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Using Luenberger observers and dwell-time logic for feedback

hybrid loops in continuous-time control systems∗

Francesco Fichera, Christophe Prieur, Sophie Tarbouriech and Luca Zaccarian†

Abstract

For linear control systems, we add a Luenberger observer to extend the state feedback hybrid loop designs of

(Prieur et al., NOLCOS 2010) and (Fichera et al., ADHS 2012), to the output feedback case. This defines an output

feedback controller. The hybrid loop consists in a continuous-time dynamics when the estimate of the state leads

to a non-increase of a suitable Lyapunov-like function, and in a jump equation when this condition is not satisfied.

The jump equation is defined by means of a static state feedback law from the observed state. Four techniques

based on different reset maps and flow and jump sets are proposed, all of them exploiting a suitable dwell-time

logic. For the proposed designs we prove global exponential stability of the origin. The effectiveness of the proposed

solutions is illustrated by simulation examples where we show suitable reduction of the output overshoot.

Index Terms—hybrid control, hybrid Lyapunov function, reset control

1 Introduction

In the quest of providing more flexible stabilizing controllers and more efficient design techniques, research efforts have

focused on developing control algorithms using controllers that involve switching or on-line adaptation, leading to

dynamic controllers whose states can experience jumps (namely, hybrid controllers). Such a flexibility may overcome

some fundamental limitations of linear control (see [4] for an example, and see [18, 19, 24, 30] for nonlinear controls)

and improve the performance of linear closed-loop systems (see [9–11,26]). A particular class of hybrid controllers of

interest for this paper is the so-called reset controllers class where a part of the state is reset when it satisfies some

algebraic conditions. See [3, 6, 9, 23] where reset controllers are shown to decrease the L2 gain between perturbations

and the output. Consider also [1] where it is shown that reset controllers may be useful to improve the L2 or H2

stability of linear systems.

Generally, a hybrid controller follows a continuous-time dynamical equation during flow, and a difference equation

which governs the way the states are instantaneously changed during jumps. As first proposed in [25], the flow and
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jump region may be governed by suitable Lyapunov-like conditions, and the state of the controller may be reset to

a value given by a pre-defined static state feedback controller. These techniques are also used in the event-triggered

control literature (see [7, 8, 20] and see [2, 29] in a nonlinear context).

The results of [25–27] propose hybrid loops that augment linear continuous-time dynamic controllers for a continuous-

time plant with the property of guaranteeing the non-increase of suitable Lyapunov-like functions, together with

asymptotic stability of the origin. In particular, these hybrid loops can be understood as peculiar reset rules for the

controller state which are triggered whenever the closed-loop state enters a specific region. The Lyapunov-like func-

tions, considered in [25–27] for linear control systems, are quadratic and the jump and flow sets are symmetric cones.

Moreover, it is shown in [26] that this architecture allows, for example, to reduce the output overshoot in linear control

systems. A drawback of the approach in [25–27] is that the hybrid loops (namely the reset rules) require knowledge

of the full state of the closed loop, to establish whether it belongs to the jump or to the flow set. To overcome

this drawback, a natural approach is to use an observer, to estimate the plant state, and to use this estimate when

closing the hybrid loop. Such a separation principle only holds locally for nonlinear hybrid control systems see [31],

however we succeed to propose in this paper a scheme consisting in a hybrid output feedback controller embedding a

Luenberger observer which recovers asymptotically and globally the original scheme of [25–27] as the observation error

converges to zero. The introduction of an observer in the scheme generates a number of problems arising from the

fact that the Zeno solutions occurring at the origin of the scheme of [25–27] become non-converging Zeno solutions in

the presence of the observer. To avoid this defective phenomenon, paralleling the results in [12], we recently proposed

in [10] a control scheme where an arbitrarily small ball centered in the origin is removed from the jump set, so that,

close to the origin, the observer is allowed to flow and to drive to zero the observation error. As a consequence, the

asymptotic stability results of [25–27] become practical asymptotic stability results as it is proved that the closed loop

converges to this ball. Moreover, since convergence to zero of the plant state is not guaranteed anymore, the results

of [26, Theorem 2] could not be recovered in [10], thus providing a partial result for the output feedback case.

In this paper we address the output feedback extension of [25–27] using a different approach from [10]. Indeed

we remove the defective Zeno solutions by augmenting the control system with a dwell-time logic which enforces

a suitable dwell time between each pair of consecutive jumps (or resets). The approach is inspired by the proof

technique in [15, Example 27] and parallels the results of [13]. We extend the results of [11] where a dwell-time logic

was introduced in the schemes of [25–27] to recover global exponential stability of the origin by using the results in [32].

As in [11], we show here that when introducing the dwell-time logic, as long as the dwell-time parameter is sufficiently

small, we recover asymptotically (as the observation error converges to zero) all the solutions generated by the hybrid

closed loops of [25–27]. In other words, the dwell-time logic has the useful property of removing the defective Zeno

solutions from the set of solutions of the control scheme while not removing any other solution from the solution set

of the original system.

The paper is structured as follows. In Section 2 the control architecture under consideration and the main results

are stated. A practical example is presented in Section 3 and some simulations are performed by applying some of

the results proven in this paper, and by using an exact observer and a reduced order observer based on a reduced

order approximation of the plant dynamics. Section 4 collects the proofs of the results. A conclusion and some open

questions are presented in Section 5.
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Notation and preliminaries. Given a vector x, xT denotes the transpose of x. The Euclidean norm of a

vector is denoted by | · | and the scalar product is denoted by 〈·, ·〉. R denotes the set of real numbers, Z denotes

the set of integers. Moreover, R≥0 (resp. Z≥0) denotes the set of non-negative real numbers (resp. the set of non-

negative integers). For a matrix M , He(M) = M +MT . For a positive integer n, In (respectively, 0n) denotes the

identity matrix (respectively, the null matrix) in R
n×n. 0n,m with n 6= m and n, m positive integers, denotes the null

matrix in R
n×m. The subscripts may be omitted when there is no ambiguity. Given a compact set A, the notation

|x|A = min{|x− y| : y ∈ A} indicates the distance of the vector x from the set A. If A is the origin then |x|A = |x|.

For any s ∈ R, the function dz : R → R is defined by dz(s) = 0 if |s| ≤ 1 and dz(s) = sgn(s)(|s| − 1) if |s| ≥ 1. For an

introduction of the framework of hybrid systems that is considered in this paper, see, e.g., the recent works [15,16] or

the brief overview in [21, §II]. As specified in [32], a closed set A ⊂ R
n is globally exponentially stable (GES) if there

exist positive numbers k, λ, such that each solution satisfies

|x(t, j)|A ≤ k exp(−λ(t+ j))|x(0, 0)|A, ∀(t, j) ∈ dom(x),

where |x|A is the distance of x ∈ R
n from the set A and dom(x) denotes the hybrid time domain of the solution x.

2 Controllers architecture and statement of the main results

2.1 Controller architecture

According to the problem statement in [25–27] restricted to the linear case, we consider a linear time-invariant plant

P , represented by

P







ẋp = Āpxp + B̄pu

yp = C̄pxp + D̄pu
(1)

with xp ∈ R
np , u ∈ R

p and yp ∈ R
q.

For the plant (1) we use the controller architecture shown in Figure 1, where the dynamic controller originally

considered in [25–27], whose state is denoted by xc, is augmented with a Luenberger observer, whose state is denoted

ẋc = Ācxc + B̄cyp

τ̇ = 1− dz
(

τ
ρ

)

u = C̄cxc + D̄cyp

˙̂xp = Aex̂p + Beu + Lyp

x̂p

xc, τ

yp u

H

ŷp = C̄px̂p + D̄pu

ŷp

Supervisor

(jump map, F , J )

reset x+c , τ
+

Figure 1: The proposed control scheme.
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by x̂p, with a dwell-time logic whose state is denoted by τ and with a supervisor enforcing the reset rules induced by

the hybrid loops. In particular, while the linear closed loop between the dynamic controller and plant (1) does not

make any use of the observed state, the observer state is used by the supervisor to decide when and where to reset

the controller state.

