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HEAT KERNEL BOUNDS FOR ELLIPTIC PARTIAL DIFFERENTIAL OPERATORS IN

DIVERGENCE FORM WITH ROBIN-TYPE BOUNDARY CONDITIONS

FRITZ GESZTESY, MARIUS MITREA, ROGER NICHOLS, AND EL MAATI OUHABAZ

Dedicated with great pleasure to E. Brian Davies on the occasion of his 70th birthday.

Abstract. The principal aim of this short note is to extend a recent result on Gaussian heat kernel bounds for

self-adjoint L2(Ω; dnx)-realizations, n ∈ N, n > 2, of divergence form elliptic partial differential expressions L

with (nonlocal) Robin-type boundary conditions in bounded Lipschitz domains Ω ⊂ Rn, where

Lu = −
n∑

j,k=1

∂jaj,k∂ku.

The (nonlocal) Robin-type boundary conditions are then of the form

ν ·A∇u+ Θ
[
u
∣∣
∂Ω

]
= 0 on ∂Ω,

where Θ represents an appropriate operator acting on Sobolev spaces associated with the boundary ∂Ω of Ω, and

ν denotes the outward pointing normal unit vector on ∂Ω.

1. Introduction

This note represents an addendum to the recent paper [4] devoted to a new class of self-adjoint realizations
Lθ,Ω in L2(Ω; dnx) of elliptic partial differential expressions in divergence form,

L = −
n∑

j,k=1

∂jaj,k∂k, (1.1)

on bounded Lipschitz domains Ω ⊂ Rn, n > 2, with Robin boundary conditions of the form ν ·A∇u+θ
(
u
∣∣
∂Ω

)
= 0.

(Here ν denotes the outward pointing normal unit vector and θ is a suitable function on the boundary ∂Ω of Ω.)
Following [3], we put particular emphasis in [4] on developing a theory of nonlocal Robin boundary conditions
where the function θ on ∂Ω is replaced by a suitable operator Θ acting in L2(∂Ω; dn−1ω), with dn−1ω representing
the surface measure on ∂Ω. (More precisely, Θ acts in appropriate Sobolev spaces on the boundary of Ω). The
resulting self-adjoint operator in L2(Ω; dnx) is then denoted by LΘ,Ω and we study its resolvent and semigroup,
proving a Gaussian heat kernel bound and a bound for the Green’s function of LΘ,Ω.

To keep this note short, we will refer the reader to the detailed paper [4], especially, we refer to the extensive
introduction and long list of references contained therein. In particular, we will only reproduce that material
from [4] that is absolutely necessary to read this note.

In Section 3 we provide a bit of background and restate the principal result of [4] and then our current
improvement based on a natural, additional condition. Section 4 then provides some concrete illustrations.

Finally, we briefly summarize some of the notation used in this paper: Let H be a separable complex Hilbert
space, (·, ·)H the scalar product in H (linear in the second argument), and IH the identity operator in H.

Next, if T is a linear operator mapping (a subspace of) a Hilbert space into another, then dom(T ) and ker(T )
denote the domain and kernel (i.e., null space) of T . The closure of a closable operator S is denoted by S. The
spectrum, essential spectrum, discrete spectrum, and resolvent set of a closed linear operator in a Hilbert space
will be denoted by σ(·), σess(·), σd(·), and ρ(·), respectively.

The Banach spaces of bounded and compact linear operators on a separable complex Hilbert space H are
denoted by B(H) and B∞(H), respectively. The analogous notation B(X1,X2), B∞(X1,X2) will be used for
bounded and compact operators between two Banach spaces X1 and X2.
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Given a σ-finite measure space, (M,M, µ), the product measure on M×M will be denoted by µ⊗µ. Without
loss of generality, we also denote the completion of the product measure space (M ×M,M⊗M, µ⊗ µ) by the
same symbol and always work with this completion in the following.

For a, b ∈ Cn, we use the Euclidean pairing 〈a, b〉Cn =
∑
j ajbj = (a, b)Cn .

2. Nonlocal Robin boundary conditions

We start by recalling our basic notation on positivity preserving/improving operators.

Hypothesis 2.1. Let (M,M, µ) denote a σ-finite, separable measure space associated with a nontrivial positive
measure (i.e., 0 < µ(M) 6∞).

The set of nonnegative elements 0 6 f ∈ L2(M ; dµ) (i.e., f(x) > 0 µ-a.e.) is a cone in L2(M ; dµ), closed in
the norm and weak topologies.

Definition 2.2. Let A be a bounded linear operator in L2(M ; dµ). Then A is called positivity preserving (resp.,
positivity improving) if

0 6= f ∈ L2(M ; dµ), f > 0 implies Af > 0 (resp., Af > 0). (2.1)

Given two bounded operators A and B on L2(M ; dµ) such that A is positivity preserving, we say that B is
dominated by A if

|Bf | 6 A|f |, f ∈ L2(M ; dµ). (2.2)

Here and in the rest of this paper, all the inequalities (and equalities) are understood in the µ-a.e. sense.
Turning our attention to integral operators in L2(M ; dµ) with associated integral kernels A(·, ·) on M ×M ,

we assume that

A(·, ·) : M ×M → C is µ⊗ µ-measurable, (2.3)

and introduce the integral operator A associated with the integral kernel A(·, ·) as follows:

(Af)(x) :=

∫
M

A(x, y)f(y) dµ(y) for µ-a.e. x ∈M , f ∈ L2(M ; dµ). (2.4)

This means that A(x, ·)f(·) is absolutely integrable over M for µ-a.e. x ∈ M and
∫
M
A(·, y)f(y) dµ(y) ∈

L2(M ; dµ).
Suppose that A is bounded on L2(M ; dµ). Then it is a classical fact that A is positivity preserving if and only

if

A(·, ·) > 0 µ⊗ µ-a.e. on M ×M. (2.5)

Similarly, if B(x, y) denotes the integral kernel of an integral operator B that is bounded on L2(M ; dµ), then B
is dominated by A if and only if

|B(·, ·)| 6 A(·, ·) µ⊗ µ-a.e. on M ×M. (2.6)

Next we briefly turn to the basics for divergence form elliptic partial differential operators with (nonlocal)
Robin-type boundary conditions in n-dimensional, bounded, Lipschitz domains, corresponding to differential
expressions L given by

Lu := −
n∑

j,k=1

∂jaj,k∂ku. (2.7)

For basic facts on Sobolev spaces on Ω or ∂Ω and Dirichlet and Neumann trace operators, as well as the
choice of notation used below, we refer to [4, Appendix A]. For the basics on sesquilinear forms and operators
associated with them we refer to [2], [6] and [4, Appendix B].

In the remainder of this section we make the following assumption:

Hypothesis 2.3. Let n ∈ N, n > 2.
(i) Assume that Ω ⊂ Rn is a bounded Lipschitz domain.
(ii) Suppose that the matrix

A(·) = (aj,k(·))16j,k6n (2.8)

satisfies A ∈ L∞(Ω; dnx)n×n and is real symmetric a.e. on Ω. In addition, given 0 < a0 < a1 <∞, assume that
A satisfies the uniform ellipticity conditions

a0In 6 A(x) 6 a1In for a.e. x ∈ Ω. (2.9)
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Above In represents the identity matrix in Cn and we will denote the identity operators in L2(Ω; dnx) and
L2(∂Ω; dn−1ω) by IΩ and I∂Ω, respectively. Also, in the sequel, the sesquilinear form

〈 · , · 〉s = Hs(∂Ω)〈 · , · 〉H−s(∂Ω) : Hs(∂Ω)×H−s(∂Ω)→ C, s ∈ [0, 1], (2.10)

(antilinear in the first, linear in the second factor), will denote the duality pairing between Hs(∂Ω) and

H−s(∂Ω) =
(
Hs(∂Ω)

)∗
, s ∈ [0, 1], (2.11)

such that

〈f, g〉s =

∫
∂Ω

dn−1ω(ξ) f(ξ)g(ξ), if f, g ∈ L2(∂Ω; dn−1ω), (2.12)

where dn−1ω stands for the surface measure on ∂Ω.
One observes that the inclusion

ι : Hs0(Ω) ↪→
(
Hr(Ω)

)∗
, s0 > −1/2, r > 1/2, (2.13)

is well-defined and bounded.
Next, we wish to describe a weak version of the normal trace operator associated with L in (2.7), considered

in a bounded Lipschitz domain. To set the stage, assume Hypothesis 2.3 and introduce the weak Neumann trace
operator

γ̃N :
{
u ∈ Hs+1/2(Ω)

∣∣Lu ∈ Hs0(Ω)
}
→ Hs−1(∂Ω), s0 > −1/2, (2.14)

as follows: Given u ∈ Hs+1/2(Ω) with Lu ∈ Hs0(Ω) for some s0 > −1/2 and s ∈ (0, 1), we set (with ι as in
(2.13) for r := 3/2− s > 1/2)

〈φ, γ̃Nu〉1−s := H1/2−s(Ω)n〈∇Φ, A∇u〉(H1/2−s(Ω)n)∗ − H3/2−s(Ω)〈Φ, ι(Lu)〉(H3/2−s(Ω))∗ , (2.15)

for all φ ∈ H1−s(∂Ω) and Φ ∈ H3/2−s(Ω) such that γDΦ = φ, where we denoted the Dirichlet trace operator by
γD. We recall that

γ̃N :
{
u ∈ H1(Ω)

∣∣Lu ∈ Hs0(Ω)
}
→ H−1/2(∂Ω), s0 > −1/2, (2.16)

is well-defined, linear, and bounded.

Moving on, we take up the task of describing the precise conditions that we impose on the nonlocal Robin
boundary operator Θ.

Hypothesis 2.4. Assume Hypothesis 2.3, suppose that δ > 0 is a given number, and assume that Θ ∈
B
(
H1/2(∂Ω), H−1/2(∂Ω)

)
is a self-adjoint operator which can be written as

Θ = Θ(1) + Θ(2) + Θ(3), (2.17)

where Θ(j), j = 1, 2, 3, have the following properties: There exists a closed sesquilinear form q
(0)
∂Ω in L2(∂Ω; dn−1ω),

with domain H1/2(∂Ω)×H1/2(∂Ω), which is bounded from below by c∂Ω ∈ R such that if Θ
(0)
∂Ω > c∂ΩI∂Ω denotes

the self-adjoint operator in L2(∂Ω; dn−1ω) uniquely associated with q
(0)
∂Ω, then Θ(1) = Θ̃

(0)
∂Ω, the extension of Θ

(0)
∂Ω

to an operator in B
(
H1/2(∂Ω), H−1/2(∂Ω)

)
. In addition,

Θ(2) ∈ B∞
(
H1/2(∂Ω), H−1/2(∂Ω)

)
, (2.18)

whereas Θ(3) ∈ B
(
H1/2(∂Ω), H−1/2(∂Ω)

)
satisfies∥∥Θ(3)
∥∥
B(H1/2(∂Ω),H−1/2(∂Ω))

< δ. (2.19)

The self-adjoint realization of the differential expression (2.7) equipped with nonlocal Robin type boundary
conditions associated with an operator Θ as above is recorded below.

