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Method of determining the eigenfrequencies of an ordered system of nanoobjects

sizes of the array to study the properties of nanoobjects by finding the first eigenfrequencies of the nanoobjects-substrate system. It is shown that, from the spectrum of the large (nanoobjects-substrate) system, the eigenfrequencies of an individual nanoobject can be derived; that is, the eigenfrequencies of a single nanoobject can be determined from experimental data obtained for the big system.

The main problem arising in measuring the frequencies of nanoobjects mounted on an elastic substrate is that the eigenfrequencies of the system as a whole are distributed among its components-the phenomenon well known in mechanics [4]. The shift of the spectrum strongly depends on the parameters of the substrate and object. It is known that, in many-body systems with distributed parameters, the vibration of one body may be dynamically damped at the partial frequency of another body (antiresonance). It will be shown below that systems of highly ordered arrays of identical nanotubes or nanocrystals grown on a substrate (Fig. 1) may also exhibit antiresonance and that this effect can be used to extract the eigenfrequencies of the nanoobjects from the spectrum of the big system. The normal modes of the system shown in Fig. 1 can hardly be analyzed in terms of the 3D elasticity theory. Therefore, we will first consider a rod model of the big system where a horizontal rod represents a substrate and vertical rods simulate nanoobjects (Fig. 2). In terms of this model, the normal modes of an array of nanocrystals are analyzed and the feasibility to extract their eigenfrequency spectrum from the respective spectrum of the big system is demonstrated.

The array of nanocrystals assumed in this work is to a great extent similar to micro-and nanocrystals of semiconducting zinc oxide. Owing to their high mechanical and physical performance, such crystals are of considerable interest for nanomechanics and nanophotonics and can be fabricated by different techniques, pulsed laser evaporation among them [5][6][7]. Numerical analysis of the dynamics of such an array is the second stage of this study. The eigenfrequencies of an array of zinc oxide micro-or nanocrystals on a sapphire substrate are calculated in terms of the 2D problem of the elasticity theory. The calculation results also indicate the feasibility of extracting the spectrum of nanoobjects from the spectrum of the big system.

ANALYSIS OF THE MODEL PROBLEM

Let us apply the rod model to a big system consisting of a horizontal rod of length L depicting a substrate and N vertical rods of length H depicting nanoobjects (Fig. 2). The lower ends of the vertical rods are rigidly fixed to the horizontal rod and are spaced l apart, so that L = ( N + 1) l . The upper ends of the vertical rods are free, the horizontal rod is rigidly fixed at both ends. In what follows, the problem of free vibrations is solved in two, discrete and continuum, statements.

Discrete Model

Assume that the horizontal rod comprises N + 1 small rods of length l rigidly attached to one another. The dynamics of such a system is described by the equations of the classical rod theory,

(1) where u n and v n are the vertical and horizontal displacements of n th horizontal and vertical rods, respectively; C and D are the flexural rigidities of the horizontal and vertical rods, respectively; and ρ 1 and ρ 2 are the linear mass densities. The other values characterizing the state of stress of the rods are given by (2) Here, ϕ n and ψ n are the rotation angles of the rod's cross sections, M n and L n are the bending moments, and T n and N n are the shear forces. The vertical motion of the vertical rods is described by the equations (3) where w n are the vertical displacements of an n th vertical rod and F n are longitudinal forces. The kinematic conditions at the joints between the rods are (4) The force balance at the joints has the form
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The boundary conditions for the system are given by ( 6)

The analysis of the problem revealed two groups of solutions. The first one corresponds to the situation when the vertical rods move as cantilever beams. In this case, the vibration eigenfrequencies of the system can be determined from the equation ( 7)

The vibration amplitudes of the horizontal rods are small compared to those of the vertical rods. The ratio of these amplitudes is proportional to a small parameter, (

where h 1 and h 2 are the characteristic transverse sizes of the horizontal and vertical rods, respectively, with

h 2 / h 1 Ӷ 1.
The second group of solutions meets the situation when the system vibrates with frequencies close to those in the system without the vertical rods. In this case, the equations from which the eigenfrequencies of the system and the form of horizontal rod vibrations are found contain two small parameters, (9) which distinguish the frequencies and forms of vibration of the complete system from those of the system without the vertical rods. The vibration amplitudes of the vertical rods are small compared to the vibration amplitudes of the horizontal rods and their ratio is proportional to a small parameter, 
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situation is reverse. If µH/λL ~ 1, the first eigenfrequencies of the system include the eigenfrequencies of both the substrate and nanoobjects. The following estimate is valid:

(11)
All the above asymptotic estimates are made on the assumption that Young's moduli and the volume mass densities of the nanoobjects and substrate are of the same order of magnitude.

