a simple consequence of Theorem 2. In the
next section, a procedure to select the tuning parameters hn and αn is introduced and applied to
the estimation of risk measures associated to extreme rainfall data.

4 Application: Risk measures for extreme rainfall data

The rainfall data is described in subsection 4.1. The implementation of the risk measure estimators
requires the selection of two tuning parameters. An automatic procedure is proposed in subsec-
tion 4.2. Its finite sample performance is assessed on simulated data in subsection 4.3. Finally, the
whole methodology is applied on the real data in subsection 4.4.

4.1 Problem and data description

The behaviour and the efficiency of our estimators are illustrated on rainfall observations in the
Cévennes-Vivarais region (southern part of France). This data set is provided by the French
meteorological service Météo-France and consists in daily rainfalls measured at N = 523 raingauge
stations from 1958 to 2000. In this context, the variable of interest Y is the daily rainfall measured
in millimeters (mm). The number of measurements at each station t ∈ {1, . . . , N} is denoted by
nt, the total number of observations being n =

∑N
t=1 nt = 5, 513, 734. The covariate X is the three

dimensional geographical location (longitude, latitude and altitude). A subset of the coordinates
S = {xt = (x1,t, x2,t, x3,t); t = 1, . . . , N} of the raingauge stations is depicted in Figure 3. Extreme
rainfall statistics are often used when a flood has occurred to assess the rarity of such an event.
A typical problem is to estimate the amount that will fall on a day of exceptionally heavy rainfall
which is expected to occur every T years. Usually, hydrologists are interested in the value T = 100
corresponding to a centenary event. Statistically speaking, the problem is to estimate the T -year
return level which is the quantile of level β = 1/(365.25× T ) of the daily rainfall. The goal of this
study is to go further and estimate the average rainfall over the T -year return level which is the
RCTE of level β = 1/(365.25× T ).
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4.2 Tuning parameters selection

Our estimators of risk measures depend on the two tuning parameters hn and αn. The choice of
the bandwidth hn, which controls the degree of smoothing, is a recurrent issue in non-parametric
statistics. Similarly, in extreme-value theory, the choice of the number of upper order statistics,
or equivalently αn is of great importance since it raises a compromise between bias and variance.
A high value of αn is expected to lead to a large bias (since we move out of the distribution tail)
while a small value of αn leads to a large variance, see for instance Theorem 1. Here, we propose
a leave-one-out cross validation type procedure to select simultaneously hn and αn. To this end,
let us consider A = {α1 ≤ · · · ≤ αR} such that α1 > 1/min(nj), j = 1, . . . , N , αR < 0.1 and
H = {h1 ≤ · · · ≤ hM}, such that there is at least one observation in the ball B(x, h1) for all
x. The principle of the procedure is to select the empirical pair (hemp, αemp) ∈ H × A for which
two different estimations of the tail index γ(xt) at each station t approximately coincide. The
first estimator, denoted by γ̂n,t, is the well-known Hill estimator [22], it only depends on αn and is
uniquely based on the rainfall measures at station t. The second estimator denoted by γ̂n(xt) is the
conditional tail-index estimator introduced in [10]. It depends both on αn and hn and is computed
on all the rainfall measures in the ball B(xt, hn) except the measurements at the current station
t. To summarize, the main idea is to select the pair (hemp, αemp) for which the local estimations
γ(xt) and the predicted ones γ̂n(xt) using the neighbour stations are coherent. To be more specific,
the algorithm is the following:

1. Loop on all pairs (hi, αj) ∈ H ×A and on all stations t ∈ {1, . . . , N}.

2. Compute the Hill estimator at station t with level αj to obtain γ̂n,t,j .

3. Compute the conditional tail-index estimator using the measures in B(xt, hi)\{xt} with level
αj to obtain γ̂n,i,j(xt).

4. Compute the distance Whi,αj (xt) = (γ̂n,t,j − γ̂n,i,j(xt))2.

5. End of the loop.

6. The optimal pair is given by

(hemp, αemp) = arg min
(hi,αj)∈H×A

median{Whi,αj (xt) , t ∈ {1, . . . , N}}.

4.3 Validation on simulation

The previous procedure is tested on two heavy-tailed distributions, the Fréchet distribution and
the Burr distribution. The survival function of the Fréchet distribution is given by

F̄ (y|x) = 1− exp(−y−1/γ(x)), for y ≥ 0

and the associated RCTE can be written

RCTE(βn|x) =
1
βn

∫ V aR(βn|x)−1/γ(x)

0

tγ(x) exp(−t)dt with RVaR(βn|x) = (− log(1− βn))−γ(x).

The survival function of the chosen Burr distribution is given by

F̄ (y|x) =
(

1 + y1/γ(x)
)−1

, for y ≥ 0,
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and the associated RCTE is

RCTE(βn|x) = I
(

RVaR(βn|x)−1/γ(x)

1 + RVaR(βn|x)−1/γ(x)
, 1− γ, 1 + γ

)
with RVaR(βn|x) = β−γ(x)n (1− βn)γ(x),

and where
I(r, p, q) =

B(r, p, q)
B(p, q)

with B(r, p, q) =
∫ r

0

wp−1(1− w)q−1dw

being the incomplete beta function and B(p, q) the beta function. In this simulation study, we
choose the following conditional tail index:

γ : x ∈ (0, 1)→ γ(x) =
1
2

(
1
10

+ sin (πx)
)(

11
10
− 1

2
exp (−64(x− 1/2)2)

)
.