In the next sections we will propose two solutions for the output feedback extension of the two architectures

of [25–27] (thereby resulting in four schemes). All of the proposed schemes share the same flow dynamics which is





˙̂xp

ẋc



 =





Ae BeC̄c

0 Āc









x̂p

xc



+





BeD̄c + L

B̄c



 yp

:= AH





x̂p

xc



+BHyp (2a)

u =
[

0 C̄c

]





x̂p

xc



+ D̄cyp

:= CH





x̂p

xc



+DHyp, (2b)

where Ae = Āp − LC̄p, Be = B̄p − LD̄p and all the other matrices are design parameters that will be defined later.

We assume that the Luenberger observer gain L and the feedback interconnection of the plant-controller pair satisfy

the following assumption.

Assumption 1 The interconnection (1)-(2) is well-posed, that is, the matrix (I − D̄pD̄c) is non-singular. Moreover,

the observer gain L is such that the matrix Ae = Āp − LC̄p is Hurwitz. ◦

Remark 1 Note that Assumption 1 implies that the pair (C̄p, Āp) is detectable. ⋆

To enforce a desirable dwell time between each pair of consecutive jumps of the hybrid control systems proposed

next, we augment the state of the controller (2a), (2b) with a timer (or dwell-time logic) τ ∈ R (see also [5, Proposi-

tion 1.1]). For the results in [32] to be applicable, it will be important that this timer lies in a compact set. Therefore,

instead of simply using τ̇ = 1 for our timer, we impose the following flow dynamics, similar to [13]:

τ̇ = 1− dz

(

τ

ρ

)

, (2c)

where ρ > 0 is the dwell time and dz(·) is the standard unit deadzone. From (2c), it easy to see that the right-hand

side is Lipschitz, that τ̇ = 1 if τ ∈ [0, ρ] and that the nonnegative interval [0, 2ρ] is forward invariant. The timer τ

will be restricted to the set [0, 2ρ], by introducing reset to zero at each jump and by terminating any solution with

τ 6∈ [0, 2ρ]. Moreover, the timer will be used to inhibit jumps whenever τ ∈ [0, ρ).

For later use, after defining the observation error e := xp − x̂p and the aggregated state x := [x̂T
p xT

c eT ]T ∈ R
n,

with n = 2np + nc, it is useful to rewrite the interconnection (1), (2) in the following compact form











˙̂xp

ẋc

ė











=











Ap Bp Bo

Bc Ac Bc

0 0 Ae





















x̂p

xc

e











:= Ax (3a)
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τ̇ = 1− dz

(

τ

ρ

)

(3b)

yp =
[

Cp Cc Cp

]

x := Cx, (3c)

with










Ap Bp Bo

Bc Ac Bc

Cp Cc Cp











=











Āp B̄pC̄c LC̄p

0 Āc 0

0 0 0











+











B̄pD̄c

B̄c

I











X
[

C̄p D̄pC̄c C̄p

]

,

where X = (I − D̄pD̄c)
−1 is well defined and Ae is Hurwitz from Assumption 1.

Remark 2 From the cascaded structure of the closed-loop (3a) and the fact that Ae is Hurwitz, it is evident that

ė = ẋp − ˙̂xp = Aee, namely the observer state x̂p converges exponentially to the plant state xp, during flow. ⋆

2.2 Reset rule replacing xp by x̂p

The first state feedback reset rule proposed in [25, Theorem 1] (see also [25, Proposition 1] for the linear case addressed

here) hinges upon the availability of a Lyapunov-like function V (xp, xc) which admits a sufficiently smooth minimizer

φ(xp) = argminxc
V (xp, xc) satisfying

V (xp, φ(xp)) ≤ V (xp, xc), ∀xc ∈ R
nc . (4)

In particular, when focusing on the linear case and using quadratic Lyapunov functions V (xp, xc) := [ xp

xc
]
T
P [ xp

xc
] :=

[ xp
xc

]
T
[

Pp Ppc

PT
pc Pc

]

[ xp
xc

], with P = PT > 0, since the minimizer can be explicitly computed as φ(xp) := −P−1
c PT

pcxp,

property (4) reduces to (see also [25, eq. (18)])

He(P̄p(Ap +BpKp)) < −αP̄p, P̄p = P̄T
p > 0, (5)

where

P̄p := Pp − PpcP
−1
c PT

pc, Kp := −P−1
c PT

pc, (6)

and α ≥ 0 is a scalar design parameter. Note that by standard congruence transformations, constraint (5) on the

entries of P can be convexified (see [26, §4.1]).

To extend the corresponding construction to the output feedback case, we will make the same assumption here.

Assumption 2 The plant P in (1), and the matrix P are such that equation (5), with the definitions in (6), is

satisfied for some α > 0. ◦

Using the definitions in (2), we select the hybrid controller of Figure 1 as























˙̂xp

ẋc



 = AH





x̂p

xc



+BHyp

τ̇ = 1− dz
(

τ
ρ

)

if (x̂p, xc) ∈ F or τ ∈ [0, ρ]
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x̂+
p

x+
c



 =





I 0

Kp 0









x̂p

xc





τ+ = 0

if (x̂p, xc) ∈ J and τ ∈ [ρ, 2ρ] (7)

u = CH





x̂p

xc



+DHyp

with the flow and jump sets chosen as:

F =















x̂p

xc



 :





x̂p

xc





T

N





x̂p

xc



 ≤ −α̃





x̂p

xc





T

P





x̂p

xc















, (8a)

J =















x̂p

xc



 :





x̂p

xc





T

N





x̂p

xc



 ≥ −α̃





x̂p

xc





T

P





x̂p

xc















, (8b)

where 0 < α̃ ≤ α and

N := He



P





Ap Bp

Bc Ac







 . (8c)

Using the compact representation (3), the interconnection (1), (7) becomes the following hybrid closed-loop system:







ẋ = Ax

τ̇ = 1− dz
(

τ
ρ

) if x ∈ (F × R
np) or τ ∈ [0, ρ]







x+ = Gx

τ+ = 0
if x ∈ (J × R

np) and τ ∈ [ρ, 2ρ]

yp = Cx,

(9a)

where

G :=











I 0 0

Kp 0 0

0 0 I











. (9b)

The closed-loop system (8), (9) generalizes to the output feedback case the state-feedback solution whose properties

are established in [25, Proposition 1]. The following theorem establishes the global exponential stability of the scheme.

Theorem 1 Consider a plant-controller pair (1), (7) satisfying Assumption 1 and two parameters P , α satisfying

Assumption 2. Then there exists ρ∗ > 0 such that for all ρ ∈ (0, ρ∗], the set

A := {0} × [0, 2ρ] ⊂ R
n × R (10)

is globally exponentially stable for the closed-loop (9) with the sets F and J in (8). �

We focus now on the second state feedback reset rule proposed in [25, Theorem 1] (see also [25, Proposition 2]

and [26,27] for the linear case addressed here). For this second case, the dynamics of the controller (9) unchanged but

the jump and flow sets are defined based on a state feedback gain Kp ∈ R
p×np for the plant (1) and a Lyapunov-like

function which is only nonzero in the direction of the plant states, namely Vp(xp) := xT
p P̄pxp, where P̄p is symmetric

and positive definite. Also for this second case we make the following assumption, corresponding to [25, Assumption

2] for the linear case (see also [26, eq. (7)]).
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Assumption 3 The plant P in (1) and the matrix pair (P̄p,Kp) are such that equation (5) is satisfied for some α > 0.

