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Static Anti-windup Scheme for a Class of Homogeneous Dwell-time

Hybrid Controllers

Francesco Fichera, Christophe Prieur, Sophie Tarbouriech and Luca Zaccarian

Abstract— In this paper, some tools for the analysis of a
class of hybrid control systems for a continuous-time plant with
input magnitude saturation are presented. We show that certain
continuous-time LMI-based techniques can be extended to this
setting when a dwell-time property is satisfied by the hybrid
loop. Moreover, for the case in which the hybrid controller
has the same order as the plant, the synthesis of a static direct
linear anti-windup (DLAW) compensator is proposed. The need
of including the flow and jump sets in the analysis and synthesis
conditions leads to LMIs for global results, that is, when the
plant is exponentially stable and BMIs otherwise.

Index Terms—Hybrid controller, saturation, anti-windup, L2

gain

I. INTRODUCTION

Hybrid control theory has attracted several work in order to
provide more flexible stabilizing and performing controllers.

Such controllers suitably combining continuous and discrete
dynamics have been capable to robustly stabilize nonlinear

systems, which are not stabilizable by smooth feedback

[11], [17]. In [14] promising performance analysis for some
specific hybrid systems have been presented with respect

to rise-time, overshoot, settling-time. In [16], it is shown

that the desirable closed-loop behavior may be induced by
resetting the controller according to an optimal reset law.

Also in [18], optimal techniques for overshoot reduction

and maximization of the decay rate have been presented.
Furthermore, by adding a dwell-time structure in the hybrid

controller, further flexibility can be used to establish global

exponential stability of the origin, [4], [24]. Recently in [2],
a convex H∞ synthesis of a plant-order hybrid controller

with guaranteed convergence rate was proposed.

Another important feature is actuator saturation, which is

present in all control systems. The magnitude of the signal
that an actuator can deliver is usually limited by physical or

safety constraints. While these limits restrict the performance

achievable by the systems, if these limits are not treated
carefully, pernicious behaviors may occur. Roughly speaking,

there are two approaches which one could adopt to avoid

saturation problems in systems which are known to have
actuator limits (see, for example, [21] and references therein).

In the current paper, the selected approach is the anti-windup

technique, whose general principle is the introduction of
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an extra feedback loop in a pre-designed control system to

mitigate the effects caused by saturation [6], [20], [23], [26].

The current paper proposes preliminary results for a class

of hybrid systems with dwell-time logic subject to input

magnitude saturation. Such class includes (but not only)
hybrid control systems of interest as the ones in [2]–[4] as

well as the ones employing a FORE controller as in [14],
[15], [25]. Therefore this paper allows the estimate of the

region of attraction and the L2-gain estimation once that

saturation is taken into account. Regarding the synthesis, the
strategy chosen consists in designing a static anti-windup

compensator to recover the performance of the pre-designed

unconstrained hybrid control system. The synthesis results
rely on the strong hypothesis that the controller is plant order.

To date, the only optimal syntheses of a plant-order hybrid

controller are proposed in [2], [19], therefore the result in
here for the synthesis can straightforwardly be applied to

those cases. Nevertheless we stress that as long as the plant

and the unconstrained hybrid controller have the same order,
the anti-windup synthesis in this paper can be applied. The

conditions allowing to prove the global exponential stability

of the complete closed loop are under an LMI form for
exponentially stable plants. On the other hand, for local

(regional) exponential stability, the conditions are BMIs.
Within the literature, we mention [22], where anti-windup

strategies were proposed for SISO systems with a FORE

controller. Although the results here cover a wider class
of hybrid systems, we stress that the strategies adopted to

describe the hybrid loops are different in the two papers,

yielding to different conditions whenever the results in here
are applied to a SISO plant controlled by a FORE controller.

In this sight, this paper completes [22], with alternative

conditions. Notice that both this paper and [22] present in
some cases BMIs, due to the complexity of the problem.

The paper is structured as follows. In Section II, the
control architecture under consideration and the assumptions

are stated. Section III presents the main results regarding

both stability and performance analysis of the closed loop
and the procedure to design static anti-windup gains. In

Section IV, a simulation is performed illustrating the interest

of the results. A conclusion and some open questions are
finally presented in Section V.