Note that γ(x) is close to 1/2 when x = 0.3 or x = 0.7. Let z1, z2 and z3 be respectively the
latitude, longitude and altitude normalised in the unit interval. Two choices of covariates x were
used for γ(x): xeuc :=

√
(z2

1 + z2
2)/2 and xalt := z3. The tuning parameters are selected in the sets

A = {1/(6 × 365.25), 1/(5 × 365.25), . . . , 1/365.25, 4.10−3, 6.10−3, . . . , 10−2, 2.10−2, . . . , 10−1} and
H = {14, 15, . . . , 30}. Recall that the conditional tail index estimator introduced in [10] is given
by

γ̂n(x) =
J∑
j=1

[log R̂VaRn(τjαn|x)− log R̂VaRn(τ1αn|x)]

/
J∑
j=1

log(τ1/τj) ,

where (τj)j≥1 is a positive and a non-increasing sequence of weights. Two sequences minimizing
are investigated:

1. the harmonic sequence defined for all j = 1, . . . , J by τHaj = 1/j with J = 9,

2. the geometric sequence defined for all j = 1, . . . , J by τGj = (1/j)(j/J) with J = 15.

In both cases, the number of terms J was selected to minimize the asymptotic variance of γ̂n(x).
Finally, a bi-quadratic kernel was used:

K(x) := K(z1, z2) =
15
16
[
1− (z2

1 + z2
2)
]2 I{z2

1 + z2
2 ≤ 1}.

To assess the performance of our procedure, it is compared to the Oracle (optimal) choice (hopt, αopt)
which is based on the knowledge of the true tail index function:

(hopt, αopt) = arg min
(hi,αj)∈H×A

median{Vhi,αj (xt) , t ∈ {1, . . . , N}},

where Vhi,αj (xt) = (γ(xt)− γ̂n,i,j(xt))2 is the distance to the true tail index function. The selected
parameters are displayed in Table 2. It appears that the cross-validation procedure approximately
selects the same tuning parameters as the Oracle for all the considered choices of distribution,
covariate and weights. Most importantly, one can observe on Figure 1 that the error distributions
on the tail index also nearly coincide. This result indicates that the cross-validation procedure is
almost as efficient as the Oracle who knows the solution.
Similar results can be observed on the extrapolated RCTE defined by

R̂CTE
W

n (β|x) = R̂CTEn(α|x)
(
α

β

)γ̂n(x)

,
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Burr distribution Fréchet distribution
xeuc and τHaj xalt and τGj xeuc and τGj xalt and τHaj

hopt = 22 hopt = 24 hopt = 22 hopt = 26
hemp = 24 hemp = 22 hemp = 20 hemp = 24

αopt = 1/365.25 αopt = 1/(365.25× 2) αopt = 1/(365.25× 3) αopt = 1/365.25
αemp = 0.001 αemp = 1/365.25 αemp = 1/365.25 αemp = 0.004

Table 2: Results of the selection procedure

and computed for β = 1/(365.25 × 100) corresponding to a centenary rainfall. In this case, the
quality of the estimation is assessed thanks to the relative error:

Qn(x) =

 R̂CTE
W

n (β|x)
RCTE(β|x)

− 1

2

.

The two histograms of Qn(xt), t ∈ {1, . . . , N} obtained with (hemp, αemp) and (hopt, αopt) are
depicted on Figure 2. Both set of parameters yield approximately the same error distribution.

4.4 Estimated risk measures on extreme rainfalls

The cross-validation procedure applied to the real data set with τHaj yields hemp = 24 and αemp =
1/(365.25 × 3). The estimated conditional tail index is then computed on a grid of 200 × 200
ungauged locations regularly distributed on the Cévennes-Vivarais region, see Figure 3, top panels.
Using the asymptotic distribution of γ̂n(x) established in [10], Corollary 2, pointwise confidence
intervals can also be computed. It appears that, for a confidence level of 95%, one can assume that
γ(x) < 1/2. At the opposite, the assumption that γ(x) does not depend on x, i.e. γ(x) is constant
on the Cévennes-Vivarais region, cannot be accepted. It is then possible to estimate risk measures
associated to a 100-year return period. Here, we focus on RVaRn(βn|x) and RCTEn(βn|x) with

βn = 1/(365.25× 100). The associated estimators R̂VaR
W

n (βn|x) and R̂CTE
W

n (βn|x) are displayed

on Figure 3, bottom panels. The estimated 100-year return level R̂VaR
W

n (βn|x) is similar to the

results obtained in [7] using kriging methods. More interestingly, the R̂CTE
W

n (βn|x) can be 150

millimeters higher than the R̂VaR
W

n (βn|x) on the mountains area.
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5 Appendix: Proofs

5.1 Preliminary results

This lemma provides an equivalent of ϕa(y|x) when y → ∞. We refer to [8, Corollary 3.2] and
to [30, Proposition 4.1] for a similar result in the unconditional case.

Lemma 1 Under (F.1), if y →∞, then for a ∈ [0, 1/γ(x)),

ϕa(y|x) =
1

1− aγ(x)
yaF̄ (y|x)(1 + o(1)).

Furthermore, under the additional condition (F.2), the derivative ϕ′a(.|x) of the function ϕa(.|x)
exists and is a regularly varying function such that

ϕ′a(y|x) =
aγ(x)− 1
γ(x)

ϕa(y|x)
y

(1 + o(1)).