◦

Based on the matrix pair (P̄p,Kp) satisfying Assumption 3 and a (typically small) scalar ǫ > 0, we can now define

the jump and flow sets associated with the second solution and to be used in the dynamics (9):

F =















x̂p

xc



 :





x̂p

xc





T

Np





x̂p

xc



 ≤ −α̃x̂T
p P̄px̂p − ǫ|xc|

2











, (11a)

J =















x̂p

xc



 :





x̂p

xc





T

Np





x̂p

xc



 ≥ −α̃x̂T
p P̄px̂p − ǫ|xc|

2











, (11b)

where 0 < α̃ ≤ α and

Np := He









P̄pAp P̄pBp

0 0







 . (11c)

The closed-loop system (9), (11) generalizes to the output feedback case the state-feedback solution whose properties

are established in [26, Theorem 1] (see also [25, Proposition 2]). However, an extra term is added to allow inserting the

dwell-time logic in the scheme without compromising the stability properties established in [25–27]. Indeed, while the

flow and jump sets in (8) coincide with those of [25, Proposition 1], it is not true that the flow and jump sets in (11)

coincide with those of [25, Proposition 2] and [26]. The difference stands in the term −ǫ|xc|
2 introduced here to provide

a sufficient level of robustness. Such a robustness is required to tolerate the inevitable perturbations introduced by

the dwell-time logic, which forces the system to flow even though x belongs to J when the timer τ is too small. Note

that the addition of this term does not restrict the class of systems that we consider, while it may lead to slightly

smaller flow sets.

Although we do not have a formal proof of fragility of the scheme in [25, Proposition 2], we should emphasize that

the proofs of stability in [25, Proposition 2] were based on the invariance principle because Lyapunov arguments only

allowed to establish negative semidefiniteness of our candidate Lyapunov functions. It turns out that the term −ǫ|xc|
2

provides the missing decrease and significantly simplifies the proof of exponential stability of the state-feedback case

here presented. Moreover the strict decrease arising from this term allows us to introduce the dwell-time logic without

destroying the exponential stability of the closed loop. It should also be emphasized that the dwell-time parameter

ρ∗ established in the next theorem shrinks to zero as ǫ becomes smaller. Perhaps, this suggests that the amount of

the dwell-time perturbation that the hybrid closed loop can tolerate becomes smaller as ǫ in (11) shrinks to zero. To

illustrate the effect of the new term −ǫ|xc|
2 in (11), assume without loss of generality that e = 0 (that is xp = x̂p) and

consider the following example

A =





Ap Bp

Bc Ac



 =





−1 0

1 0



 , P̄p = 1,

which, regardless of Kp satisfies (5) for any α < 1 (because Bp = 0). This example does not satisfy the detectability

condition in [26, Theorem 1] and indeed one can see that setting ǫ = 0 in (11) (thus recovering the scheme of [26])

the system starting from (xp, xc) = (0, a) for any a 6= 0 can flow indefinitely so that xc(t, j) = a 6= 0 for all times,

implying no convergence (even with dwell time).
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Consider now the sets (11) with ǫ 6= 0 and (xp, xc) = (0, a) 6∈ F because −ǫ|xc|
2 = −ǫ|a|2 < 0. Then xc is

instantaneously forced to jump to x+
c = Kpxp = 0, regardless of Kp, and this shows convergence. In other words, the

extra term −ǫ|xc|
2 appearing in (11) (combined with the dwell-time logic) ensures that, upon convergence to zero of

xp, if xc 6= 0, then the controller will eventually be forced to jump (as xp gets small enough) and the xc substate will

be stabilized by way of the jumps without the need of the detectability of (Bp, Ac) required in [26, Theorem 1].

This last result is formalized in the next theorem which establishes global exponential stability of the scheme.

Theorem 2 Consider a plant-controller pair (1), (7) satisfying Assumption 1 and three parameters P̄p, Kp and α

satisfying Assumption 3. Then, for any ǫ > 0, there exists ρ∗ > 0 such that for all ρ ∈ (0, ρ∗], the set A in (10) is

globally exponentially stable for the closed-loop (9) with the sets F and J in (11). �

2.3 Enhanced reset rule exploiting yp − ŷp

The solution presented in the previous section succeeds in extending the schemes of [25–27] to the output feedback

case, but it does not directly exploit the instantaneous knowledge of the output error yp − ŷp for the selection of the

flow and jump sets and the reset rule. We explore this additional potential here and propose an enhanced scheme

which is expected to behave better during the observer transient. The two enhanced schemes rely once again on the

parameters P , α (respectively, the matrices P̄p, Kp, α) satisfying Assumption 2 (respectively, Assumption 3), plus a

set of four extra matrices: Ky ∈ R
nc×q used in the jump rule and Kx ∈ R

np×q, Kc ∈ R
nc×q, Kη ∈ R

q×q used in the

flow and jump sets definition. The four matrices represent a set of additional free tuning parameters.

Let us define η := yp − ŷp = C̄p(xp − x̂p) = C̄pe and ζ := [x̂T
p xT

c ηT ]T , the hybrid controller of Figure 1 is selected

as:






















˙̂xp

ẋc



 = AH





x̂p

xc



+BHyp

τ̇ = 1− dz
(

τ
ρ

)

if ζ ∈ Fy or τ ∈ [0, ρ]























x̂+
p

x+
c



 =





I 0

Kp 0









x̂p

xc



+





0

Ky



 η

τ+ = 0

if ζ ∈ Jy and τ ∈ [ρ, 2ρ]

u = CH





x̂p

xc



+DHyp

(12)

with the flow and jump sets selected as

Fy =



















ζ :





x̂p

xc





T

(N + α̃P )





x̂p

xc



 ≤











x̂p

xc

η











T 









Kx

Kc

Kη











η



















, (13a)

Jy =



















ζ :





x̂p

xc





T

(N + α̃P )





x̂p

xc



 ≥











x̂p

xc

η











T 









Kx

Kc

Kη











η



















, (13b)

where 0 < α̃ ≤ α and N and P are selected according to the previous section.
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Using (3), the interconnection (1), (12) becomes the following hybrid closed-loop system:







ẋ = Ax

τ̇ = 1− dz
(

τ
ρ

) if ζ ∈ Fy or τ ∈ [0, ρ]







x+ = Gyx

τ+ = 0
if ζ ∈ Jy and τ ∈ [ρ, 2ρ]

yp = Cx

(14a)

where

Gy :=











I 0 0

Kp 0 KyC̄p

0 0 I











. (14b)

Once again, the closed-loop system (13), (14) generalizes to the output feedback case the state-feedback solution

whose properties are established in [25, Proposition 1]. The following theorem establishes the global exponential

stability of the scheme.

Theorem 3 Consider a plant-controller pair (1), (12) satisfying Assumption 1, two parameters P , α satisfying As-

sumption 2 and four parameters Ky, Kx, Kc, Kη. Then there exists ρ∗ > 0 such that for all ρ ∈ (0, ρ∗], the set A in

(10) is globally exponentially stable for the closed-loop (14) with the sets Fy and Jy in (13). �

It should be emphasized that Theorem 3 only establishes the stability properties of the output feedback solution

proposed here, whereas it does not highlight its strong relation with the parallel state-feedback solution of [25–27].

Such a relation is established in the next proposition. As in [17], we say that two solutions are (T, J, ε)-close if their

graphs are ε-close in the compact hybrid time domain bounded by (T, J) (see [17] for details). Moreover, we say that

two solutions are ε-close if they are (T, J, ε)-close for all (T, J) ∈ R≥0 × Z≥0.

Proposition 1 Consider the state feedback hybrid closed loop in [25, Proposition 1]. There exists ρ∗ > 0 such that

for all ρ ∈ (0, ρ∗] the following hold:

1. any solution of the state feedback hybrid closed loop starting from (xp(0, 0), xc(0, 0)) = (xp0, xc0), with xp0 6= 0,

is also the (xp, xc)-component of a solution of the output feedback hybrid closed-loop system (13), (14) (resp.