Notation. Given a vector x, xT denotes the transpose of
x. R denotes the set of real numbers, R≥0 denotes the set of

non-negative real numbers. For a matrix M , He(M) = M +
MT . For a positive integer n, In (respectively, 0n) denotes
the identity matrix (respectively, the null matrix) in R

n×n.

The subscripts may be omitted when there is no ambiguity.

For any s ∈ R, the function dz : R → R is defined by



dz(s) = 0 if |s| ≤ 1 and dz(s) = sgn(s)(|s| − 1) if |s| ≥ 1.
Given the vector ū = [ū1, . . . , ūnu

]T ∈ R
m with ūi > 0,

i = 1, . . . , nu, the saturation function is defined as

satūi
(ui) :=







ūi, ui ≥ ūi,
ui, ui ∈ [−ūi, ūi],

−ūi, ui ≤ −ūi

and sat(u) =
[

satū1
(u1) . . . satūm

(um)
]T

, while q =
u− sat(u).

II. PROBLEM STATEMENT

We consider the linear time-invariant plant P

ẋp = Āpxp + B̄pσ + B̄ww
z = C̄zxp + D̄zσ + D̄zww

y = C̄pxp + D̄pσ + D̄ww
(1)

with xp ∈ R
np the state of the plant, σ ∈ R

nu the

control input subject to saturation nonlinearity, w ∈ R
nw

an exogenous signal, z ∈ R
nz the performance output and

y ∈ R
ny the measured output.

With reference to Figure 1, we assume that for the

continuous-time plant P in (1) a hybrid controller K has
been designed corresponding to the following dynamics with

x = (xp, xc)
{

ẋc = Ācxc + B̄cy + B̄cww + v1

τ̇ = 1− dz
(

τ
ρ

)

(x, τ) ∈ C

{

x+
c = Gpxp +Gcxc

τ+ = 0
(x, τ) ∈ D

u = C̄cxc + D̄cy + D̄cww + v2

(2a)

with xc ∈ R
nc , u ∈ R

nu , vi = 0, i = 1, 2 (those inputs will
be used later for anti-windup design). The sets C and D in

(2a) are selected based on the following symmetric cones,

defined by the matrix M = MT ∈ R
(np+nc)×(np+nc)

F =
{

x ∈ R
np+nc : xTMx ≤ 0

}

, (2b)

J =
{

x ∈ R
np+nc : xTMx ≥ 0

}

. (2c)

In particular, we choose

C =
(

F × [0, 2ρ]) ∪ (Rnp+nc × [0, ρ]
)

,

D = J × [ρ, 2ρ],
(2d)

which can be equivalently written as (see [4], [14], [15], [25]
for results using the notation in (2e))

C = {(x, τ) : x ∈ F or τ ∈ [0, ρ]} ,

D = {(x, τ) : x ∈ J and τ ∈ [ρ, 2ρ]} .
(2e)

We make the following standing assumptions.

yu sat(u)
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-
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Fig. 1. The classical anti-windup compensation scheme.

Assumption 1: For system (2), the reset map G and the
flow and jump sets F and J in (2b) and (2c), are such that

∀x ∈ J =⇒ Gx ∈ F . ◦
Assumption 2: The hybrid unconstrained closed loop be-

tween controller (2) with (v1, v2) = 0 and plant (1) with
σ = u is well posed (namely, (I − D̄cD̄p) is non-singular)

and its origin is GES. ◦
Remark 1: Note that using [24, Proposition 1] due to ho-

mogeneity, the GES property of Assumption 2 is guaranteed

under the weaker assumption that the origin is LAS. ⋆
Note that C ∪ D = R

(np+nc)×(np+nc) × [0, 2ρ] and the
system data satisfy the basic closed-loop conditions of [8]

so that solutions exist for all initial conditions of (xp, xc)
and for all initial values in [0, 2ρ] for the timer τ .