Theorem 2.5 ([4]). Assume Hypothesis 2.4, where the number δ > 0 is taken to be sufficiently small relative to
the Lipschitz character of Ω, more precisely, suppose that 0 < δ 6 1

6‖γD‖
−2
B(H1(Ω),H1/2(∂Ω))

. In addition, consider

the sesquilinear form QΘ,Ω( · , · ) defined on H1(Ω)×H1(Ω) by

QΘ,Ω(u, v) :=

∫
Ω

dnx
〈
(∇u)(x), A(x)(∇v)(x)

〉
Cn +

〈
γDu,ΘγDv

〉
1/2
, u, v ∈ H1(Ω). (2.20)

Then the form QΘ,Ω( · , · ) in (2.20) is symmetric, H1(Ω)-bounded, bounded from below, and closed in L2(Ω; dnx).
The self-adjoint operator LΘ,Ω uniquely associated with QΘ,Ω on L2(Ω; dnx) is then given by

LΘ,Ω = L, dom(LΘ,Ω) =
{
u ∈ H1(Ω)

∣∣Lu ∈ L2(Ω; dnx),
(
γ̃N + ΘγD

)
u = 0 in H−1/2(∂Ω)

}
, (2.21)

and is self-adjoint and bounded from below on L2(Ω; dnx). Moreover,

dom
(
|LΘ,Ω|1/2

)
= H1(Ω), (2.22)
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and LΘ,Ω, has purely discrete spectrum bounded from below. In particular,

σess(LΘ,Ω) = ∅. (2.23)

In the special case of Neumann boundary conditions (corresponding to Θ = 0), we use the notation

QN,Ω( · , · ) = Q0,Ω( · , · ), LN,Ω = L0,Ω. (2.24)

Next, we briefly comment on the usual case of a local Robin boundary condition, that is, the scenario when
Θ is the operator Mθ, of pointwise multiplication by a real-valued function θ defined on ∂Ω:

Lemma 2.6 ([3]). Assume Hypothesis 2.3 and suppose that Θ = Mθ, the operator of pointwise multiplication by
a real-valued function θ ∈ Lp(∂Ω; dn−1ω), where

p = n− 1 if n > 2, and p ∈ (1,∞] if n = 2. (2.25)

Then

Θ ∈ B∞
(
H1/2(∂Ω), H−1/2(∂Ω)

)
(2.26)

is a self-adjoint operator which satisfies

‖Θ‖B(H1/2(∂Ω),H−1/2(∂Ω)) 6 C‖θ‖Lp(∂Ω;dn−1ω), (2.27)

for some finite constant C = C(Ω, n, p) > 0. In particular, the present situation Θ = Mθ subordinates to the
case Θ(2) described in (2.18).

The L2-realization of L equipped with a Dirichlet boundary condition, LD,Ω, in L2(Ω; dnx) formally corre-
sponds to Θ =∞. Note that

LD,Ω = L,

dom(LD,Ω) =
{
u ∈ H1(Ω)

∣∣Lu ∈ L2(Ω; dnx), γDu = 0 in H1/2(∂Ω)
}

(2.28)

=
{
u ∈ H1

0 (Ω)
∣∣Lu ∈ L2(Ω; dnx)

}
.

The well-known Beurling-Deny criteria (cf. [2], [6]) allow to prove positivity preserving for the semigroup
(and, equivalently, the resolvent) of LΘ,Ω. In order to achieve this, one assumes that〈

γD|u|,ΘγD|u|
〉

1/2
6
〈
γDu,ΘγDu

〉
1/2
, u ∈ H1(Ω). (2.29)

Under this assumption, one has for u ∈ H1(Ω),

QΘ,Ω(|u|, |u|) 6 QΘ,Ω(u, u), (2.30)

which by the first Beurling-Deny criterion is equivalent to positivity preserving of e−tLΘ,Ω . It is well-known that
positivity preserving is valid for e−tLD,Ω and e−tLN,Ω .

3. Gaussian Bounds

Retaining Hypothesis 2.3 throughout this section, we now continue the discussion on divergence form elliptic
partial differential operators LΘ,Ω with nonocal Robin boundary conditions and focus on (Gaussian) heat kernel
and Green’s function bounds for LΘ,Ω.

We will use the following heat kernel notation (for t > 0, a.e. x, y ∈ Ω)

KΘ,Ω(t, x, y) = e−tLΘ,Ω(x, y), KN,Ω(t, x, y) = e−tLN,Ω(x, y),

KD,Ω(t, x, y) = e−tLD,Ω(x, y),
(3.1)

and similarly for Green’s functions (for z ∈ C\R, a.e. x, y ∈ Ω),

GΘ,Ω(z, x, y) = (LΘ,Ω − zIΩ)−1(x, y), GN,Ω(z, x, y) = (LN,Ω − zIΩ)−1(x, y),

GD,Ω(z, x, y) = (LD,Ω − zIΩ)−1(x, y), x 6= y. (3.2)

We recall that for v ∈ L2(Ω; dnx), v denotes the complex conjugate of v, and for two functions u and v, the
symbol u.v > 0 means that the product of the functions, uv, is nonnegative a.e. on Ω.