(8), (9)) starting from ξ(0, 0) = (x̂p(0, 0), xc(0, 0), e(0, 0), τ(0, 0)) = (xp0, xc0, 0, τ0) with τ0 ≥ ρ;

2. for each ǫ > 0, there exists δ > 0 such that the (xp, xc)-component of any solution to the output feedback

hybrid closed-loop system (13), (14) (resp. (8), (9)) starting from ξ(0, 0) = (x̂p(0, 0), xc(0, 0), e(0, 0), τ(0, 0)) =

(xp0, xc0, e0, τ0) with xp0 6= 0, τ0 ≥ ρ and |e0| ≤ δ|(xp0, xc0)| is ǫ|(xp0, xc0)|-close to a solution of the state feedback

hybrid closed loop starting from (xp(0, 0), xc(0, 0)) = (xp0, xc0).

�

Paralleling the previous section, we focus now on the second state-feedback reset rule proposed in [25, Theorem

1] and we leave once again the dynamics of the controller (14) unchanged but we define different jump and flow sets,
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based on the pair of matrices Kp ∈ R
p×np and P̄p ∈ R

np×np , P̄p = P̄T
p > 0, satisfying Assumption 3. In particular,

the jump and flow sets are defined as:

Fy =



















ζ :





x̂p

xc





T 

Np +





α̃P̄p 0

0 ǫI













x̂p

xc



 ≤











x̂p

xc

η











T 









Kx

Kc

Kη











η



















, (15a)

Jy =



















ζ :





x̂p

xc





T 

Np +





α̃P̄p 0

0 ǫI













x̂p

xc



 ≥











x̂p

xc

η











T 









Kx

Kc

Kη











η



















, (15b)

where ǫ > 0, 0 < α̃ ≤ α and Np and P̄p are selected in the same way as in the previous section.

The closed-loop system (14), (15) generalizes to the output feedback case the state-feedback solution whose prop-

erties are established in [26, Theorem 1] (see also [25, Proposition 2]). The following theorem establishes the global

exponential stability of the scheme.

Theorem 4 Consider a plant-controller pair (1), (12) satisfying Assumption 1, three parameters P̄p, Kp and α

satisfying Assumption 3 and five parameters ǫ > 0, Ky, Kx, Kc, Kη. Then there exists ρ∗ > 0 such that for all

ρ ∈ (0, ρ∗], the set A in (10) is globally exponentially stable for the closed-loop (14) with the sets Fy and Jy in (15).

�

We cannot establish an equivalent statement to Proposition 1 with reference to the scheme (14), (15) and the

linear state-feedback law of [25, Proposition 2] and [26]. Indeed, as emphasized at the end of Section 2.2, the jump

and flow sets considered in [25–27] correspond to the ones in (15) with e = 0 and ǫ = 0. Due to this fact, since we

require ǫ > 0 here, we cannot say that the solutions to (14), (15) graphically converge to those of the corresponding

state-feedback loops of [25–27]. Nevertheless, since the system with a small ǫ > 0 corresponds to a perturbation of the

system with ǫ = 0, we can state by relying on the results of [17] that the arising trajectories can be made arbitrarily

close to those of the state-feedback law of [25, Proposition 2] and [26] by choosing ǫ arbitrarily small. Note that the

same consideration may be done on Theorem 2 and solutions of (9), (11). Nevertheless for both Theorems 3 and 4 we

can state the following properties with respect to the results in [11] (by virtue of Remark 4 the same statement can

be adapted to Theorems 1 and 2 by replacing (13), (14) and (14), (15) by (8), (9) and (9), (11), respectively). The

proof of Proposition 2 is omitted because it is identical to the proof of Proposition 1.

Proposition 2 Consider the state feedback hybrid closed loops in [11, Theorem 1 and 2]. Then the following holds:

1. any solution of that state feedback hybrid closed loop in [11, Theorem 1] (resp. [11, Theorem 2]) starting from

(xp(0, 0), xc(0, 0), τ(0, 0)) = (xp0, xc0, τ0) is also a solution of the output feedback hybrid closed-loop system (13),

(14) (resp. (14), (15)) starting from ξ(0, 0) = (x̂p(0, 0), xc(0, 0), e(0, 0), τ(0, 0)) = (xp0, xc0, 0, τ0);

2. for each ǫ > 0, there exists δ > 0 such that the (xp, xc)-component of any solution to the output feedback

hybrid closed-loop system (13), (14) (resp. (14), (15)) starting from ξ(0, 0) = (x̂p(0, 0), xc(0, 0), e(0, 0), τ(0, 0)) =

(xp0, xc0, e0, τ0) with xp0 6= 0 and |e0| ≤ δ|(xp0, xc0)| is ǫ|(xp0, xc0)|-close to a solution of the state feedback hybrid

closed loop starting from (xp(0, 0), xc(0, 0), τ(0, 0)) = (xp0, xc0, τ0).

10



�

Remark 3 In (14b) and in the sets (13) and (15), the matrices Ky, Kx, Kc, Kη are completely free due to the cascaded

structure of the scheme. In particular, since all these matrices are multiplied by e or η and since limt+j→∞ e(t, j) = 0

implies limt+j→∞ η(t, j) = 0, these terms become ineffective once the error approaches to zero. Nevertheless, during

the observer estimation transient, when e 6= 0 and possibly η = C̄pe 6= 0 as well, nonzero selections of these parameters

can beneficially modify the transient response. For example, it may be useful to choose Kη positive definite and

possibly large as this will enlarge the flow set (see (13) and (15)) in the η direction so that jumps will be inhibited

when η = C̄pe is large. This is reasonable because the jump map involves the estimated state and might (transiently)

assign the controller state to an inaccurate value when the estimation error is large. On the other hand, the gain

Ky may affect in a beneficial way the jump map when the output error is nonzero and may be manually tuned by

inspecting the closed-loop response when the error is large (it is recalled that these gains essentially have no effect after

the estimation error becomes small). The potential behind these parameters Kη, Ky is illustrated in the examples of

Section 3, while the other parameters Kx, Kc are selected to be zero since their impact during the observer transient

remains unclear and no specific tuning rule is available. ⋆

Remark 4 System (9) with flow and jump sets (8) (resp. (11)) is equivalent to system (14) with flow and jump sets

(13) (resp. (15)) with Ky, Kx, Kc, Kη equal to zero. For this reason Theorems 1 and 2 are corollaries of Theorems 3

and 4. Therefore, we will only prove Theorems 3 and 4 in Section 4. Note also that, due to this fact, Propositions 1

and 2 also apply to the results of Theorems 1 and 2. We also emphasize that the results of Section 2.2, in addition to

being more intuitive in the way they are presented, they also lead to a simpler implementation, indeed the flow and

jump sets (8) and (11) are defined based on a smaller subset of parameters. ⋆

Remark 5 It is worth commenting on the difference between the dwell-time approach taken in this paper and the

parallel results of [10] where no dwell time is used to address the extension of the results of [25–27] to the output

feedback case. As already emphasized in the introduction, the main difficulty arising from this output feedback

extension corresponds to the fact that the results in [25–27] exhibit Zeno solutions at the origin which, when extending

the scheme to a feedback from the observed state may become non-converging Zeno solutions. Then the approach

in [10] for suppressing the Zeno solutions was to remove a small ball around the origin (thereby resulting in global

practical asymptotic stability). Here, instead, we use a dwell-time logic to remove the Zeno solutions and we are able

to establish global exponential stability. Note that a similar distinction can be made between the work in [12] which

establishes global practical asymptotic stability and its revised version in [13] where global exponential stability is

obtained with a dwell-time logic. ⋆

3 Simulations

In this section, two simulation examples are presented to show the effectiveness of the proposed methods. For the

techniques in Theorems 1 and 3, we use an example which appeared in several reset control papers. For the techniques

in Theorems 2 and 4, we present an example inspired by a positioning system comprising an electrical DC motor.
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3.1 Illustration of Theorems 1 and 3

Consider the plant P (s) = s+1
s(s+0.2) introduced in [3] and discussed in [10, 22, 26]. According with (1), a possible

realization is




Āp B̄p

C̄p D̄p



 =











−0.6 0.6 −1

−0.4 0.4 1

0 1 0











.