As noted in [1, Proposition 1.1], the dynamics of the timer
τ in (2a) and the jump set in (2d) ensure that each pair of

consecutive jumps is spaced by at least ρ amount of flow

in the ordinary time direction. More precisely, and using the
hybrid systems framework of [7], [8], each solution ξ =
(x, τ) to (1)-(2) has a hybrid domain E = dom(ξ) such

that any two elements (t, j), (s, k) of E with t > s satisfy
t− s ≥ ρ(j − k).

In this paper we will propose anti-windup techniques

to recover possible stability and performance loss when

saturation occurs at the plant input, namely σ = sat(u).
More specifically, sat(·) is the symmetric vector saturation

function with limits ū = [ū1, . . . , ūnu
]T 1. We will use inputs

v1, v2 to design regional and global direct linear anti-windup
(DLAW) following similar tools to those currently available

for linear control systems (see [6], [20], [26]). To this aim,

the above commented dwell time is a fundamental property
that motivates the use of ordinary-time L2 norm (just as in

[2], [5], [15]) defined as2

‖ξ‖2t =





∑

j∈domj(ξ)

∫ tj+1

tj

|ξ(t, j)|2dt





1
2

, (3)

(with tj+1 possibly being ∞ if (j + 1) -∈ domj(ξ)) where

domj(ξ) = {j ∈ N : (t, j) ∈ dom(ξ) for some t ≥ 0}. The

definition in (3) essentially corresponds to the continuous-
time L2 norm of the continuous-time signal ξt(t) obtained

by projecting on the ordinary time the dwell-time hybrid
signal ξ(t, j). Note that when the hybrid signal ξ only flows,

that is dom(ξ) = [0, +∞)×{0}, then (3) corresponds to the

standard continuous-time L2 norm. Note also that (3) is not a
norm because, for example, a solution ξ starting at a nonzero

position and jumping to zero at (t, j + 1) = (0, 1) would

satisfy ‖ξ‖2t = 0. Nevertheless we call it norm through the
paper due to the intuition that it generalizes the continuous-

time norm.

Controller (2) for plant (1) with σ = u (namely, con-

sidering the unconstrained case) may arise from many hy-
brid control scheme designs. In particular, it includes all

1Only symmetric saturation functions with respect to the amplitude of
the signal u will be considered. Nevertheless asymmetric saturations can
be treated with the methods here introducing some conservativeness by
selecting ūi as the minimum absolute value of the negative and positive
saturation levels.

2For a summary of the notation used here, the reader is referred to [7],
or the summary in [2].



the controllers in our previous works [2]–[4], as well as
the FORE controller architecture, see [14], [15], [25]. The

analysis and synthesis tools that will be presented in the

sequel can certainly be applied to all these schemes and this
justifies the interest for the results here presented.

III. STATIC ANTI-WINDUP SYNTHESIS

A. Overview

In this section we will use DLAW techniques to recover
stability and performance by way of a static anti-windup gain

which will use inputs v1 and v2 in (2), namely we will only

affect the flow dynamics of the control scheme. To this aim,
it will be useful to characterize in a compact way the closed

loop (1)-(2) with no anti-windup, namely with (v1, v2) = 0.

The resulting dynamics is given by

{

ẋ = Ax+Bqq +Bww

τ̇ = 1− dz
(

τ
ρ

)

(x, τ) ∈ C

{

x+ = Gx
τ+ = 0

(x, τ) ∈ D

u = Cux+Duqq +Duww
z = Czx+Dzqq +Dzww

q = u− sat(u)

(4)

with x = [xT
p xT

c ] ∈ R
n, sets C and D defined as in (2e) and

where, defining χ := (I − D̄cD̄p)
−1 (which is well defined

from Assumption 2),









A

G

Cu

Cz









=

















Āp + B̄pχD̄cC̄p B̄pχC̄c

B̄c(C̄p + D̄pχD̄cC̄p) Āc + B̄cD̄pχC̄c

I 0
Gp Gc

χD̄cC̄p χC̄c

C̄z + D̄zχD̄cC̄p D̄zχC̄c

















,

(5a)





Bq Bw

Duq Duw

Dzq Dzw



=









−B̄pχ B̄pχΞd+B̄w

−B̄cD̄pχ B̄cD̄pχΞd+B̄cD̄w+B̄cw

I − χ χΞd

−D̄zχ D̄zχΞd+D̄zw









,

(5b)

with Ξd := D̄cD̄w+D̄cw.