Continuum Model

Let us now assume that the horizontal rod is a single whole with the vertical rods rigidly mounted on it. Then, the kinematic conditions at the joints appear as (12) Solving Eqs. ( 1) and (3) of motion for the vertical rods subject to boundary conditions (6) at their free ends yields a relationship between the forces and displacements at the lower points of the rods, (13) where parameter g(µH) is given by ( 14)

The equations of motion for the horizontal rod have the form (15)

Eliminating shear force T and using the relationship of elasticity M = Cu, one can reduce Eqs. ( 15) to a single differential equation, ( 16) With regard to expressions ( 12) and ( 13), Eq. ( 16) takes the form ( 17)
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If the number of vertical rods is sufficiently large, they may be assumed to be continuously distributed over the length of the horizontal rod. Averaging the right-hand side of Eq. ( 17), we simplify the problem, reducing it to the equation ( 18)

The analysis of the continuum model showed that respective solutions can be divided into two groups, as in the case of the discrete model. The first type includes the vibrations at the frequencies defined by (7). In this case, according to (12), the condition ψ n | y = 0 = 0 is met; the vertical rods move as cantilever beams; and the vibration amplitudes of the horizontal rod are much smaller than those of the vertical rods. The second group of solutions embraces vibrations with frequencies close to the eigenfrequencies of the horizontal rod. Here, the vertical rods vibrate with amplitudes much smaller than those of the horizontal rod.

From the above considerations, it follows that, when the big system is treated in terms of the rod model, the eigenfrequencies of an individual nanoobject can be extracted from the spectrum of the whole system.

DYNAMICS OF THE NANOCRYSTAL ARRAY:

NUMERICAL ANALYSIS As an example of studying a real nanostructure, let us determine the eigenfrequencies of an array comprising ZnO micro-and nanocrystals. Owing to their high optical and mechanical properties, piezoelectric ZnO single crystals hold much promise for nanoelectronics and nanophotonics, in particular, for the production of UV lasers, chemical and biological sensors, solar cells, UV detectors, and other devices. Currently, ZnO single nanocrystals are obtained by thermal evaporation, chemical vapor deposition, pulsed laser deposition, etc. Nanocrystals thus grown are 1.5-3.0 µm high and 30-
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 u ˙+ 0 . = 100 nm in diameter, and microcrystals are 20-100 µm high and 1.0-3.0 µm in diameter.

From the standpoint of continuum mechanics, an array of nanocrystals fixed on a substrate represents a composite piezoelectric body. In the electrostatic approximation and in the absence of mass forces, the basic equations of the electroelasticity theory have the form

[8-10] (19) (20) (21)
Here, u is the displacement vector, E is the electric field strength expressed in terms of potential ϕ, s is the stress tensor, D is the electric induction vector, e is the strain tensor, ∇ is the gradient operator, ρ is the density, C is the rigidity matrix, and e and ⑀ are the piezoelectric and dielectric constants.

Equations ( 19)-( 21) should be complemented by boundary conditions. Let surface Γ of the body consist of two parts, Γ = Γ 1 ∪ Γ 2 , with Γ 1 ∩ Γ 2 = ∅. Let displacements u 0 are set on part Γ 1 and forces f on part Γ 2 . In this case, the boundary conditions are given by ( 22) For a piezoelectric system, along with mechanical boundary conditions ( 22), one should specify electrical boundary conditions. Let Γ = Γ 3 ∪ Γ 4 (Γ 3 ∩ Γ 4 = ∅), with electric potential ϕ 0 and surface charge q set on Γ 3 and Γ 4 , respectively. Then, we have (23) For nonstationary processes, boundary-value problem stated by ( 19)-( 23) should also include initial conditions for the displacement field.

We will tackle a plane problem. Modal analysis of Eqs. ( 19)-( 23) with appropriate boundary conditions for ZnO crystals on a sapphire substrate was performed with the use of the ACELAN finite-element package [11][12][13]. Consider the finite-element approximations of the ACELAN packet for field equations ( 19), relationships ( 20) and ( 21), and different types of boundary conditions ( 22) and ( 23).