Notice that the pair (C̄p, Āp) is observable. To design the continuous-time part (2a) of the controllers, we select the

matrices Āc, B̄c, C̄c and D̄c to define the same closed-loop used in [3, 10, 26], obtaining




Āc B̄c

C̄c D̄c



 =





−1 −1

1 0



 ,

For the hybrid part of our controller, we exploit the optimal configuration presented for the static state feedback in [26]

for the overshoot reduction, see Table 1. As the basic idea of this optimization is to approximate the Lyapunov-like

function, used to define the flow and jump sets, to the norm of the plant output (i.e. V (xp, xc) ≈ |yp|
2), we select

Pc = 10−10 (namely the smallest Pc that satisfies all the conditions in Assumption 2) in such a way that the influence

of the sub-state xc be reduced. Moreover we set α̃ = 10−8 to enlarge as much as possible the flow set and ρ = 2 · 10−3.

The observer gain in (2a) is chosen as L = [0.26 1.37]T and, following the technique of Remark 3, the controller (14)

is implemented with Kx = 0, Kc = 0, and Kη = 0. As for Ky, the inspection of the transient response revealed that

Ky = −5 leads to an improved transient, partially recovering the performance of the solid line obtained in [26] in

Table 1: Hybrid controller setting proposed

P̄p KT
p α





0.0097785 −0.0096375

−0.0096375 0.99990









0.0594992

−4.83065



 7.784 · 10−6
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Figure 2: Hybrid controllers (7) and (12), compared to the linear case, to the FORE in [3] and to the hybrid controller

with optimal static state feedback given in [26].
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which the knowledge of the state was assumed.

Figure 2 depicts the input and output behavior of the hybrid systems (9) (dashed line) and (14) (dot-dashed line)

compared to the linear case, to the technique in [3] and to the technique in [26]. All the controllers have zero initial

conditions whereas the plant state starts from xp(0, 0) = −[1 1]T . As expected, the undesired effects of the dynamics

of the observer affect the controller (7) exhibiting a larger overshoot than the static state feedback of [26]. This

overshoot is caused by the observer transient. The second control technique is capable to partially compensate for

this gap, recovering some performance for the output feedback case. We remark that, although the FORE in [3] does

not introduce further dynamics for the hybrid closed-loop system, it exhibits a larger overshoot than (9) and (14).

3.2 Illustration of Theorems 2 and 4

Let us consider the use of a DC motor to place a load in a desired position (namely, the origin). Figure 3 represents

the series of the DC motor and the load that we are considering, where Ke = 10 and τe = 0.05 are the electrical gain

and time constant of the motor, F = 1.2 and J = 0.5 are the friction and inertia of the load. Note that J = 0.5

corresponds, for example, to the inertia of a cylindric load with radius R = 0.25m and mass m = 16Kg.

Ke

1 + τes

1

F + Js
1
s

TmV ω θ

P

u yp

Figure 3: Plant block scheme.

With these parameters, the plant in observer canonical form is





Āp B̄p

C̄p D̄p



 =

















−22.4 −6 0 50

8 0 0 0

0 1 0 0

0 0 1 0

















,

which can be commonly controlled by the following PI controller whose parameters have been tuned following a typical

PI design procedure (see, e.g., [14, Chapter 4.3.4])





Āc B̄c

C̄c D̄c



 =





0 0.1250

−0.08 −0.05



 .

We want to augment this controller with a hybrid loop tuned such a way to reduce the overshoot induced by the

integral action. Two different hybrid loops are presented: one with a full order observer (namely, an observer with the

same order as the plant) and one with a second order observer (designed based on a second order approximate model

of the plant). In both cases, the optimization technique in [26, Theorem 3] for the overshoot reduction is used. In all

the plots, the linear PI controller will be compared to the results obtained with different settings of the same linear

controller augmented by a hybrid loop.

Another aspect that will be taken into account is the robustness to parameters uncertainty. To this aim, we will

consider the case in which the load has a mass 100% higher than expected, therefore the perturbed inertia value is
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J = 1 (see Figure 3) and the perturbed plant matrices become





Āp B̄p

C̄p D̄p



 =

















−21.2 −6 0 50

4 0 0 0

0 1 0 0

0 0 1 0

















.

3.2.1 Hybrid loop based on a full order observer

Let us consider the technique in [26, Theorem 3], for κM = 0.1 (with the notation of [26]) and L = [−0.0241 0.0841 1.0808 ]
T
,

we get (according to (5) and (6)):

Kp =
[

0.00803345 0.02347159 0.09657843
]

,

ρy = 0.2809,

P̄p =











0.02290376 0.06418020 0.06227308

0.06418020 0.19173178 0.18092975

0.06227308 0.18092975 0.95345625











,

where ρy is the quantity to be minimized (according to [26]). Then, by selecting α̃ = 10−12, ρ = 0.004, ǫ = 0.01 and

Np as in (11c), it is possible to define system (9) with the flow and jump sets in (11).

In all of the next simulations, the plant and controller initial conditions will be xp(0, 0) = [0.7 0 − 4]T , xc(0, 0) = 0

and τ(0, 0) = ρ, whereas the observer initial condition is modified to explore the behavior of the hybrid controller.

Choosing x̂p(0, 0) = xp(0, 0) (namely, the estimate error is zero), the output of the hybrid closed-loop system and the

output of the linear closed loop with the simple PI are plotted in Figure 4(a) for the nominal case. Note that with a

full order observer if e(T ) = 0 then e(t) = 0 for all t ≥ T (in the absence of disturbances).

Figure 4(b) compares the behavior of the PI and the hybrid controllers with the plant subject to uncertainties of

the parameters. The hybrid controller behavior is illustrated in several scenarios to better show how it is possible
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Figure 4: Full order observer case (Example of Section 3.2.1).
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Figure 5: Approximated reduced order observer case (Example of Section 3.2.2).

to compensate for the undesired effects caused by a non zero observation error. The overshoot reduction for the

hybrid system is maintained in the case with parameters uncertainties when the estimate error of the observer is zero

(dash-dotted line), but it may be lost if e is large (dashed line). We remark that the faster rise time in the dashed

line is not necessarily more desirable since it requires a larger control input (see lower plot). To compensate for this

overshoot, we resort to the hybrid controller in (14) (same settings as for (9), plus a further term Ky = 0.06 in the

reset law) maintaining the flow and jump sets unchanged (namely, we select the sets in (15) with Kx, Kc, Kη all

zero). In this way we reduce the overshoot but the system still shows a faster rise time (dotted line). Finally, we

introduce the gain Kη = 0.2, which inhibits jumps when the output estimate error is large as discussed in Remark 3.

The resulting response, corresponding to the thin solid line, appears to be closer to the state-feedback response.

3.2.2 Hybrid loop based on an approximate reduced order observer

Let us consider the plant of Figure 3 neglecting the first block, related to the electrical dynamics of the DC motor.

Then the remaining part is





Āpr B̄pr

C̄pr D̄pr



 =











−2.4 0 2

1 0 0

0 1 0











,

and it can be exploited to define a reduced order observer (the subscript “r” stands for “reduced”). Since the goal is

the overshoot reduction, we use the technique in [26, Theorem 3], with κM = 0.1 (see [26]) and L = [ 0.0063 0.9015 ]
T
,

to obtain (according to (5) and (6))

Kp =
[

0.03680221 0.09245721
]

,

ρy = 0.3435,

P̄p =





0.41279516 0.24891952

0.24891952 0.89441164



 ,
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where ρy is the quantity to be minimized (according to [26]). Then, by selecting α̃ = 10−12, ρ = 0.004, ǫ = 0.01,

Ky = 0.06, Kx = 0, Kc = 0, Kη = 0.2 and Np as in (11c), it is possible to define system (9) with the flow and jump

sets in (11).