Based on (3), we will denote by t-L2 gain from w to
z the worst case ratio between ‖z‖2t and ‖w‖2t over all

w such that w ∈ t-L2 (that is ‖w‖2t < ∞) whenever

(4) starts from zero initial condition (namely, x(0, 0) = 0).
To suitably characterize anti-windup performance, the t-L2

gain of system (4) from w to z will be considered as a

performance index. In addition to the t-L2 gain, we will
also characterize the reachable set and domain of attraction

of the closed loop, as specified in the next section. We will
also use the exponential stability property for hybrid systems,

see [24].

B. Analysis

The following problems will be addressed for system (4)

in this section:

1. Estimate of the domain of attraction (w = 0) by using
a forward invariant ellipsoid E(s−2P ) := {x : xTPx ≤
s2}.

2. Estimate of the reachable set from a given bound on the
norm of w (i.e., ‖w‖2t < s) and zero initial condition.

3. Estimate of the nonlinear t-L2 gain from w to z from the
same bound on the norm of w and zero initial condition.

The following result generalizes [12, Lemma 1], to the hybrid

case considered here.

Proposition 1: Consider system (4) under Assumption 13.

1. If there exist P = PT > 0, H ∈ R
nu×n, a diagonal

matrix W > 0, a positive real scalar s and non-negative

scalars τF , τR ∈ R≥0 such that

He

([

PA− τFM PBq

WH +WCu WDuq −W

])

< 0, (6)

GTPG− P + τRM ≤ 0, (7)
[

P HT
i

Hi
ū2
i

s2

]

> 0, ∀i = 1, . . . , nu, (8)

with Hi denoting the i-th row of H , then there exists

ρ > 0, such that for any ρ ∈ (0, ρ), the set {0} × [0, 2ρ]
of system (4) is exponentially stable with stability region

containing the set E(s−2P )× [0, 2ρ].
2. If there exist P = PT > 0, H ∈ R

nu×n, a diagonal
matrix W > 0, a positive real scalar s and non-negative

scalars τF , τR ∈ R≥0 satisfying (7), (8) and

He









PA− τFM PBq PBw

WH +WCu WDuq −W WDuw

0 0 − 1
2I







 < 0,

(9)
then there exists ρ > 0, such that for any ρ ∈ (0, ρ),
ξ(0, 0) = (x(0, 0), τ(0, 0)) ∈ {0}×[0, 2ρ] and ‖w‖2t ≤ s,

all solutions to (4) satisfy ξ(t, j) ∈ E(s−2P )× [0, 2ρ] for
all (t, j) ∈ dom ξ.

3. If there exist P = PT > 0, H ∈ R
nu×n, a diagonal

matrix W > 0, positive real scalars γ̄, s and non-negative
scalars τF , τR ∈ R≥0 satisfying (7), (8) and

He

















PA− τFM PBq PBw 0
WH +WCu WDuq −W WDuw 0

0 0 − 1
2I 0

Cz Dzq Dzw − γ̄2

2 I

















<0,

(10)
then for any γ satisfying

γ ≥ γ̄, γ >

√

3|Dzw|2 + 24
|Dzq|2|WDuw|2

λmin(Σ)
, (11)

with Σ := −He(W (Duq − I)), there exists ρ > 0, such

that for any ρ ∈ (0, ρ), ξ(0, 0) = (x(0, 0), τ(0, 0)) ∈
{0} × [0, 2ρ] and ‖w‖2t ≤ s, all solutions to (4) satisfy

‖z‖2t ≤ γ‖w‖2t, namely the t-L2 gain from w to z is

less than or equal to γ.

!

3Note that Proposition 1 holds for any system (4) with flow and jump
sets (2e) satisfying Assumption 1, disregarding the definitions in (5). Indeed
Proposition 1 refers to a wider class of hybrid systems than the one we are
addressing for the purpose here.



Item 3 of Proposition 1 implies the previous two items
and their implications (the same for item 2 with respect to

item 1). It is possible to solve conditions in Proposition 1

by maximizing s to enlarge the domain of attraction or, for
a given s, minimizing γ.