The finite-element approximation of the problem of acoustoelectric elasticity leads to a set of ordinary differential equations [11],

(24) where a is the vector of nodal degrees of freedom, M and K are the mass and rigidity matrices, and N u and N ϕ are shape functions. Matrix M uu represents the inertial properties of the medium, and matrices K uu , K uϕ , and K ϕϕ characterize its elastic, piezoelectric, and dielectric properties, respectively. Vectors F u and F ϕ take into account mechanical and electrical actions at the domain boundary.
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After substitution of a = Ae iωt into Eq. ( 24), the modal analysis of boundary problem ( 19)-( 23) for the ZnO crystal array on the sapphire substrate in terms of the ACELAN package is reduced to a generalized equation in eigenvalues [11],

From a numerical experiment, we obtained the eigenfrequencies of a cantilever-mounted ZnO nanocrystal 1 µ m in height (height-to-diameter ratio h/d = 10). The parameters of the ZnO single crystals and sapphire substrate were taken from [14]. The results of calculation are listed in Table 1.

In the model, the substrate was taken in the form of a rectangular sapphire microcrystal (10 × 20 µm) fixed on its large side. The results of the modal analysis of this crystal are presented in Table 2 (columns 2 and4). The big system comprised the sapphire crystal with eight identical nanocrystals mounted on its free large side. The results of the modal analysis for such a big system are also listed in Table 2 (columns 1 and 3). Some of the eigenmodes are shown in Fig. 3. Figure 3a depicts the waveform of the first flexural mode. The kinematic analysis of the waveforms corresponding to the next eight eigenfrequencies indicates that the motion of the big system is localized in a nanocrystalline "brush" (Fig. 3b) and the vibration waveforms of the nanocrystals meet the first eigenfrequency presented in Table 1. The vibration frequencies of the set of nanocrystals differ from the frequency of a single nanocrystal by less than 4%. Near the second eigenfrequency of an individual nanocrystal (Table 2), the big system behaves in a similar way, as illustrated in Fig. 4, where plateaus of the curve corresponds to the eigenfrequencies of a nanocrystal.

Thus, the eigenfrequency spectrum of the big system can be approximated by a combination of the eigenfrequencies of the substrate and those generated by one nanocrystal. This conclusion is consistent with analytical calculations in terms of the rod model.

DISCUSSION

The method proposed enables an accurate experimental determination of the first eigenfrequencies of a single nanoobject from the spectrum of the nanoarraysubstrate system and the spectrum of the substrate alone. The method is especially efficient in the case
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when the first eigenfrequencies of nanoobjects are comparable to the first eigenfrequencies of the substrate (as they are in the example considered in this study). The main factor limiting the applicability of the method is the frequency range of measuring devices: the frequencies of nanoobjects may be too high to be detected.

Along with further refinement of this method, which determines the mechanical characteristics of nanocrystals by comparing the spectrum of the substrate with the spectrum of the nanoarray-substrate system, one may also take advantage of the fact that the eigenfrequencies of such a system are highly sensitive to its mechanical 
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 1 Fig. 1. Big system: an array of nanocrystals or nanotubes on a substrate.
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 2 Fig. 2. Rod model.

  λ L and µH (here, λ = ), one can determine the mutual position of the spectra of the substrate and nanoobjects. The first eigenfrequencies of the substrate correspond to λL ~ 1; the first eigenfrequencies of the nanoobjects, to µH ~ 1. If µH/λL Ӷ 1, the first eigenfrequencies of the nanoobjects are considerably lower than those of the substrate; if µH/λL ӷ 1, the
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 3 Fig. 3. Eigenmodes (a) due to the substrate and (b) localized in the nanocrystal array.

Table 1

 1 No.

	Eigenfrequencies		
	of individual	Modes
	nanocrystal, GHz		
	1	0.10797	First flexural mode
	2	0.67763	Second flexural mode
	3	1.92039	Third flexural mode
	4	3.48340	First longitudinal mode
			(extension-compression)
	5	3.83993	Fourth flexural mode
	Table 2			
	Eigenfre-	Eigenfre-	Eigenfre-	Eigenfre-
	quencies of	quencies of	quencies of	quencies of
	big system,	substrate,	big system,	substrate,
	GHz	GHz	GHz	GHz
	0.036494	0.036594	0.611800	0.614194
	0.103909		0.63879	
	0.103971		0.650301	
	0.104039		0.650491	
	0.104106		0.650885	
	0.104226		0.651087	
	0.104322		0.651771	
	0.104467		0.652115	
	0.104612		0.653619	
	0.134652	0.134973	0.673730	0.675596
	0.136246	0.136017	0.693176	0.689642
	0.280004	0.280137	0.714337	0.713020
	0.350831	0.352308	0.715752	0.715594
	0.399614	0.400228	0.752689	0.750820
	0.458963	0.461709	0.796596	0.797104
	0.468378	0.469073	0.825551	0.828275
	0.510692	0.512042	0.833135	0.833899
	0.533656	0.535745	0.895234	0.905771
	0.554328	0.560235	0.927530	0.927179
	0.581777	0.586277	0.938998	0.940679