Figure 5 shows that the behavior of the hybrid closed-loop system does not change much compared to the full

order case. The overshoot reduction is achieved and no faster rise time or other considerable effects coming from the

observer can be observed, even for very large initial estimate errors.

4 Proofs of the main results

As pointed out in Remark 4, Theorem 1 is a corollary of Theorem 3 and Theorem 2 is a corollary of Theorem 4, all of

them corresponding to the special case of selecting zero matrices for Ky, Kx, Kc and Kη. As a consequence, we only

prove next Theorems 3 and 4 and Proposition 1.

Proof of Theorem 3. As a first step, consider the following change of coordinates: x = [x̂T
p xT

c eT ]T 7→ x̄ :=

[x̂T
p σT eT ]T := [x̂T

p (xc −Kpx̂p −KyC̄pe)
T eT ]T . In this transformed set of coordinates, it can be verified that the flow

dynamics in (14) corresponds to (see also (3)):










˙̂xp

σ̇

ė











=











Ap + BpKp A12 A13

A21 A22 A23

0 0 Ae





















x̂p

σ

e











, (16)

where A12 := Bp, A13 := Bo + BpKyC̄p, A21 := Bc − Kp(Ap + BpKp) + AcKp, A22 := Ac − KpBp and A23 :=

AcKyC̄p −KyC̄pAe +Bc −Kp(Bo +BpKyC̄p) are constant matrices.

Then, using the identities in (6), it can be verified after some calculations that

x̂T
p P̄px̂p + σTPcσ =





x̂p

xc





T

P





x̂p

xc



+ 2











x̂p

xc

e











T 









Σ13

Σ23

Σ33











e

= V (x̂p, xc) + 2











x̂p

xc

e











T

Σe,

(17)

where Σ13 := KT
p PcKyC̄p, Σ23 := −PcKyC̄p and Σ33 := 1

2 C̄
T
p K

T
y PcKyC̄p are constant matrices.

Let us now introduce the function ϕ(τ) := exp((2ρ − τ)λ), where λ > 0 is a scalar to be selected later and note

that, for all τ ∈ [0, 2ρ], this function satisfies:

1 ≤ ϕ(τ) ≤ exp(2λρ)

ϕ̇(τ) = −λτ̇ϕ(τ) ≤ 0.
(18)

Based on this equation, we consider the following positive definite and radially unbounded candidate Lyapunov

function:

Wξ(x̄, τ) := x̂T
p P̄px̂p + ϕ(τ)σTPcσ + ξeTPee, (19)
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where P̄p and Pc are defined in Assumption 2 (see also (6)), ξ > 0 is a scalar (to be selected later) and Pe = PT
e > 0

is the solution of the Lyapunov equation AT
e Pe + PeAe = −I. Note that Pe always exists because Ae is Hurwitz by

Assumption 1. From (18) it follows that for all x̄ ∈ R
2np+nc and for all τ ∈ [0, 2ρ],

c1|x̄|
2 ≤ Wξ(x̄, τ) ≤ c2|x̄|

2, (20)

where c1 = min{λmin(P̄p), λmin(Pc), ξλmin(Pe)} and c2 = max{λmax(P̄p), exp(2λρ)λmax(Pc), ξλmax(Pe)}.

To complete the proof of the theorem, we will make use of the following claim, whose proof is reported next.

Claim 1 There exists a small enough ρ∗ and a large enough ξ∗ such that for all ρ ≤ ρ∗ and all ξ ≥ ξ∗ the function

Wξ in (19) satisfies, for some γ > 0,

Ẇξ(x̄, τ) < −γ|x̄|2 if Tζ x̄ ∈ Fy \ {0} or τ ∈ [0, ρ] (21a)

∆Wξ(x̄, τ) ≤ 0 if Tζ x̄ ∈ Jy \ {0} and τ ∈ [ρ, 2ρ], (21b)

where ∆Wξ(x̄, τ) := Wξ(x̄
+, τ+)−Wξ(x̄, τ) and Tζ :=

[

I 0 0
0 I 0
0 0 C̄p

]

T̄ :=

[

I 0 0
0 I 0
0 0 C̄p

] [

I 0 0
Kp I KyC̄p

0 0 I

]

satisfies ζ = Tζ x̄. ◦

From the properties (20) and (21), we can apply [28, Theorem 7.6] to establish that the set A in (10) is stable.

Moreover, exponential stability of the set A comes from [32, Theorem 2] where the nonstrict inequality in (21b) is

dealt with by exploiting the dwell-time property of temporally regularized solutions. In particular, by decomposing

the closed-loop state in its components x̄ and τ , conditions 1)-4) of [32, Assumption 1] are satisfied due to (20) and

(21) and because the pair (ǫIn, A) (where A is defined in (3a)) is trivially observable. Finally, condition 5) of [32, As-

sumption 1] is satisfied because the hybrid solutions obey the dwell-time constraint. Thus, A is globally exponentially

stable. •

Proof of Claim 1 Equation (21b) follows trivially from noticing that the jump rule in (14) can be written as

x̄+ = [x̂+T
p σ+T e+T ]T = [x̂T

p 0T eT ]T and due to the block diagonal structure of Wξ in (19) we have W+
ξ ≤ Wξ

everywhere, because the second term becomes zero after the jump and the other terms remain unchanged.

To prove equation (21a) we separate the analysis in two cases, corresponding to the two flow conditions appearing

in (21a).

Case 1: τ ∈ [0, ρ].

From the special structure of the dynamics in (16) and since equation (5) holds from Assumption 2, then, also using

the inequalities in (18) and the fact that τ̇ = 1 whenever τ ∈ [0, ρ], the time derivative of Wξ in (19) satisfies

Ẇξ(x̄, τ) = 2x̂T
p P̄p(Ap +BpKp)x̂p + 2x̂T

p P̄p(A12σ +A13e)− λϕ(τ)σTPcσ + 2ϕ(τ)σTPcσ̇ + 2ξeTPeAee

≤ −α̃x̂T
p P̄px̂p − λσTPcσ − ξeT e+ 2











x̂p

σ

e











T 









0 P̄pA12 P̄pA13

ϕ(τ)PcA21 ϕ(τ)PcA22 ϕ(τ)PcA23

0 0 0





















x̂p

σ

e











,(22)

where Aij , i = 1, . . . , 2, j = 1, . . . , 3 are taken from (16). Note that the first three terms of the last equation are

negative definite quadratic terms and both ξ and λ can be selected arbitrarily large to complete squares with the

mixed terms arising from the fourth term. Moreover, from the first equation in (18), ϕ(τ) is bounded from above and

17



from below and, once λ has been fixed large enough, the upper bound on ϕ(τ) can be made arbitrarily close to 1 for

all ρ ≤ ρ∗1, as long as ρ∗1 > 0 is selected small enough. In this way, the terms in which ϕ(τ) figures can be maintained

small. Then, there exist large enough selections of λ and ξ1 and a small enough ρ∗1 such that for all ρ ∈ [0, ρ∗1] and all

ξ ≥ ξ1, equation (22) implies

Ẇξ(x̄, τ) ≤ −
α̃

2
|x̄|2, ∀x̄ ∈ R

2np+nc , ∀τ ∈ [0, ρ].

Case 2: Tζ x̄ ∈ Fy.