Conditions in (11) are needed in item 3 to guarantee that
ρ exists strictly positive. Although it may look complicated

at first sight, it is enough to compare a posteriori γ̄ with the

square root in the second hand term of the latter in (11). If
γ̄ is larger, then we can select γ = γ̄, otherwise we select γ
larger but arbitrarily close to the value of the square root in

the second condition in (11).

Constraints (6), (9) and (10) are not LMIs due to the

product between W and H . Nevertheless, this nonlinearity
only appears if one seeks for regional solutions as clarified

in the corollary below. The BMIs for the regional analysis

arise from the fact that since (4) is hybrid, it is convenient
(and sometimes necessary) to consider the flow and jump

sets by taking the matrix M (namely, (2b) and (2c)) into

account through two non-negative variables τF and τR. This
requires a different proof technique than the one for the

linear case (see for instance [9]) which would return stronger

nonlinearities also for the global case.

Corollary 1: Consider system (4) under Assumption 1. If

there exist P = PT > 0, a diagonal W > 0 and non-negative
scalars τF , τR ≥ 0 satisfying (6) and (7) with H = 0, then

1. the set {0} × [0, 2ρ] of (4) is GES;

2. there exists a large enough γ̄ satisfying (10) with H = 0,

and the t-L2 gain of (4) from w to z is less than or equal
to γ, selected according to (11), for all w ∈ t-L2.

.

C. Static DLAW synthesis

In this section we design a linear static DLAW controller

with full authority or external architecture (see [26, Sec-

tion 2.3.6]) for the interconnection (1)-(2) with σ = sat(u).
The proposed technique only applies to the case where the

controller has the same order as the plant. Indeed, only in

this case it is possible to apply non trivial transformations
and provide tractable numerical techniques for the design

(LMIs for global properties and BMIs for regional ones).

Nevertheless in [2], [19] optimal syntheses for unconstrained
plant-order hybrid controllers have been proposed, therefore

the results in these section can directly be applied to those

techniques.

According to Figure 1, the anti-windup compensator AW
generates correction signals v corresponding to

[

v1
v2

]

=

[

B̄cv 0
D̄cv I

]

Dawq, (12)

where the two matrices B̄cv and D̄cv characterize the specific

AW architecture. In particular, for sake of generality, we will

carry out computations that cover the following two cases
(see also [26, Section 2.3.6])

• full-authority anti-windup with B̄cv = Inc
and D̄cv = 0

(namely, v1 ∈ R
nc and v2 ∈ R

nu);

• external anti-windup with B̄cv = B̄c and D̄cv = D̄c

(namely, v1 ∈ R
ny and v2 ∈ R

nu ).

Note that in the sequel the AW architecture is supposed to
be known.

The static DLAW (12) for the hybrid saturated closed loop

results in a very simple anti-windup action only consisting of

an additional gain and without requiring any extra dynamics.
However, there are stringent conditions that need to be sat-

isfied for this synthesis to be feasible, which are formalized

next.

Assumption 3: Controller (2) is plant order, namely nc =
np. Moreover, the closed-loop (1)-(2) with σ = u is quadrat-

ically stable, namely there exists P̄ = P̄T > 0, τF , τR ≥ 0
such that

He(P̄A− τFM) < 0, (13a)

GT P̄G− P̄ + τRM ≤ 0. (13b)

◦
The requirements in Assumption 3 clearly restrict the set

of control systems where we can apply the techniques of this
section. Note however that the control designs of [2], [19]

satisfy the requirement nc = np. Moreover, the necessary

conditions (13) are stronger than the GES requirement in
Assumption 2 (or its relaxation to LAS in Remark 1). Indeed,

it is well known that for homogeneous hybrid systems LAS

of the origin does not imply the existence of a quadratic
Lyapunov function (see, e.g., the counter example in [25,

Section 4.1]). Note also that conditions (13) are not yet

sufficient for the existence of an anti-windup gain, indeed
extra matching conditions similar to those reported in [9],

[13] need to hold for feasibility of static anti-windup.