To state our the results of this section we need a few preparations:
Let a and b be two sesquilinear, accretive, and closed forms on H = L2(M ; dµ), and denote by e−tA and e−tB

their associated semigroups, respectively.



HEAT KERNEL BOUNDS FOR ELLIPTIC PDES IN DIVERGENCE FORM 5

Theorem 3.1. Suppose that the semigroup e−tB is positivity preserving and that dom(a) = dom(b). Then the
following assertions are equivalent.

(i) |e−tAf | 6 e−tB |f |, f ∈ L2(M ; dµ), t > 0.

(ii) Re(a(u, v)) > b(|u|, |v|) for all u, v ∈ dom(a) such that u.v > 0.

If both semigroups e−tA and e−tB are positivity preserving then assertion (i) is equivalent to

(iii) Re(a(u, v)) > b(u, v) for all nonnegative u, v ∈ dom(a).

Sketch of proof. Since the semigroup e−tB is positivity preserving it follows from [6, Proposition 2.20] that
dom(a) is an ideal of itself and hence an ideal of dom(b) because dom(a) = dom(b) by hypothesis. We refer
to [5] and [6, Definition 2.19] for the notion of an ideal in this context. Thus, the equivalence of items (i) and
(ii) follows from [5, Corollary 3.4] (see also [6, Theorem 2.21]). If both semigroups are positivity preserving, the
equivalence of items (i) and (iii) follows from [5, Theorem 3.7] (see also [6, Theorem 2.24]). �

Other criteria for the domination property in terms of forms in assertion (i) for the case where dom(a) 6=
dom(b) are given in [5] and [6, Ch. 2]. The equivalence of items (i) and (iii) is also proved in [4].

We have the following result:

Theorem 3.2. Assume Hypothesis 2.3, suppose that Θj, j = 1, 2, satisfy the assumptions introduced in Hypoth-
esis 2.4, and denote by LΘj ,Ω the operators in (2.21) associated with the sesquilinear forms QΘj ,Ω( · , · ), j = 1, 2,

defined on H1(Ω)×H1(Ω) according to (2.20). Suppose, in addition, that Θ1 satisfies (2.29) and that

Re
(〈
γDu,Θ2γDv

〉
1/2

)
>
〈
γD|u|,Θ1γD|v|

〉
1/2
, (3.3)

for all u, v ∈ H1(Ω) such that u.v > 0. Then e−tLΘ2,Ω is dominated by e−tLΘ1,Ω , in the sense that

|e−tLΘ2,Ωf | 6 e−tLΘ1,Ω |f |, f ∈ L2(Ω; dnx), t > 0. (3.4)

If in addition Θ1 > 0, then

|e−tLΘ2,Ωf | 6 e−tLΘ1,Ω |f | 6 e−tLN,Ω |f |, f ∈ L2(Ω; dnx), t > 0. (3.5)

Proof. We have seen at the end of Section 2 that e−tLΘ1,Ω is positivity preserving. In addition, the forms QΘ2,Ω

and QΘ1,Ω have the same domain H1(Ω). We are now in a position to apply Theorem 3.1. One notes that
u ∈ H1(Ω) implies |u| ∈ H1(Ω), and that

∂k|u| = Re
(
∂ku · sign(u)

)
, 1 6 k 6 n, (3.6)

where

sign(u)(x) =


u(x)
|u(x)| , if u(x) 6= 0

0, if u(x) = 0.
(3.7)

Formula (3.6) is well-known (see, e.g., [6, p. 104-105]). Using (3.6) one concludes that

Re

(∫
Ω

dnx
〈
(∇u)(x), A(x)(∇v)(x)

〉
Cn

)
>
∫

Ω

dnx
〈
(∇|u|)(x), A(x)(∇|v|)(x)

〉
Cn , (3.8)

for u, v ∈ H1(Ω) such that u.v > 0. Using (3.8) and assumption (3.3) one infers that assertion (ii) of Theorem
3.1 holds. An application of Theorem 3.1 then yields that (3.4) is satisfied.

Similarly, again by Theorem 3.1, the second inequality in 3.5 holds once we prove that

QΘ1,Ω(u, v) > Q0,Ω(u, v), (3.9)

for all nonnegative u, v ∈ H1(Ω). This inequality follows along the same ideas as above, incorporating the
assumption Θ1 > 0.

�

Remark 3.3. The same proof shows that e−tLD,Ω is dominated by e−tLΘ1,Ω if Θ1 > 0. This domination is also
stated explicitly in [4].