First note that from the definition of V , from (3a) and the definition of N in (8c), we get

V̇ (x̂p, xc) =





x̂p

xc





T

N





x̂p

xc



+ 2





x̂p

xc





T

P





Bo

Bc



 e, (23)

Using (17), we can rewrite the function Wξ in (19) as follows

Wξ(x̄, τ) = x̂T
p P̄px̂p + σTPcσ + (ϕ(τ) − 1)σTPcσ + ξeTPee

= V (x̂p, xc) + 2











x̂p

xc

e











T

Σe+ (ϕ(τ) − 1)σTPcσ + ξeTPee.

Therefore, using (23), the flow set definition in (13a), the first equation in (18) and the second equation in (18), we

get

Ẇξ(x̄, τ) =





x̂p

xc





T

N





x̂p

xc



+ 2











x̂p

xc

e











T 









ΣAe +











P





Bo

Bc





0











+ATΣ











e

−λτ̇ϕ(τ)σTPcσ + 2(ϕ(τ) − 1)σTPcσ̇ + 2ξeTPeė

≤ −α̃





x̂p

xc





T

P





x̂p

xc



+ 2











x̂p

xc

e











T 









ΣAe +











P





Bo

Bc





0











+ATΣ +
1

2











KxC̄p

KcC̄p

C̄T
p KηC̄p





















e

+2(ϕ(τ)− 1)σTPcσ̇ − ξ|e|2

= −α̃





x̂p

xc





T

P





x̂p

xc



+ 2











x̂p

xc

e











T 









Z13

Z23

Z33











e+ κ(τ, ρ)xTΞx− ξ|e|2, (24)

where Zi3 i = 1, . . . , 3 are suitable matrices, Ξ := T̄−T
[

0 0 0
PcA21 PcA22 PcA23

0 0 0

]

T̄−1 is defined in such a way that xTΞx =

σTPcσ̇ and, from (18), κ(τ, ρ) = 2(ϕ(τ) − 1) satisfies 0 ≤ κ(τ, ρ) ≤ 2(exp(2ρλ)− 1), namely for any fixed value of λ,

κ(τ, ρ) can be made arbitrarily small by selecting ρ sufficiently small. Due to this fact, it follows that, once λ has been

fixed according to Case 1 above, it is possible to select ρ∗2 sufficiently small and ξ2 sufficiently large such that for all

ρ ∈ [0, ρ∗2], and ξ ≥ ξ2, inequality (24) implies

Ẇξ(x̄, τ) ≤ −
α̃

2
λmin(P )|x|2, ∀x s.t.

[

I 0 0
0 I 0
0 0 C̄p

]

x ∈ Fy, ∀τ ∈ [0, 2ρ].
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Finally, combining the studies in Cases 1 and 2 above, the proof of (21a) follows from picking ρ∗ = min{ρ∗1, ρ
∗
2},

ξ = max{ξ1, ξ2} and γ =
α̃

2
min{1, λmin(P )λmin(T

T
ζ Tζ)}. •

Proof of Theorem 4. Consider (16) and (18) and the following positive definite and radially unbounded Lyapunov

function candidate

W̄ξσ ,ξe(x̄, τ) := x̂T
p P̄px̂p + ξσϕ(τ)σ

T σ + ξee
TPee (25)

where ξσ > 0 and ξe > 0 are scalars (to be selected later) and Pe = PT
e > 0 is the solution of the Lyapunov equation

AT
e Pe + PeAe = −I. Pe always exists by Assumption 1 stating that Ae is Hurwitz. Note that from (18), it follows

that for all x̄ ∈ R
2np+nc and for all τ ∈ [0, 2ρ],

c1|x̄|
2 ≤ W̄ξσ ,ξe(x̄, τ) ≤ c2|x̄|

2, (26)

where c1 = min{λmin(P̄p), ξσ, ξeλmin(Pe)} and c2 = max{λmax(P̄p), ξσ exp(2λρ), ξeλmax(Pe)}.

The proof of the theorem is completed by following the same steps of the end of the proof of Theorem 3, using the

following claim, which corresponds to Claim 1 rewritten for the case addressed here. •

Claim 2 There exist positive numbers λ, ξσ and ξe, and a small enough ρ∗ such that for all ρ ≤ ρ∗ the function

W̄ξσ ,ξe in (25) satisfies, for some γ > 0,

˙̄Wξσ ,ξe(x̄, τ) < −γ|x̄|2 if Tζ x̄ ∈ Fy \ {0} or τ ∈ [0, ρ] (27a)

∆W̄ξσ ,ξe(x̄, τ) ≤ 0 if Tζ x̄ ∈ Jy \ {0} and τ ∈ [ρ, 2ρ], (27b)

where ∆W̄ξσ ,ξe(x̄, τ) := W̄ξσ ,ξe(x̄
+, τ+)−W̄ξσ,ξe(x̄, τ) and Tζ :=

[

I 0 0
0 I 0
0 0 C̄p

]

T̄ :=

[

I 0 0
0 I 0
0 0 C̄p

] [

I 0 0
Kp I KyC̄p

0 0 I

]

satisfies ζ = Tζ x̄.

◦

Proof of Claim 2 Equation (27b) follows trivially from noticing that the jump rule in (14) can be written as

x̄+ = [x̂+T
p σ+T e+T ]T = [x̂T

p 0T eT ]T and due to the block diagonal structure of W̄ξσ ,ξe in (25) we have W̄+
ξσ ,ξe

≤ W̄ξσ ,ξe

everywhere, because the second term becomes zero after the jump and the other terms remain unchanged.

To prove equation (27a), we compute the derivative of W̄ξσ ,ξe in two cases, corresponding to the two flow conditions

appearing in (27a). Then, we will combine the analysis of such cases to guarantee (27a).

Case 1: τ ∈ [0, ρ].

From the special structure of the dynamics in (16) and since equation (5) holds from Assumption 2, then, also using

the inequalities in (18) and the fact that τ̇ = 1 whenever τ ∈ [0, ρ], the time derivative of W̄ξσ ,ξe in (25) satisfies

˙̄Wξσ ,ξe(x̄, τ) = 2x̂T
p P̄p(Ap +BpKp)x̂p + 2x̂T

p P̄p(A12σ +A13e)− λξσϕ(τ)σ
T σ + 2ξσϕ(τ)σ

T σ̇ + 2ξee
TPeAee

≤ −α̃x̂T
p P̄px̂p − λξσσ

Tσ − ξee
T e+ 2











x̂p

σ

e











T 









0 P̄pA12 P̄pA13

ϕ(τ)ξσA21 ϕ(τ)ξσA22 ϕ(τ)ξσA23

0 0 0





















x̂p

σ

e











,(28)

where Aij , i = 1, . . . , 2, j = 1, . . . , 3 are taken from (16). Note that the first three terms of the last equation are negative

and that ξe, λξσ can be adjusted by choosing ξσ, ξe and λ in (25). In particular, since from (18) 1 ≤ ϕ(τ) ≤ exp(2λρ),
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then there exist positive numbers cσ1, cρ1 and ξe1 such that if

λξσ ≥ cσ1, λρ ≤ cρ1, ξe ≥ ξe1, (29)

then (28) implies:

˙̄Wξσ ,ξe(x̄, τ) ≤ −
α̃

2
|x̄|2, ∀x̄ ∈ R

2np+nc , ∀τ ∈ [0, ρ].

Case 2: Tζ x̄ ∈ Fy.