Proof. First, integrating by part leads to

a

∫ ∞
y

za−1F̄ (z|x)dz = ϕa(y|x)− yaF̄ (y|x). (10)

Using [32, Eq. (0.32)] together with y → ya−1F̄ (y|x) ∈ RVa−1/γ(x)−1, a − 1/γ(x) − 1 < −1 and
y →∞ yield ∫ ∞

y

za−1F̄ (z|x)dz =
γ(x)

1− aγ(x)
yaF̄ (y|x)(1 + o(1)).

Replacing in (10) and dividing both sides by 1
1−aγ(x)y

aF̄ (y|x) lead to

ϕa(y|x)
1

1−aγ(x)y
aF̄ (y|x)

− 1 + aγ(x) = aγ(x)(1 + o(1)),

which concludes the first part of the proof. Next, under (F.2), derivating both sides of (10) yields

ϕ′a(y|x) = yaF̄ ′(y|x) = ya−1F̄ (y|x)
yF̄ ′(y|x)
F̄ (y|x)

,

and using [32, Corollary of Theorem 0.6], it follows that

yF̄ ′(y|x)
F̄ (y|x)

= − 1
γ(x)

(1 + o(1)),

which concludes the proof.
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As a consequence of Lemma 1 and (1), we obtain RCTE(αn|x)/RVaR(αn|x) ∼ 1/(1− γ(x)) which
is an extension of the unconditional result, see for instance [24, 41]. The second lemma is also of
analytical nature. It provides a second order asymptotic expansion of the RCTM.

Lemma 2 Suppose (F.1), (F.2) and (F.3) hold and let 0 < βn < αn be two sequences such that
αn → 0 as n→∞. Then,

|log RCTMa(αn|x)− log RCTMa(βn|x) + aγ(x) log(αn/βn)| = O (log(αn/βn)εa(1/βn)) .

Proof. Using (7) and (F.2), we have

log RCTMa(αn|x) = −aγ(x) log(αn) + log(c(x)) +
∫ 1/αn

1

εa(u|x)
u

du,

and consequently

∆n := log RCTMa(αn|x)− log RCTMa(βn|x) + aγ(x) log(αn/βn) =
∫ 1/αn

1/βn

εa(u|x)
u

du.

From (F.3), we obtain |∆n| ≤ |εa(1/βn)| log(βn/αn) and the conclusion follows.

Let us remark that the kernel estimator (3) of the conditional expectation can be rewritten as
ϕ̂a,n(yn|x) = ψ̂a,n(yn|x)/ĝn(x) where

ψ̂a,n(y|x) =
1
n

n∑
i=1

Kh(x−Xi)Y ai I{Yi > y},

is an estimator of ψa(y|x) = g(x)ϕa(y|x) and ĝn(x) is the classical kernel estimator of the density
g(x)

ĝn(x) =
1
n

n∑
i=1

Kh(x−Xi). (11)

Lemma 3 Suppose (F.1), (F.2), (L) and (K) hold. Let x ∈ Rp such that g(x) > 0 and yn →∞
such that nhpF̄ (yn|x)→∞.

(i) Let 0 ≤ a < 1/γ(x). If there exists ξ > 0 such that ωn(yn, ξ)→ 0 then

E(ψ̂a,n(yn|x)) = ψa(yn|x)(1 +O(h) +O(ωn(yn, 0))).

(ii) Let 0 ≤ a1 < · · · < aJ+1 < 1/(2γ(x)) where J is a positive integer and consider sequences
(yn,j), j = 1, . . . , J + 1 such that

max
j∈{1,...,J+1}

{∣∣∣∣yn,jyn − 1
∣∣∣∣}→ 0.

Then, the random vector{√
nhpF̄ (yn|x)

(
ψ̂aj ,n(yn,j |x)− E(ψ̂aj ,n(yn,j |x))

ψaj (yn,j |x)

)}
j∈{1,...,J+1}

is asymptotically Gaussian, centred, with covariance matrix ‖K‖22Σ(1)(x)/g(x) where

Σ(1)
i,j (x) =

(1− aiγ(x))(1− ajγ(x))
1− (ai + aj)γ(x)

, (i, j) ∈ {1, . . . , J + 1}2.
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Proof. (i) Since the (Xi, Yi), i = 1, . . . , n are identically distributed, it follows that

E(ψ̂a,n(yn|x)) =
∫

Rp
Kh(x− t)ϕa(yn|t)g(t)dt =

∫
S

K(u)ϕa(yn|x− hu)g(x− hu)du,

under (K). Let us now consider

|E(ψ̂a,n(yn|x))− ψa(yn|x)| ≤ ϕa(yn|x)
∫
S

K(u)|g(x− hu)− g(x)|du (12)

+ ϕa(yn|x)
∫
S

K(u)
∣∣∣∣ϕa(yn|x− hu)

ϕa(yn|x)
− 1
∣∣∣∣ g(x− hu)du. (13)

Under (L), and since g(x) > 0, we have

(12) ≤ ϕa(yn|x)cgh
∫
S

d(u, 0)K(u)du = ϕa(yn|x)O(h). (14)

Besides, in view of (14),

(13) ≤ ϕa(yn|x)ωn(yn, 0)
∫
S

K(u)g(x− hu)du = ϕa(yn|x)g(x)ωn(yn, 0)(1 + o(1)),

≤ ψa(yn|x)ωn(yn, 0)(1 + o(1)). (15)

Combining (14) and (15) concludes the first part of the proof.

