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of a nonlinearly elastic cylinder [5, 6]. Various prob-
lems of the mechanics of materials having descending
regions on the deformation diagram were discussed
in [7, 8]. Using methods of the theory of shells, the
problem of stability of an expanded elastic sphere was
earlier solved in [9], where the forms of the loss of
sphericity of the shell after expansion were also found.
Instability of a spherical shell during expansion was
also considered in [10], where a mechanism of the dis-
turbance of the symmetric spherical shape due to the
instability was associated with the appearance of non-
symmetric solutions at rather high loads. The existence
of analogous nonsymmetric solutions to the problem of
equilibrium of a symmetrically loaded round plate
under the conditions of increasing transverse load was
demonstrated by Morozov [11]. The maintenance of
the optimum spherical shape of a polymer shell during
expansion offers an example of the problem of optimal
design for elastic bodies [12].

 

Initial state.

 

 The basic relationship for a highly
elastic material was chosen in the form described by the
Bartenev–Khazanovich model [13]
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where 

 

D

 

 is the Piola stress tensor, 

 

C

 

 is the deformation
gradient, 

 

R

 

 is the radius vector of a point of a body in
the deformed state, 

 

p

 

 is the response “pressure” (which
is the unknown function of the coordinates and is inde-
pendent of deformation), and 

 

µ

 

 is the elastic constant
(playing the role of the shear modulus for small defor-
mations).
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The radially symmetric deformation of an
incompressible body is described by the following
formulas [13]: 

where (
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) and (
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) are the Euler and Lagrange
spherical coordinates, respectively; and 

 

c

 

 is the defor-
mation parameter. Since the volume 

 

V

 

 of the liquid dif-
fusing in the hollow is a control parameter, the param-
eter 

 

c

 

 in this study is given by the formula 
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,
where 

 

v

 

 is the hollow volume before deformation.
Thus, a hard loading of the shell is realized in this prob-
lem in the class of radial-symmetric deformations,
whereby displacements are set on the hollow surface.

The equilibrium equations and the boundary condi-
tions can be written as
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are the diagonal components of the Piola stress tensor
in the (
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) basis related to the Lagrange spherical
coordinates; 

 

A

 

 = 
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; 

 

a

 

 and 

 

b

 

 are the internal
and external radii of the shell before deformation,
respectively; and 

 

p

 

e

 

 and 

 

p

 

i

 

 are the external and internal
pressures acting on the shell, respectively. From (1) and
(2), it follows that 

 

p

 

 does not depend on 

 

r

 

 and is deter-
mined by the relations

which yields the following relation for the internal
pressure:

In what follows, the external pressure 

 

p

 

e

 

 is assumed to
be zero (and the index “i” at the pressure is omitted).

Figure 1 shows the deformation (expansion) dia-
grams plotted as the internal pressure versus the inter-
nal shell surface displacement for various values of the
shell thickness
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. It can be shown that, for a
spherical thick-walled shell, a descending region is also
observed for other commonly used models of rubber-
like materials (such as the Treloar material, Mooney–
Rivlin media, Ogden materials at certain values of elas-
tic constants, etc.).
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Fig. 1. Diagrams of expansion for various shell thicknesses
h = 0.1, 0.05, and 0.01 and the bifurcation points corre-
sponding to various mode numbers n.



                     

      

Instability. The stability of equilibrium of a nonlin-
early elastic body (under conservative external loading
conditions) is conventionally investigated using the
Euler static method. This method is based on an analy-
sis of equilibrium states slightly differing from the
given state, with determination of the values of loading
parameters under which the existence of nontrivial
solutions to the equations of equilibrium with appropri-
ate boundary conditions (linearized in the vicinity of
the given state) is possible.

The linearized boundary-value problem for a sphere
in the geometry of a reference configuration and in the
absence of mass forces has the following form [13, 14]:

(3)

where the upper dots denote the linear increments of the
corresponding parameters resulting from the superposi-
tion of small additional displacements w (for example,

 = D(C0 + τgradw)|τ = 0), the subscript zero refers

to the parameters calculated in the initial deformed
state, and n is the normal to the shell surface.

Consider the axisymmetric perturbations

(4)

and assume that the volume of the hollow filled by the
liquid remains unchanged, which imposes the integral
constraint on w:

(5)

In addition, these perturbations do not alter the pressure
in the liquid filling the hollow, which is taken into
account in boundary conditions (3).

Isoperimetric condition (5) excludes radially sym-
metric perturbations from consideration. Thus, consid-
ering the axisymmetric perturbations, we deal with the
loading conditions intermediate between hard loading
(when fixed displacements on the inner shell surface
are set) and soft loading (when the hydrostatic pressure
is set). In the former case, the stability of the shell is not
lost. In the latter case, the shell becomes unstable with
respect to the radially symmetric perturbations when
the maximum on the deformation curve is reached
(Fig. 1).
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For the Bartenev–Khazanovich type material, the lin-
earized Piola stress tensor has the following form [15]:

(6)

The transformation of linearized equilibrium equa-
tions (3), the boundary conditions, and the linearized
condition of incompressibility with allowance for
expressions (4) and (6) leads to the system of equations

(7)

(8)

(9)

and the boundary conditions (at r = a and r = b)

(10)

A solution to the boundary-value problem (7)–(10)
is found in the form of expansion in terms of the Leg-
endre polynomials

(11)

The value of n = 1 corresponds to the motion of the
sphere as a rigid body and is not considered below. It
can be seen from solution (11) that, by virtue of the
orthogonality of the Legendre polynomials, the volume
of the hollow inside the shell, which is filled by an
incompressible liquid, remains unchanged. Therefore,
condition (5) is fulfilled automatically. Substituting
expression (11) into equations (7)–(10), we arrive at a
linear homogeneous boundary-value problem for the
system of ordinary differential equations for un, vn,
and pn .
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The critical values of the internal pressure were
found numerically under the condition of nontrivial
solvability of this boundary-value problem. In Fig. 1,
the corresponding values are marked by dots on the
deformation diagrams. As can be seen, these dots
belong to the dropping section of the diagram, by anal-
ogy with the results obtained for the beam tension [4]
and the cylinder expansion [5, 6]. We have calculated
the number n of the expansion mode corresponding to
the instability. It turned out that the mode appearing
first always corresponds to n = 2. As can be seen from
Fig. 1, the first bifurcation point is rather distant from
the point of maximum in the diagram. This means that
the stress–strain state of the shell, corresponding to the
initial region in the descending branch of the deforma-
tion diagram, is locally stable. The forms of the insta-
bility are shown in Fig. 2.

Thus, the nonspherical shape of the initially spheri-
cal particles can result from the instability during
expansion. Note that deformed spheres having a shape
similar to that shown in Fig. 2 were observed in exper-
iment [2]. The instability can be avoided if the polymer
shell is made of a material whose deformation diagrams
have no descending regions or if we can exclude the
system passage to such a descending region.
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Fig. 2. The form of the loss of the spherical shape stability
for n = 2.