We can write the anti-windup closed-loop dynamics (1),

(2), (12) and σ = sat(u) as follows (recall that x =
[xT

p xT
c ]

T )
{

ẋ = Ax+ (Bcl,q +Bcl,vDaw)q +Bww

τ̇ = 1− dz
(

τ
ρ

)

(x, τ) ∈ C

{

x+ = Gx
τ+ = 0

(x, τ) ∈ D

u = Cux+ (Dcl,uq +Dcl,uvDaw)q +Duww

z = Czx+ (Dcl,zq +Dcl,zvDaw)q +Dzww
(15)

where A, G, Cu, Cz , Bw, Duw, Dzw, χ, C and D are the

same as those in (2), (5) and





Bcl,q Bcl,v

Dcl,uq Dcl,uv

Dcl,zq Dcl,zv



=











−B̄pχ B̄pχD̄cv B̄pχ

−B̄cD̄pχ B̄cv + B̄cD̄pχD̄cv B̄cD̄pχ

I − χ χD̄cv χ

−D̄zχ D̄zχD̄cv D̄zχ











.

Notice that χ is non-singular due to Assumption 2 and that

system (15) has the same structure as in (4).

Based on the above definitions we can state the following

feasibility theorem, which uses equations (14) at the top of
the page. If the conditions of Theorem 1 hold, than an anti-

windup compensator can be designed using the procedure

given at the end of the section.

Theorem 1: Consider (1)-(2) with σ = sat(u) under

Assumptions 1, 2 and 3 and denote M :=
[

M1 M2

MT
2 M3

]

. Select

s > 0 and two sets Rp = E(Rp) = {xp : xT
p Rpxp ≤ 1} and



He









(P1 − P2)(Āp − B̄p(H1 −H2))−
τF
2 (M1 −MT

2 −M2 +M3) (P1 − P2)B̄w 0
0 − 1

2I 0

C̄z − D̄z(H1 −H2) D̄zw − γ̄2

2 I







 < 0 (14a)

He









PA− τF
2 M PBw 0

0 − 1
2I 0

Cz Dzw − γ̄2

2 I







 < 0 (14b)

Sp = E(Sp) = {xp : xT
p Spxp ≤ 1}, where Rp = RT

p > 0
and Sp = ST

p > 0.

If there exist P = PT :=
[

P1 P2

P2 P2

]

> 0, H := [H1 H2 ],
γ̄2 > 0 and τF , τR ≥ 0 such that (7), (8), (14) and s2Rp ≤
P1 ≤ s2Sp are satisfied, then there exist ρ > 0 and a static

anti-windup compensator such that, for any ρ ∈ (0, ρ):

a. the set {0}× [0, 2ρ] is exponentially stable with basin of

attraction E(s−2P )× [0, 2ρ],
b. the basin of attraction in the xp-direction includes Sp,

c. the reachable set from ‖w‖2t ≤ s, in the xp-direction is

included in Rp,

d. the t-L2 gain from w to z less than or equal to γ, selected

according to (11), for all w such that ‖w‖2t ≤ s.

!

Condition s2Rp ≤ P1 (respectively, s2Sp ≥ P1) can be

ignored if set Rp (respectively, Sp) is not given. Moreover,
Theorem 1 can be solved minimizing γ̄2, returning an

optimal static anti-windup compensator with optimized t-L2

gain, or minimizing s−2 to enlarge the basin of attraction.

Remark 2: Note that (7), (8) and (14b), are LMIs, whereas

(14a) is a BMI whenever H -= 0 (that is, regional synthesis).
As already said for the analysis, such difficulty with respect

to the linear case comes from the fact that the flow and jump

sets have to be taken into account. ⋆

The following corollary parallels Corollary 1 in illustrating

that the BMI conditions of Theorem 1 become LMIs if one

focuses on global properties.

Corollary 2: Consider (1)-(2) with σ = sat(u) under

Assumptions 1, 2 and 3 and denote M :=
[

M1 M2

MT
2 M3

]

.