(ii) Let β 6= 0 in RJ+1, Λn(x) = (nhpψ0(yn|x))−1/2, and consider the random variable

Ψn =
J+1∑
j=1

βj

(
ψ̂aj ,n(yn,j |x)− E(ψ̂aj ,n(yn,j |x))

Λn(x)ψaj (yn,j |x)

)
,

=
n∑
i=1

1
nΛn(x)


J+1∑
j=1

βjKh(x−Xi)Y
aj
i I{Yi ≥ yn,j}

ψaj (yn,j |x)

− E

J+1∑
j=1

βjKh(x−X)Y aj I{Y ≥ yn,j}
ψaj (yn,j |x)

 ,

=:
n∑
i=1

Zi,n.

Clearly, {Zi,n, i = 1, . . . , n} is a set of centred, independent and identically distributed random
variables with variance

var(Z1,n) =
1

n2h2pΛ2
n(x)

var

J+1∑
j=1

βjK

(
x−X
h

)
Y aj I{Y ≥ yn,j}
ψaj (yn,j |x)

 =
1

n2hpΛ2
n(x)

βtBβ,

where B is the (J + 1)× (J + 1) covariance matrix defined by

Bj,l =
Aj,l

ψaj (yn,j |x)ψal(yn,l|x)
,

for all (j, l) ∈ {1, . . . , J + 1}2 and

Aj,l =
1
hp

cov
(
K

(
x−X
h

)
Y aj I{Y ≥ yn,j},K

(
x−X
h

)
Y alI{Y ≥ yn,l}

)
,

= ‖K‖22E
(

1
hp
Q

(
x−X
h

)
Y aj+alI{Y ≥ yn,j ∨ yn,l}

)
− hpE(Kh(x−X)Y aj I{Y ≥ yn,j})E(Kh(x−X)Y alI{Y ≥ yn,l}),
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with Q(.) := K2(.)/‖K‖22 also satisfying assumption (K). Remarking that ωn(yn,j , 0) ≤ ωn(yn, ξ),
one can use part (i) of the proof to obtain

Aj,l = ‖K‖22ψaj+al(yn,j ∨ yn,l|x)(1 +O(h) +O(ωn(yn, ξ)))

− hpψaj (yn,j |x)ψal(yn,l|x)(1 +O(h) +O(ωn(yn, ξ))).

leading to

Bj,l =
‖K‖22ψaj+al(yn,j ∨ yn,l|x)
ψaj (yn,j |x)ψal(yn,l|x)

(1 +O(h) +O(ωn(yn, ξ)))

− hp(1 +O(h) +O(ωn(yn, ξ))).

Let us recall that, since ψa(.|x) is regularly varying, it follows that ψaj (yn,j |x) ∼ ψaj (yn|x) → 0
for all j ∈ {1, . . . , J + 1}. Lemma 1 thus entails

Bj,l =
‖K‖22

ψ0(yn|x)
(1− ajγ(x))(1− alγ(x))

1− (aj + al)γ(x)
(1 + o(1)) =

‖K‖22
ψ0(yn|x)

Σ(1)
j,l (x)(1 + o(1)).

Therefore, var(Z1,n) ∼ ‖K‖22βtΣ(1)(x)β/n. As a preliminary conclusion, the variance of Ψn con-
verges to ‖K‖22βtΣ(1)(x)β. Consequently, using Lyapounov theorem for the asymptotic normality
of sums of triangular arrays, it remains to prove that there exists η > 0 such that:

n∑
i=1

E |Zi,n|2+η = nE |Z1,n|2+η → 0.

Straightforward calculations lead to

E |Z1,n|2+η =
(

1
nΛn(x)

)2+η

E

∣∣∣∣∣∣
J+1∑
j=1

βjKh (x−X)Y aj I{Y ≥ yn,j}
ψaj (yn,j |x)

− E

J+1∑
j=0

βjKh (x−X)Y aj I{Y ≥ yn,j}
ψaj (yn,j |x)

∣∣∣∣∣∣
2+η

.

Besides, for every pair of random variables (T1, T2) with finite (2 + η)th order moments, one has

E
(
|T1 + T2|2+η

)
≤ 22+η max

i={1,2}
E
(
|Ti|2+η

)
,

leading to

E |Z1,n|2+η ≤
(

2
nΛn(x)

)2+η

E

∣∣∣∣∣∣
J+1∑
j=1

βjKh (x−X)Y aj I{Y ≥ yn,j}
ψaj (yn,j |x)

∣∣∣∣∣∣
2+η

.

Lemma 1 and yn,j = yn(1 + o(1)) for all j ∈ {1, . . . , J + 1} yield

E |Z1,n|2+η ≤
(

2
nΛn(x)ψ0(yn|x)

)2+η

× E

∣∣∣∣∣∣
J+1∑
j=1

βjKh (x−X) I{Y ≥ yn,j}
(
Y

yn,j

)aj
(1− ajγ(x))

∣∣∣∣∣∣
2+η

(1 + o(1)).
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Letting ã = max{a1, . . . , aJ+1} and ỹn = min{yn,1, . . . , yn,J+1}, it follows that for n large enough,

nE |Z1,n|2+η ≤ 2n
(

2(1− ãγ(x))
nhpΛn(x)ψ0(yn|x)ỹãn

)2+η J+1∑
j=1

|βj |2+η E
(
K

(
x−X
h

)
Y ãI{Y ≥ ỹn}

)2+η

.