Remark 3.4. (i) Under the hypotheses of Theorem 3.2, all semigroups e−tLD,Ω , e−tLN,Ω and e−tLΘ1,Ω for Θ1 > 0
are sub-Markovian and hence extend to contraction semigroups on L∞(Ω; dnx). In addition, if Θ2 is as in (3.3)
then e−tLΘ2,Ω extends to a contraction semigroup on L∞(Ω; dnx). Moreover, all these semigroups extend to
strongly continuous semigroups on Lp(Ω; dnx), p ∈ [1,∞) (holomorphic semigroups for p ∈ (1,∞) in appropriate
sectors), see [6, Chs. 2, 3, 7].
(ii) Condition (2.29) is automatically satisfied in the special case of local Robin boundary conditions considered
in Lemma 2.6.
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(iii) One can add a potential 0 6 V ∈ L1
loc(Ω; dnx) to all operators in Theorem 3.2 by employing a standard

sesquilinear form approach described in [4, Remark 4.8].

Now we turn to the principal new results in this note.

Theorem 3.5. Let Ω be a connected bounded Lipschitz domain in Rn. Assume Hypothesis 2.3, suppose that Θ
satisfies the assumptions introduced in Hypothesis 2.4, and that

Re
(〈
γDu,ΘγDv

〉
1/2

)
> 0, (3.10)

for u, v ∈ H1(Ω) with u.v > 0. Then there exist finite constants C > 0, c > 0 such that (for t > 0, a.e. x, y ∈ Ω)

|KΘ,Ω(t, x, y)| 6 C max
(
t−n/2, 1

)
exp

[
− c|x− y|2/t

]
. (3.11)

In addition, assuming
〈γD1,Θ γD1〉1/2 6= 0, (3.12)

where 1 denotes the constant function with value 1 on Ω, then

λ1,Θ,Ω = inf σ(LΘ,Ω) > 0, (3.13)

and there exist finite constants C > 0, c > 0, such that the Robin heat kernel KΘ,Ω(t, ·, ·) satisfies (for t > 0,
a.e. x, y ∈ Ω),

|KΘ,Ω(t, x, y)| 6 Ct−n/2(1 + t)n/2e−λ1,Θ,Ωt exp
[
− c|x− y|2/t

]
. (3.14)

Proof. On one hand, Theorem 3.2 and observation (2.6) imply the following comparison for the Robin and
Neumann heat kernels (for t > 0, a.e. x, y ∈ Ω)

|KΘ,Ω(t, x, y)| 6 KN,Ω(t, x, y). (3.15)

On the other hand, it is known that on a bounded Lipschitz domain Ω, the Neumann heat kernel KN,Ω(t, x, y)
enjoys the Gaussian upper bound (for t > 0, a.e. x, y ∈ Ω)

KN,Ω(t, x, y) 6 C max
(
t−n/2, 1

)
exp

[
− c|x− y|2/t

]
, (3.16)

where C and c are positive finite constants. Combining (3.16) with (3.15), one obtains (3.11). By (2.23) (i.e.,
the compact embedding of H1(Ω) into L2(Ω)), LΘ,Ω has purely discrete spectrum. Let λ1,Θ,Ω := inf σ(LΘ,Ω).
Then λ1,Θ,Ω is the smallest eigenvalue of LΘ,Ω and we claim that λ1,Θ,Ω is strictly positive. To justify this claim,
we reason by contradiction and note that if λ1,Θ,Ω = 0 then hypothesis (3.10) (with u = v) and the fact that
LΘ,Ω > 0 (cf. (2.20)) would imply the existence of a nonzero u ∈ dom(LΘ,Ω) such that

(u, LΘ,Ωu)L2(Ω;dnx) + 〈γDu,ΘγDu〉1/2 = 0. (3.17)

Since 〈γDu,ΘγDu〉1/2 > 0 by (3.10), one concludes that (u, LΘ,Ωu)L2(Ω;dnx) = 0 and 〈γDu,ΘγDu〉1/2 = 0. The
first equality together with the assumed ellipticity of L implies that u is constant on Ω. The second equality
together with (3.12) then yields the desired contradiction. This proves (3.13). Next, we improve on (3.11) to
obtain (3.14). Obviously, we may consider t > 1, only. By [6, Lemma 6.5] and (3.11) we obtain (for t > 0, a.e.
x, y ∈ Ω)

|KΘ,Ω(t, x, y)| 6 Ct−n/2e−λ1,Θ,Ωt[1 + λ1,Θ,Ωt]
n/2. (3.18)

Now since Ω is bounded it has finite diameter. Therefore, |x − y| 6 diam (Ω) for all x, y ∈ Ω. From (3.18) we
may estimate that (for t > 1, a.e. x, y ∈ Ω)

|KΘ,Ω(t, x, y)| 6 Ct−n/2e−λ1,Θ,Ωt[1 + λ1,Θ,Ωt]
n/2

= Ct−n/2e−λ1,Θ,Ωte−c|x−y|
2/tec|x−y|

2/t[1 + λ1,Θ,Ωt]
n/2

6 Ct−n/2e−λ1,Θ,Ωte−c|x−y|
2/tec[diam (Ω)]2 [1 + λ1,Θ,Ωt]

n/2, (3.19)

completing the proof. �

Remark 3.6. (i) From Theorem 3.5 one obtains the following estimates for the Robin Green function. For λ > 0,
and a.e. x, y ∈ Ω,

|GΘ,Ω(λ, x, y)| 6

Ca0,a1,λ,Ω,n|x− y|2−n, n > 3,

Ca0,a1,λ,Ω

∣∣ln(1 + |x− y|−1
)∣∣, n = 2,

x 6= y. (3.20)

This follows as usual by writing the resolvent as the Laplace transform of the semigroup and hence the Green
function at λ as the Laplace transform of the heat kernel (cf. [4, App. C]).