Using the flow set definition in (15a) and the equations in (18), we get for all Tζ x̄ = x ∈ Fy,

˙̄Wξσ ,ξe(x̄, τ) = 2x̂T
p P̄p(Apx̂p +Bpxc) + 2x̂T

p P̄pBoe− τ̇λξσϕ(τ)σ
T σ + 2ξσϕ(τ)σ

T σ̇ + 2ξee
TPeAee

≤





x̂p

xc





T 



−α̃P̄p 0

0 −ǫI









x̂p

xc



+











x̂p

xc

e











T 









KxC̄p

KcC̄p

C̄T
p KηC̄p











e+ 2x̂T
p P̄pBoe

+2ξσϕ(τ)σ
T σ̇ − ξe|e|

2

=





x̂p

xc





T 



−α̃P̄p 0

0 −ǫI









x̂p

xc



+ 2ξσϕ(τ)x
TΞx +











x̂p

xc

e











T 









Z13

Z23

Z33











e− ξe|e|
2, (30)

where Zi3 i = 1, . . . , 3 are suitable matrices, Ξ := T̄−T
[

0 0 0
A21 A22 A23

0 0 0

]

T̄−1 is defined in such a way that xTΞx = σT σ̇.

At the right hand side of (30) we find a first term providing good quadratic decrease in x̂p and xc, followed by a second

bad term which can be made arbitrarily small by choosing ξσ (and λρ too, due to the term ϕ(τ) – see (18)) small

enough, followed by two terms providing mixed and quadratic terms in e which can be dominated by selecting ξe large

enough. In particular, since ϕ(·) is bounded (see (18)), there exist positive numbers cσ2, cρ2 and ξe2 such that if

ξσ ≤ cσ2, λρ ≤ cρ2, ξe ≥ ξe2, (31)

then

˙̄Wξσ ,ξe(x̄, τ) ≤ −
1

2
min{α̃, ǫ}|x|2, ∀x̄ s.t.

[

I 0 0
0 I 0
0 0 C̄p

]

x ∈ Fy, ∀τ ∈ [0, 2ρ].

Now let us consider (29) and (31). To satisfy them both, so that the analysis in the two cases above holds, we can

select ξσ = cσ2, λ = cσ1

cσ2

, ξe ≥ max{ξ1e, ξ2e} and ρ∗ = cσ2

cσ1

min{cρ1, cρ2}. Then for any ρ ≤ ρ∗ (29) and (31) hold and

the proof of the claim holds too with γ = 1
2 min{α̃, ǫ}min{1, λmin(T

T
ζ Tζ)}. •

Proof of Proposition 1 Let us consider item 1. First note that due to the cascaded structure of the system, if

e(0, 0) = 0, then e(t, j) = 0 for all (t, j) ∈ dom(ξ). Therefore the observer dynamics does not affect the system and

it is sufficient to show that there exists ρ∗ > 0 such that all the solutions to the state-feedback hybrid closed loop

without dwell-time logic corresponding to [25, Proposition 1] automatically satisfy a dwell time of at least ρ∗, as long

as xp(0, 0) 6= 0, so that the dwell-time condition does not prevent any jump of the original state-feedback scheme.
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To prove this property, note that xp(0, 0) 6= 0 implies xp(t, j) 6= 0 for all (t, j) ∈ dom(ξ), indeed during flows xp

asymptotically converges to zero and during jumps it remains unchanged. Since xp is never zero, whenever a jump

occurs, so that (xp, xc) ∈ J , then (x+
p , x

+
c ) = (xp,Kpxp) belongs to the interior of F (due to the fact that α̃ ≤ α and

by the strict inequality in (5)), therefore from continuity it necessarily flows for some time tf (xp) which depends on

the plant state xp at the jump time. Since the dynamics is homogeneous and the flow and jump sets are symmetric

cones, then each response can be written as a scaled version of the response starting from the initial condition with

unit norm
xp

|xp|
. Due to this fact, we can compute

min
xp 6=0

tf (xp) = min
xp:|xp|=1

tf (xp) = tfm,

where we have tfm > 0 because the minimum is carried out over a compact set and tf (xp) > 0 for all xp 6= 0. Finally,

it is sufficient to pick ρ∗ ≤ tfm to obtain the result at item 1.

Consider now item 2 and note that, from item 1, any solution to the state feedback hybrid closed loop of [25]

is a solution to (13), (14) (resp. (8), (9)) starting from e(0, 0) = 0 and τ(0, 0) ≥ ρ. Therefore we prove this item

by only focusing on two solutions ξ◦ and ξ1 to (13), (14) (resp. (8), (9)), where ξ◦(0, 0) = (xp0, xc0, 0, τ0) and

ξ1(0, 0) = (xp0, xc0, e0, τ0). To this aim, we will first establish the result for the case |(xp0, xc0)| = 1 and then apply

homogeneity to extend it to the whole space.

First note that from global exponential stability of (13), (14) (resp. (8), (9)), uniform convergence implies that for

each ǫ > 0, ∃(Tǫ, Jǫ) ∈ R≥0 × Z≥0 such that for all solutions ξ := (x, τ) := (xp, xc, e, τ) to (13), (14) (resp. (8), (9))

|(xp0, xc0)| = 1

|e0| ≤ 1
⇒ |x(t, j)| ≤

ǫ

2
, ∀(t, j) ≥ (Tǫ, Jǫ), (t, j) ∈ dom(ξ). (32)

Moreover, since the hybrid systems (13), (14) (resp. (8), (9)) satisfy the fundamental conditions (A0)-(A4) of [17] and

are forward complete, given the two solutions ξ◦ = (x◦, τ◦), ξ1 = (x1, τ1) starting from the compact set |(xp0, xc0)| = 1,

|e0| ≤ 1 and τ0 ∈ [0, 2ρ] and given ǫ, Tǫ, Jǫ in (32), from [17, Corollary 4.8], there exists δN > 0 such that |e0| ≤ δN

implies that ξ◦ and ξ1 are (Tǫ, Jǫ, ǫ)-close. Outside the compact hybrid time domain (Tǫ, Jǫ), from (32), we get

|x◦(t, j)− x1(t, j)| ≤ |x◦(t, j)|+ |x1(t, j)| ≤ ǫ, ∀(t, j) ≥ (Tǫ, Jǫ).

Therefore, combining the two bounds above, we have

|(xp0, xc0)| = 1

|e0| ≤ δ
⇒ (x◦, x1) are ǫ-close, (33)

where δ := min{1, δN}. The proof is completed by extending the result to the whole space by using the homogeneity of

system (13), (14) (resp. (8), (9)). In particular, noticing that the x component of any solution ξ = (x, τ), starting from

ξ(0, 0) = (xp0, xc0, e0, τ0) with xp0 6= 0, can be written as ξ = (|(xp0, xc0)|xN , τ), with xN := x
|(xp0,xc0)|

= (xpN , xcN , eN )

satisfying |(xpN (0, 0), xcN (0, 0))| =
|(xp0,xc0)|
|(xp0,xc0)|

= 1 and |eN(0, 0)| = e0
|(xp0,xc0)|

, the bound in (33) implies that for any

|e0| ≤ |(xp0, xc0)|δ, the components x◦, x1 of ξ◦ and ξ1 (therefore, also their (xp, xc)-components) are ǫ|(xp0, xc0)|-close.

•
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5 Conclusions

The design problem of a hybrid stabilizing loop on a linear continuous-time control system has been considered. The

obtained closed-loop system has a mixed discrete/continuous dynamics depending on the value of the output of the

system. The hybrid controller is an output feedback since its dynamics depend only on the output of the system.

Moreover, it is based on the definition of a pre-computed static state feedback law and of a Luenberger observer

which are computed separately. It is known from [25] that, the pre-computed state feedback law allows to define a

hybrid feedback allowing to improve the performance (as the output overshoot, or a decreasing property of a given

Lyapunov-like function). To embed the estimate of the state given by the observer into the hybrid controller that

is computed in [25], a temporal regularization has been used as done in [13] for a different control problem. Some

simulations highlighted the interest of the results.

This work lets some questions open. In particular the generalization to nonlinear control systems could be interest-

ing and fruitful. This generalization may be possible by noting that the synthesis method of a hybrid controller of [25]

is also valid for nonlinear control systems. However some efforts should be done to adapt the temporal regularization,

inspired from [13], to the nonlinear control systems case.
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