Choosing η such that 0 < η < −2 + 1/(ãγ(x)), (i) implies that

E
(
K

(
x−X
h

)
Y ãI{Y ≥ ỹn}

)2+η

= hp‖K‖2+η2+ηE
(
Nh (x−X)Y ã(2+η)I{Y ≥ ỹn}

)
,

= hp‖K‖2+η2+ηψã(2+η)(ỹn|x)(1 + o(1)),

since N(.) := K2+η(.)/‖K‖2+η2+η also fulfils assumption (K). Using Lemma 1 and the fact that
ỹn = yn(1 + o(1)), we obtain

nE |Z1,n|2+η = O (Ληn(x))→ 0,

as n→∞ which concludes the proof.

The asymptotic behaviors of the estimators ϕ̂a,n(.|x) and ϕ̂←a,n(.|x) are established in the following
two propositions.

Proposition 1 Suppose (F.1), (F.2), (L) and (K) hold. Let x ∈ Rp such that g(x) > 0 and
0 ≤ a1 < · · · < aJ+1 < 1/(2γ(x)) where J is a positive integer. Consider yn → ∞ such that
nhpF̄ (yn|x)→∞ as n→∞ and sequences (yn,j), j ∈ {1, . . . , J + 1} such that

max
j∈{1,...,J+1}

∣∣∣∣yn,jyn − 1
∣∣∣∣→ 0.

If there exists ξ > 0 such that nhpF̄ (yn|x) (h ∨ ωn(yn, ξ))
2 → 0 then, the random vector{√

nhpF̄ (yn|x)
(
ϕ̂aj ,n(yn,j |x)
ϕaj (yn,j |x)

− 1
)}

j∈{1,...,J+1}

is asymptotically Gaussian, centred, with covariance matrix ‖K‖22Σ(1)(x)/g(x).

Proof. Keeping in mind the notations of Lemma 3, the following expansion holds

Λ−1
n (x)

J+1∑
j=1

βj

(
ϕ̂aj ,n(yn,j |x)
ϕaj (yn,j |x)

− 1
)

=
∆1,n + ∆2,n −∆3,n

ĝn(x)
, (16)

where

∆1,n = g(x)Λ−1
n (x)

J+1∑
j=1

βj

(
ψ̂aj ,n(yn,j |x)− E(ψ̂aj ,n(yn,j |x))

ψaj (yn,j |x)

)
,

∆2,n = g(x)Λ−1
n (x)

J+1∑
j=1

βj

(
E(ψ̂aj ,n(yn,j |x))− ψaj (yn,j |x)

ψaj (yn,j |x)

)
,

∆3,n =

J+1∑
j=1

βj

Λ−1
n (x) (ĝn(x)− g(x)) .
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Thus, from Lemma 3(ii), the random term ∆1,n can be rewritten as

∆1,n = g(x)‖K‖2
√
βtΣ(1)(x)βξn, (17)

where ξn converges to a standard Gaussian random variable. The non-random term ∆2,n is con-
trolled with Lemma 3(i):

∆2,n = O
(
hΛ−1

n (x)
)

+O
(
Λ−1
n (x)ωn(yn, ξ)

)
,

= O
(
nhp+2F̄ (yn|x)

)1/2
+O

(
nhpF̄ (yn|x)ω2

n(yn, ξ)
)1/2

= o(1). (18)

Finally, ∆3,n is a classical term in kernel density estimation, which can be bounded by [10],
Lemma 4:

∆3,n = O(hΛ−1
n (x)) +OP (Λ−1

n (x)(nhp)−1/2),

= O
(
nhp+2F̄ (yn|x)

)1/2
+OP (F̄ (yn|x))1/2 = oP (1). (19)

Collecting (16)–(19), it follows that

ĝn(x)Λ−1
n (x)

J+1∑
j=1

βj

(
ϕ̂aj ,n(yn,j |x)
ϕaj (yn,j |x)

− 1
)

= g(x)‖K‖2
√
βtΣ(1)(x)βξn + oP (1).

Finally, ĝn(x) P−→ g(x) yields√
nhpF̄ (yn|x)

J+1∑
j=1

βj

(
ϕ̂aj ,n(yn,j |x)
ϕaj (yn,j |x)

− 1
)

= ‖K‖2

√
βtΣ(1)(x)β

g(x)
ξn + oP (1),

and the result is proved.

Proposition 2 Suppose (F.1), (F.2), (L) and (K) hold. Let x ∈ Rp such that g(x) > 0 and
let 0 ≤ a1 < · · · < aJ+1 < 1/(2γ(x)) where J is a positive integer. Consider αn → 0 such that
nhpαn →∞ as n→∞. Let (αn,j), j = 1, . . . , J + 1 be sequences such that

max
j∈{1,...,J+1}

∣∣∣∣∣ϕ←aj (αn,j |x)
ϕ←0 (αn|x)

− 1

∣∣∣∣∣→ 0,

If there exists ξ > 0 such that nhpαn (h ∨ ωn(ϕ←0 (αn|x), ξ))2 → 0 then, the random vector{√
nhpαn

(
ϕ̂←aj ,n(αn,j |x)
ϕ←aj (αn,j |x)

− 1

)}
j∈{1,...,J+1}

is asymptotically Gaussian, centred, with covariance matrix ‖K‖22Σ(2)(x)/g(x) where

Σ(2)
i,j (x) =

γ2(x)
1− (ai + aj)γ(x)

, (i, j) ∈ {1, . . . , J + 1}2.