(ii) The semigroup e−tLΘ,Ω is bounded holomorphic on Lp(Ω; dnx) in the sector {z ∈ C | | arg(z)| < π/2} for
all p ∈ [1,∞). In particular, the generator of the corresponding semigroup has (minus) spectrum contained in
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[0,∞) and is p−independent. See [6, Ch. 7].

(iii) The operator LΘ,Ω has a bounded holomorphic functional calculus and one even has a spectral multiplier
result, see, [6, Theorem 7.23].

Define the metric ρ(·, ·) on Ω by setting, for each x, y ∈ Ω,

ρ(x, y) := sup

{
ϕ(x)− ϕ(y)

∣∣∣∣ϕ ∈W 1,∞(Rn), real-valued, and

n∑
j,k=1

aj,k(ξ)∂jϕ(ξ)∂kϕ(ξ) 6 1 for a.e. ξ ∈ Ω

}
.

(3.21)

This is the metric associated with the coefficients aj,k. By ellipticity, ρ(·, ·) is clearly (two-sided, pointwise)
comparable with the standard Euclidean metric. Following the method in [7] for Schrödinger-type operators one
can actually derive a sharper estimate using ρ(·, ·) instead of the Euclidean metric.

Proposition 3.7. Suppose that the assumptions of Theorem 3.5 are satisfied. In addition, assume that〈
γD(eϕu),Θ γD(e−ϕu)

〉
1/2
> 〈γDu,Θ γDu〉1/2 (3.22)

for all real-valued ϕ ∈ C∞(Rn) ∩ L∞(Rn). Then there exist finite constants C > 0, c > 0 such that the Robin
heat kernel KΘ,Ω(t, ·, ·) satisfies (for t > 0, a.e. x, y ∈ Ω),

|KΘ,Ω(t, x, y)| 6 C ′t−n/2e−λ1,Θ,Ωt
[
1 + λ1,Θ,Ωt+ [ρ(x, y)2/t

]n/2
exp

[
− ρ(x, y)2/(4t)

]
. (3.23)

Proof. In order to prove estimate (3.23), assuming condition (3.22), we fix λ ∈ R and a real-valued function
ϕ ∈W 1,∞(Rn) such that

n∑
j,k=1

aj,k(x)∂jϕ(x)∂kϕ(x) 6 1 for a.e. x ∈ Ω. (3.24)

Following Davies’ perturbation method (see, e.g., [2, Ch. 3]), introduce Sλ(t) := eλϕe−tLΘ,Ωe−λϕ. This semigroup
has integral kernel given by

eλ(ϕ(x)−ϕ(y))KΘ,Ω(t, x, y) a.e. x, y ∈ Ω, t > 0. (3.25)

Using Theorem 3.5, one obtains for any δ ∈ (0, 1) there exist finite constants cδ, Cδ > 0 such that (for t > 0, a.e.
x, y ∈ Ω),

eλ[ϕ(x)−ϕ(y)]|KΘ,Ω(t, x, y)| 6 e 1
δλ

2teδ[ϕ(x)−ϕ(y)]2/tCδt
−n/2 exp

[
− cδ|x− y|2/t

]
. (3.26)

Choosing δ > 0 sufficiently small and using (3.24) one obtains that, on the one hand (for t > 0, a.e. x, y ∈ Ω),

eλ[ϕ(x)−ϕ(y)]|KΘ,Ω(t, x, y)| 6 e 1
δλ

2tCt−n/2. (3.27)

On the other hand, the semigroup Sλ(t) is associated with the sesquilinear form

QΘ,Ω

(
e−λϕu, eλϕv

)
, u, v ∈ H1(Ω), (3.28)

where QΘ,Ω is the form of LΘ,Ω. One verifies that

QΘ,Ω

(
e−λϕu, eλϕu

)
=

n∑
j,k=1

∫
Ω

dnx aj,k∂ju∂ku− λ2
n∑

j,k=1

∫
Ω

dnx aj,k∂jϕ∂kϕ|u|2

+ 〈γD(e−λϕu),ΘγD(e−ϕu)〉1/2, u ∈ H1(Ω). (3.29)

Thus, using (3.24) and (3.22),

Re
(
QΘ,Ω

(
e−λϕu, eλϕu

))
> QΘ,Ω(u, u)− λ2

∫
Ω

dnx |u|2 > (λ1,Θ,Ω − λ2)

∫
Ω

dnx |u|2, u ∈ H1(Ω). (3.30)

The latter inequality implies the following estimate

‖Sλ(t)‖B(L2(Ω;dnx)) 6 e
−(λ1,Θ,Ω−λ2)t. (3.31)

Now we proceed as in the beginning of the poof of Theorem 3.5. Estimates (3.27), (3.31), and [6, Lemma 6.5]
imply (for t > 0, a.e. x, y ∈ Ω),

eλ[ϕ(x)−ϕ(y)]|KΘ,Ω(t, x, y)| 6 Ct−n/2e−λ1,Θ,Ωteλ
2t
[
1 + λ1,Θ,Ωt+ δ′λ2t

]n/2
, (3.32)

with δ′ := δ−1 − 1. We arrive at (for t > 0, a.e. x, y ∈ Ω),

|KΘ,Ω(t, x, y)| 6 C ′t−n/2e−λ1,Θ,Ωteλ
2t
[
1 + λ1,Θ,Ωt+ λ2t

]n/2
e−λ[ϕ(x)−ϕ(y)]. (3.33)

Choosing λ = [ϕ(x)− ϕ(y)]/(2t) and optimizing over ϕ yields (3.23). �



8 F. GESZTESY, M. MITREA, R. NICHOLS, AND E. M. OUHABAZ

One notes that while condition (3.22) may not be automatically satisfied in the presence of nonlocal Robin
boundary conditions, it is certainly fulfilled in the case of local Robin boundary conditions.

