Modeling flat to slant fracture transition using the computational cell methodology - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Engineering Fracture Mechanics Année : 2013

Modeling flat to slant fracture transition using the computational cell methodology

Jacques Besson
E.S. Drexler
  • Fonction : Auteur
C.N. Mc Cowan
  • Fonction : Auteur

Résumé

Macroscopic mode I ductile crack propagation in metallic sheets or plates often starts in mode I as a flat triangle (coplanar with the precrack) whose normal corresponds to the loading direction. After some limited extension, the crack becomes slanted and propagates under local mixed mode I/III. Modeling and understanding this phenomenon is challenging. In this work, the "computational cell" methodology proposed in [1], which uses a predefined crack path, is used to study flat to slant fracture transition. The energy dissipation rate is studied as a function of the assumed crack tilt angle. It is shown that a minimum is always reached for an angle equal to 45°. This correlates well with the variation of the crack tip opening angle (CTOA) or the mean plastic deformation along the crack path. Stress and strain states in the stable tearing region hardly depend on the assumed tilt angle. A parametric study shows that flat to slant fracture transition is less likely to occur in materials having high work hardening and favored if additional damage is caused by the local stress/strain state (plane strain, low Lode parameter) in the stable tearing region.

Domaines

Matériaux

Dates et versions

hal-00830626 , version 1 (05-06-2013)

Identifiants

Citer

Jacques Besson, E.S. Drexler, C.N. Mc Cowan. Modeling flat to slant fracture transition using the computational cell methodology. Engineering Fracture Mechanics, 2013, 104, pp.80-95. ⟨10.1016/j.engfracmech.2013.02.032⟩. ⟨hal-00830626⟩
104 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More