Proof. Introduce for j ∈ {1, . . . , J + 1},

σn,j(x) = ϕ←aj (αn,j |x)(nhpαn)−1/2,

vn,j(x) = α−1
n,j

γ(x)
1− ajγ(x)

(nhpαn)1/2,

Wn,j(x) = vn,j(x)
(
ϕ̂aj (ϕ

←
aj (αn,j |x) + σn,j(x)zj)|x)− ϕaj (ϕ←aj (αn,j |x) + σn,j(x)zj)|x

)
,

tn,j(x) = vn,j(x)
(
αn,j − ϕaj (ϕ←aj (αn,j |x) + σn,j(x)zj)|x

)
,
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where (z1, . . . , zJ+1) ∈ RJ+1. We examine the asymptotic behavior of the cumulative distribution
function defined by

Φn(z1, . . . , zJ+1) = P

J+1⋂
j=1

{
σ−1
n,j(x)(ϕ̂←aj ,n(αn,j |x)− ϕ←aj (αn,j |x)) ≤ zj

} ,

= P

J+1⋂
j=1

{Wn,j(x) ≤ tn,j(x)}

 .

Let us first focus on the non-random terms tn,j(x), j ∈ {1, . . . , J + 1}. From Lemma 1, for all
a ∈ [0, 1/(2γ(x))), the function ϕa(.|x) is differentiable and thus, for each j ∈ {1, . . . , J + 1} there
exists θn,j ∈ (0, 1) such that

ϕaj

(
ϕ←aj (αn,j |x)|x

)
− ϕaj

(
ϕ←aj (αn,j |x) + σn,j(x)zj |x

)
= −σn,j(x)zjϕ′aj (rn,j |x), (20)

where rn,j = ϕ←aj (αn,j |x)+θn,jσn,j(x)zj . It is thus clear that rn,j ∼ ϕ←aj (αn,j |x)→∞ and Lemma 1
yields

ϕ′aj (rn,j |x) =
(ajγ(x)− 1)αn,j
γ(x)ϕ←aj (αn,j |x)

(1 + o(1)). (21)

In view of (20) and (21), we end up with

tn,j(x) =
(1− ajγ(x))vn,j(x)σn,j(x)αn,jzj

γ(x)ϕ←aj (αn,j |x)
(1 + o(1)) = zj(1 + o(1)). (22)

Let us now turn to the random terms Wn,j(x), j ∈ {1, . . . , J + 1}. Clearly, sequences yn,j :=
ϕ←aj (αn,j |x) + σn,j(x)zj , j = 1, . . . , J + 1 and yn := ϕ←0 (αn|x) satisfy the assumptions of Proposi-
tion 1 and consequently,

Wn,j(x) =
γ(x)

1− ajγ(x)
ϕaj (ϕ

←
aj (αn,j |x) + σn,j(x)zj |x)

αn,j
(nhpαn)1/2

(
ϕ̂aj (yn,j |x)
ϕaj (yn,j |x)

− 1
)
.

Moreover, since ϕa(.|x) is regularly varying, the following equivalences hold,

ϕaj (ϕ
←
aj (αn,j |x) + σn,j(x)zj |x)

αn,j
=
ϕaj (ϕ

←
aj (αn,j |x)(1 + oP(1))|x)

αn,j
= 1 + oP(1).

As a consequence of Slutsky’s theorem, the random vector (Wn,1, . . . ,Wn,J+1) is equal to A(x)ξn
where

A(x) = diag
(

γ(x)
1− a1γ(x)

, . . . ,
γ(x)

1− aJ+1γ(x)

)
,

and ξn is a (J + 1)−random vector converging to a centred Gaussian random variable with covari-
ance matrix ‖K‖22Σ(1)(x)/g(x). Taking account of (22), we obtain that Φn(z1, . . . , zJ+1) converges
to the cumulative distribution function of a centred Gaussian distribution with covariance matrix
‖K‖22A(x)Σ(1)(x)A(x)/g(x) = ‖K‖22Σ(2)(x)/g(x) which is the desired result.
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5.2 Proofs of main results

Proof of Theorem 1. Let us introduce for j ∈ {1, . . . , J},

vn,j(x) =
(1− ajγ(x))(nhpαn)1/2

γ(x)ϕ←0 (αn|x)
, σn,j(x) = ϕaj (ϕ

←
0 (αn|x)|x)(nhpαn)−1/2,

σn,0(x) = ϕ←0 (αn|x)(nhpαn)−1/2,

tn,j = vn,j(x)
(
ϕ←0 (αn|x)− ϕ←aj

(
ϕaj (ϕ

←
0 (αn|x)|x) + σn,j(x)zj |x

))
,

Wn,j(x) = vn,j(x)
(
ϕ̂←aj ,n

(
ϕaj (ϕ

←
0 (αn|x)|x) + σn,j(x)zj |x

)
− ϕ←aj

(
ϕaj (ϕ

←
0 (αn|x)|x) + σn,j(x)zj |x

))
,

W
(0)
n,j (x) = vn,j(x)

(
ϕ̂←0,n(αn|x)− ϕ←0 (αn|x)

)
,W

(0)
n,0(x) = σ−1

n,0(x)
(
ϕ̂←0,n(αn|x)− ϕ←0 (αn|x)

)
,

where (z0, z1, . . . , zJ) ∈ RJ+1. We examine the asymptotic behavior of the cumulative distribution
function defined by

Φn(z0, z1, . . . , zJ)

= P


J⋂
j=1

{
σ−1
n,j(x)(ϕ̂aj ,n(ϕ̂←0,n(αn|x)|x)− ϕaj (ϕ←0 (αn|x)|x)) ≤ zj

}⋂{
W

(0)
n,0(x) ≤ z0

} ,

= P


J⋂
j=1

{
Wn,j(x)−W (0)

n,j (x) ≤ tn,j
}⋂{

W
(0)
n,0(x) ≤ z0

} .