4. Some Illustrations

We conclude this note with a number of concrete examples illustrating Theorem 3.5.
Assuming throughout this section that n > 3, one recalls that

En(x) :=
1

(n− 2)ωn−1

1

|x|n−2
, x ∈ Rn\{0}, (4.1)

is the fundamental solution for (minus) the Laplacian −∆ in Rn. Here ωn−1 = 2πn/2/Γ(n/2) (Γ( · ) the Gamma
function, cf. [1, Sect. 6.1]) represents the area of the unit sphere Sn−1 in Rn.

Next, suppose that Ω ⊆ Rn is a Lipschitz domain with compact boundary, and denote by ω the canonical
surface measure on ∂Ω. Then the (boundary-to-boundary version of the) harmonic single layer associated with
Ω is the integral operator of formal convolution with En, that is,

(Sf)(ξ) := −
∫
∂Ω

dn−1ω(η)En(ξ − η)f(η), ξ ∈ ∂Ω. (4.2)

One observes that in the special case where ∂Ω ∈ C∞, it follows that S is a classical pseudodifferential operator
of order −1. This description of S is tightly connected with the strong regularity assumption on the boundary
of Ω, and fails to materialize in the presence of just one boundary irregularity. Nonetheless, S continues to enjoy
remarkable properties even when considered on rough surfaces, as in the presently assumed Lipschitz setting.
Some of its basic properties relevant for us here are as follows:

S : L2(∂Ω; dn−1ω) −→ L2(∂Ω; dn−1ω) is linear, compact,

nonnegative, injective, with range H1(∂Ω).
(4.3)

Functional calculus then yields that

Siγ is a unitary operator on L2(∂Ω; dn−1ω) for each γ ∈ R. (4.4)

Also, starting from the fact that

S : L2(∂Ω; dn−1ω) −→ H1(∂Ω) is a linear, bounded, isomorphism, (4.5)

by duality and interpolation we obtain that

S : Hs−1(∂Ω) −→ Hs(∂Ω) is a linear, bounded, isomorphism. (4.6)

Functional calculus may be also used to define complex and fractional powers of S.

Lemma 4.1. For each α ∈ [0, 1] and s ∈ [0, α],

S−α : Hs(∂Ω) −→ Hs−α(∂Ω) is a linear, bounded, isomorphism. (4.7)

Proof. In a first stage, we shall show that

Sα : L2(∂Ω; dn−1ω) −→ Hα(∂Ω) is a linear, bounded, isomorphism, for each α ∈ [0, 1]. (4.8)

To justify this, note that the family of operators {Sz}z∈S (with S = {z ∈ C | 0 6 Re(z) 6 1} denoting a closed
complex strip), depends analytically on the parameter z in the interior of S, when viewed as a mapping with
values in B

(
L2(∂Ω; dn−1ω)

)
, and

Sz : L2(∂Ω; dn−1ω) −→ HRe(z)(∂Ω) is a linear, bounded,

isomorphism when Re(z) = 0 or Re(z) = 1,
(4.9)

due to (4.4) and (4.5). Then (4.8) follows from this and Stein’s complex interpolation theorem for analytic
families of operators. Having established (4.8), via duality and interpolation, one then obtains that

Sα : Hs−α(∂Ω) −→ Hs(∂Ω) is a linear, bounded,

isomorphism whenever α ∈ [0, 1] and s ∈ [0, α].
(4.10)

Taking inverses, this finally yields (4.7). �

The next step is to prove a nondegeneracy condition for fractional powers of the harmonic single layer, in the
spirit of (3.12).

Lemma 4.2. If 1 denotes the constant function 1 in Ω, then for each α ∈ [0, 1] one has〈
γD1, S−αγD1

〉
1/2

> 0. (4.11)
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Proof. Since γD1 ∈ Hs(∂Ω) for each s ∈ [0, 1], from (4.7) (used with s = α) one deduces that

S−αγD1 ∈ L2(∂Ω; dn−1ω) for each α ∈ [0, 1]. (4.12)

Next, fix α ∈ [0, 1]. Then on account of the self-adjointness of S and (4.12) one can write〈
γD1, S−αγD1

〉
1/2

=
〈
S−α/2γD1, S−α/2γD1

〉
1/2

=

∫
∂Ω

dn−1ω |S−α/2γD1|2. (4.13)

Given that Lemma 4.1 ensures that the function S−α/2γD1 is not identically zero on ∂Ω, the claim in (4.11) now
readily follows from (4.13). �

After this preamble, we are in a position to prove the following result which identifies a class of highly nonlocal
operators satisfying Hypothesis 2.4 along with a nondegeneracy condition in the spirit of (3.12). We recall that
Mθ stands for the operator of pointwise multiplication by the measurable function θ.