Let us first focus on the non-random terms tn,j(x), j = 1, . . . , J . From Lemma 1, for all a ∈
[0, 1/(2γ(x))), ϕ←a (.|x) is a differentiable regularly varying function such that

(ϕ←a )′(yn|x) =
1

ϕ′a(ϕ←a (yn|x)|x)
=
γ(x)ϕ←a (yn|x)
(aγ(x)− 1)yn

(1 + o(1)), (23)

as n→∞. For all j ∈ {1, . . . , J}, a first order Taylor expansion leads to:

ϕ←aj (ϕaj (ϕ
←
0 (αn|x)|x)|x)− ϕ←aj

(
ϕaj (ϕ

←
0 (αn|x)|x) + σn,j(x)zj |x

)
= −σn,j(x)zjqn,j(x),

where qn,j(x) = (ϕ←aj )
′(ϕaj (ϕ

←
0 (αn|x)|x) + θn,jσn,j(x)zj |x) with (θn,1, . . . , θn,J) ∈ (0, 1)J . Since

σn,j(x)/ϕaj (ϕ
←
0 (αn|x)|x) = (nhpαn)−1/2 → 0 as n→∞, (23) entails that

qn,j(x) =
γ(x)ϕ←0 (αn|x)

(ajγ(x)− 1)ϕaj (ϕ←0 (αn|x)|x)
(1 + o(1)).

Hence,

ϕ←aj (ϕaj (ϕ
←
0 (αn|x)|x)|x)− ϕ←aj

(
ϕaj (ϕ

←
0 (αn|x)|x) + σn,j(x)zj |x

)
=

zj
vn,j(x)

(1 + o(1)), (24)

which shows that for all j ∈ {1, . . . , J}, tn,j → zj as n→∞. Let us now turn to the random terms
Wn,j(x), j = 1, . . . , J . Clearly,

Wn,j(x) =
1− ajγ(x)

γ(x)
(nhpαn)1/2

(
ϕ̂←aj ,n

(
ϕaj (ϕ

←
0 (αn|x)|x) + σn,j(x)zj |x

)
ϕ←aj

(
ϕaj (ϕ←0 (αn|x)|x) + σn,j(x)zj |x

) − 1

)
(1 + o(1)),
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since, from (24),

ϕ←aj
(
ϕaj (ϕ

←
0 (αn|x)|x) + σn,j(x)zj |x

)
ϕ←0 (αn|x)

= 1 +
zj

ϕ←0 (αn|x)vn,j(x)
(1 + o(1)) = 1 + o(1).

Furthermore, we have

W
(0)
n,j (x) =

1− ajγ(x)
γ(x)

(nhpαn)1/2
(
ϕ̂←0,n(αn|x)
ϕ←0 (αn|x)

− 1
)
.

As a consequence, applying Proposition 2 with aJ+1 = 0, αn,j = ϕaj (ϕ
←
0 (αn|x)|x) + σn,j(x)zj for

j = 1, . . . , J and αn,J+1 = αn entails{{
Wn,j(x)−W (0)

n,j (x)
}
j=1,...,J

,W
(0)
n,0(x)

}
= M(x)ξn,

where M is the (J + 1)× (J + 1) matrix defined by

M(x) =

 Ã(x)
c1(x)

...
cJ(x)

0 · · · 0 1


with

Ã(x) = diag
(

1− a1γ(x)
γ(x)

, . . . ,
1− aJγ(x)

γ(x)

)
and cj = −1− ajγ(x)

γ(x)
, j ∈ {1, . . . , J}

and where ξn is a (J + 1)−random vector asymptotically Gaussian, centred with covariance
‖K‖22Σ(2)(x)/g(x). Since for each j ∈ {1, . . . , J}, tn,j → zj as n → ∞, the cumulative distribu-
tion function Φn converges to a centred Gaussian cumulative distribution function with covariance
matrix ‖K‖22M(x)Σ(2)(x)M(x)t/g(x) = ‖K‖22γ2(x)Σ(x)/g(x), which is the desired result.

Proof of Corollary 2. Clearly, from Theorem 1 one has for i = 1, 2,

R̂CTMi,n(αn|x) = RCTMi(αn|x)
(

1 + (nhpαn)−1/2ξi,n

)
,

where the random vector (ξ1,n, ξ2,n) is asymptotically Gaussian, centred with covariance matrix
Σ(3) defined by

Σ(3)
i,j = ijγ2(x)

2− (i+ j)γ(x)
1− (i+ j)γ(x)

‖K‖22
g(x)

, (i, j) ∈ {1, 2}2.

Hence,

R̂CTVn(αn|x)− RCTV(αn|x) = (nhpαn)−1/2
(
RCTM2(αn|x)ξ2,n − 2RCTM2

1(αn|x)ξ1,n

− (nhpαn)−1/2RCTM2
1(αn|x)ξ21,n

)
,

= (nhpαn)−1/2 (RCTM2(αn|x)ξ2,n

− 2RCTM2
1(αn|x)ξ1,n(1 + o(1))

)
.