Theorem 4.3. Assume θ : ∂Ω→ [0,∞) is a function that is strictly positive on a subset of ∂Ω of positive dn−1ω
measure and satisfies θ ∈ Lp(∂Ω; dn−1ω), where

p = n− 1 if n > 2, and p ∈ (1,∞] if n = 2. (4.14)

Then for any given number δ > 0 there exists ε > 0 with the property that for each α ∈ [1/2, 1) the operator

Θ := c1Mθ + c2S
−α + c3εS

−1, cj > 0, 1 6 j 6 3, c1c2c3 6= 0, (4.15)

satisfies the conditions stipulated in Hypothesis 2.4 for the given δ, as well as the nondegeneracy condition

〈γD1,ΘγD1〉1/2 6= 0. (4.16)

Proof. Decompose Θ = Θ(1) + Θ(2) + Θ(3), where

Θ(1) := c1Mθ, Θ(2) := c2S
−α, Θ(3) := c3εS

−1. (4.17)

From Lemma 2.6 and the fact that θ is positive on a subset of ∂Ω of positive dn−1ω measure, it follows that

Θ(1) ∈ B
(
H1/2(∂Ω), H−1/2(∂Ω)

)
,

Θ(1) is self-adjoint in this context and
〈
γD1,Θ(1)γD1

〉
1/2

> 0 if c1 > 0.
(4.18)

Next, since S−α maps H1/2(∂Ω) boundedly into H1/2−α(∂Ω) by Lemma 4.1 (used here with s = 1/2 and
α ∈ [1/2, 1)), and since H1/2−α(∂Ω) embeds compactly into H1/2(∂Ω) given that we are currently assuming
α < 1, it follows that

Θ(2) ∈ B∞
(
H1/2(∂Ω), H−1/2(∂Ω)

)
. (4.19)

Moreover, it is clear from the self-adjointness of S that Θ(2) is self-adjoint in the context of B
(
H1/2(∂Ω), H−1/2(∂Ω)

)
.

In addition, Lemma 4.2 yields 〈
γD1,Θ(2)γD1

〉
1/2

> 0 if c2 > 0. (4.20)

Similar considerations, based on Lemma 4.1 (used with α = 1 and s = 1/2) and Lemma 4.2 (used with α = 1),
prove that

Θ(3) ∈ B
(
H1/2(∂Ω), H−1/2(∂Ω)

)
,

Θ(3) is self-adjoint in this context and
〈
γD1,Θ(3)γD1

〉
1/2

> 0 if c3 > 0.
(4.21)

Finally, it remains to observe that, given any δ > 0, Lemma 4.1 may be invoked (with α = 1 and s = 1/2) in
order to find a number ε > 0 small enough so that∥∥Θ(3)

∥∥
B(H1/2(∂Ω),H−1/2(∂Ω))

< δ. (4.22)

The above analysis then proves that Θ from (4.15) satisfies all conditions in Hypothesis 2.4 as well as the
nondegeneracy condition (4.16). �

Another, more elementary, example of a nonlocal operator satisfying Hypothesis 2.4 as well as the nondegen-
eracy condition (3.12) may be produced as follows. We retain the assumption that Ω ⊆ Rn is a Lipschitz domain
with compact boundary and consider a measurable kernel

k : ∂Ω× ∂Ω→ C (4.23)

satisfying the symmetry condition

k(ξ, η) = k(η, ξ) ξ, η ∈ ∂Ω, (4.24)
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and such that ∫
∂Ω

∫
∂Ω

dn−1ω(ξ)dn−1ω(η) |k(ξ, η)| < +∞, (4.25)∫
∂Ω

dn−1ω(η)

∣∣∣∣∫
∂Ω

dn−1ω(ξ) k(ξ, η)

∣∣∣∣2 6= 0. (4.26)

Moreover, suppose that the kernel k is sufficiently decent such that the integral operator

(Af)(ξ) :=

∫
∂Ω

dn−1ω(η) k(ξ, η)f(η), ξ ∈ ∂Ω, (4.27)

satisfies
A ∈ B∞

(
H1/2(∂Ω), L2(∂Ω; dn−1ω)

)
. (4.28)

For example, condition (4.28) holds if A is compact on L2(∂Ω; dn−1ω), which is always the case if k satisfies the
stronger Hilbert–Schmidt condition∫

∂Ω

∫
∂Ω

dn−1ω(ξ)dn−1ω(η) |k(ξ, η)|2 < +∞ (4.29)

in place of condition (4.25). Assuming that (4.27) holds, one then deduces that

A∗ ∈ B∞
(
L2(∂Ω; dn−1ω), H−1/2(∂Ω)

)
(4.30)

and, ultimately, that
Θ := A∗A ∈ B∞

(
H1/2(∂Ω), H−1/2(∂Ω)

)
. (4.31)

Moreover, the linear operator Θ defined in (4.31) is self-adjoint in the context of B
(
H1/2(∂Ω), H−1/2(∂Ω)

)
and

〈γD1,ΘγD1〉1/2 =

∫
∂Ω

dn−1ω |AγD1|2 =

∫
∂Ω

dn−1ω(η)

∣∣∣∣∫
∂Ω

dn−1ω(ξ) k(ξ, η)

∣∣∣∣2 6= 0, (4.32)

by condition (4.26). The bottom line is that that the operator Θ in (4.31) satisfies Hypothesis 2.4 (taking
Θ(1) = Θ(3) = 0), as well as the nondegeneracy condition (4.16).
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