Since for a ∈ [0, 1/(2γ(x))) and b > 0 Lemma 1 entails that

RCTMb
a(αn|x) =

(ϕ←0 (αn|x))ab

(1− aγ(x))b
(1 + o(1)),

22



one has

RCTV(αn|x) =
γ2(x)

(1− 2γ(x))(1− γ(x))2
(ϕ←0 (αn|x))2(1 + o(1)).

Hence, from Theorem 1,

(nhpαn)1/2
(

R̂CTVn(αn|x)
RCTV(αn|x)

− 1

)
=

4γ(x)− 2
γ2(x)

ξ1,n(1 + o(1)) +
(1− γ(x))2

γ2(x)
ξ2,n(1 + o(1)),

is asymptotically Gaussian, centred with variance(
4γ(x)− 2
γ2(x)

,
(1− γ(x))2

γ2(x)

)
Σ(3)

(
4γ(x)− 2
γ2(x)

,
(1− γ(x))2

γ2(x)

)t
.

The conclusion follows.

Proof of Corollary 3. Clearly, from Theorem 1 one has for i = 1, 2, 3,

R̂CTMi,n(αn|x) = RCTMi(αn|x)
(

1 + (nhpαn)1/2ξi,n
)
,

where the random vector (ξ1,n, ξ2,n, ξ3,n) is asymptotically Gaussian, centred with covariance ma-
trix Σ(4) defined by

Σ(4)
i,j = ijγ2(x)

‖K‖22
g(x)

2− (i+ j)γ(x)
1− (i+ j)γ(x)

, (i, j) ∈ {1, 2, 3}2.

From the proof of Corollary 2, it appears that

R̂CTVn(αn|x)
RCTV(αn|x)

= 1 + (nhpαn)−1/2

(
4γ(x)− 2
γ2(x)

ξ1,n(1 + o(1)) +
(1− γ(x))2

γ2(x)
ξ2,n(1 + o(1))

)
,

and thus(
R̂CTVn(αn|x)
RCTV(αn|x)

)3/2

= 1+
3
2

(nhpαn)−1/2

(
4γ(x)− 2
γ2(x)

ξ1,n(1 + o(1)) +
(1− γ(x))2

γ2(x)
ξ2,n(1 + o(1))

)
.

Clearly, from Theorem 1,

(nhpαn)1/2
(

R̂CTSn(αn|x)
RCTS(αn|x)

− 1

)
= ξ3,n−

3
2

(
4γ(x)− 2
γ2(x)

ξ1,n(1 + o(1)) +
(1− γ(x))2

γ2(x)
ξ2,n(1 + o(1))

)
,

is asymptotically Gaussian, centred with variance(
−3

2
4γ(x)− 2
γ2(x)

,−3
2

(1− γ(x))2

γ2(x)
, 1
)

Σ(4)

(
−3

2
4γ(x)− 2
γ2(x)

,−3
2

(1− γ(x))2

γ2(x)
, 1
)t
,

and the result is proved.
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Proof of Theorem 2. The proof is based on the following expansion:√
nhpnαn

log(αn/βn)

(
log R̂CTM

W

a,n(βn|x)− log RCTMa(βn|x)
)

=

√
nhpnαn

log(αn/βn)
(Qn,1 +Qn,2 +Qn,3),

with

Qn,1 = a
√
nhpnαn(γ̂n(x)− γ(x)),

Qn,2 =

√
nhpnαn

log(αn/βn)
log
(

R̂CTMa,n(αn|x)/RCTMa(αn|x)
)
,

Qn,3 =

√
nhpnαn

log(αn/βn)
(log RCTMa(αn|x)− log RCTMa(βn|x) + aγ(x) log(αn/βn)).

Let us consider the three terms separately. Under the hypotheses of Theorem 2, it is clear that
Qn,1

d→ N
(
0, (av(x))2

)
. Theorem 1 implies that R̂CTMa,n(αn|x)/RCTMa(αn|x) P→ 1 when n →

∞ and thus

Qn,2 =

√
nhpnαn

log(αn/βn)

(
R̂CTMa,n(αn|x)
RCTMa(αn|x)

− 1

)
(1 + op(1)) =

Op(1)
log(αn/βn)

.

As a consequence, Qn,2
P→ 0 when n→∞. Finally, Lemma 2 entails

Qn,3 = O
(√

nhpnαnεa(1/βn|x)
)

which converges to 0 by assumption.
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Figure 1: Histogram of the errors Vhopt,αopt(xt) (solid line, white bars) and Vhemp,αemp(xt) (dotted
lines, grey bars) computed on simulated data (Burr distribution on the top panel, Fréchet distri-
bution on the bottom panel). Upper left: xeuc and τHaj , upper right: xalt and τGj , bottom left:
xeuc and τGj , bottom right: xalt and τHaj .
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Figure 2: Histogram of the errors obtained for the extrapolated RCTE on simulated data. Set
of parameters (hopt, αopt) : solid line and white bars, (hemp, αemp): dotted lines and grey bars.
Burr distribution: top panel, Fréchet distribution: bottom panel. Upper left: xeuc and τHaj , upper
right: xalt and τGj , bottom left: xeuc and τGj , bottom right: xalt and τHaj .
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Figure 3: Upper left: map of the Cévennes-Vivarais region, horizontally: longitude (km), vertically:
latitude (km), the color scale represents the altitude (m), the white dots represent some raingauge

stations, upper right: γ̂n(x), bottom left: R̂VaR
W

n (βn|x) for a 100-year return period, bottom right:

R̂CTE
W

n (βn|x) for a 100-year return period.
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