If Āp is Hurwitz and there exist P = PT :=
[

P1 P2

P2 P2

]

> 0,

γ̄2 > 0 and τF , τR ≥ 0 such that (7), (14) are satisfied with

H = [H1 H2] = 0, then there exist ρ > 0 and a static anti-

windup compensator such that for any ρ ∈ (0, ρ):

1. the set {0} × [0, 2ρ] is GES;

2. the t-L2 gain from w to z is less than or equal to γ,
selected according to (11), for all w ∈ t-L2.

.
Corollary 2 is relevant because with H = 0, (14a) becomes

an LMI and the synthesis of a static anti-windup compensator

can be achieved with convex tools.

As customary with LMI-based designs arising from the

two-step approach exploiting the elimination lemma, once

the feasibility conditions of Theorem 1 or Corollary 2 have
been solved, an anti-windup compensator can be designed

according to the following procedure.

Procedure for static ant-windup synthesis

Step 1: Find a solution P , H , τF , τR, γ̄, γ to the conditions

in Theorem 1 (respectively, Corollary 2).

Step 2: Solve

He

















PA− τF
2 M PBcl,qU PBw 0

H + Cu Dcl,uqU − U Duw 0
0 0 − 1

2I 0

Cz Dcl,zqU Dzw − γ̄2

2 I

















+He













PBcl,v

Dcl,uv

0
Dcl,zv






Λ
[

0 Inu
0 0

]






< 0, (16)

in the unknown U and Λ, where U is diagonal and positive
definite.

Step 3: Select Daw = ΛU−1. ◦

Remark 3: Practical experience on a few examples in-

dicates that condition (7) may be numerically difficult to
satisfy. Indeed, it seems that the non-strict inequality is only

solved by the special case where the left hand side of (7)

has zero eigenvalues, thus leading to a “thin” feasibility set
and inevitable troubles encountered by the LMI solver. A

possible workaround to this issue may be to strengthen the

flow condition and allow increase in the jump condition,
which is probably possible due to the presence of dwell time

(see [7, Proposition 3.29]). Then condition (7) would become
strict and easier to solve. We regard this extension as future

work. ⋆

IV. SIMULATIONS

The synthesis of a DLAW compensator for a hybrid

system is presented. In particular, we consider the linear

MIMO plant, used also in [10], [26],

[

Āp B̄p

C̄p D̄p

]

=







−0.01 0 1 0
0 −0.01 0 1

−0.4 0.5 0 0
0.3 −0.4 0 0






.

Note that Āp is Hurwitz. For our purpose here, we design
a hybrid controller with the optimal control technique pre-

sented in [2]. To do this, we complete the definition of the

plant (with respect to (1)) by selecting B̄w = B̄p, D̄zw = I ,
C̄z = C̄p, D̄z = I and D̄w = 0.

The obtained optimal hybrid controller is

[

Āc B̄c

C̄c D̄c

]

=







−21.9488 1.3106 −807.10 −1014.55
2.6550 −23.4515 −590.54 −783.46
7.6418 −1.2505 267.15 332.069
−1.2505 8.0351 191.03 257.877






,

[

Gp Gc

]

=

[

0.86965 0.13213 0 0
0.13517 0.80854 0 0

]

,
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Fig. 2. Input and output responses of various hybrid closed loops.

M=







−19.2737 21.1029 10.4660 −11.4944
21.1029 −27.9232 −11.6764 15.2506
10.4660 −11.6764 2.06 · 10−8 0
−11.4944 15.2506 0 2.06 · 10−8






,

with B̄cw = 0, D̄cw = 0 and ρ = 5 ·10−3. The optimal t-L2

gain from w to z is less than or equal to γ = 1. Figure 2

shows the behavior of the unconstrained interconnection (that
is, σ = u) of P and C with (v1, v2) = 0.

Consider now the presence of an actuator with saturation

level for each input at ±1. Figure 2 shows that the responses

for σ = sat(u) and (v1, v2) = 0 present a slower trend than
the unconstrained case.

Finally, we satisfy all the conditions of Corollary 2 and

through Procedure 1, we obtain the static DLAW compen-

sator in full-authority configuration, with

Daw =

[

0.6650 0.3386 0.7754 −0.1010
0.3329 0.4472 −0.0967 0.8444

]T

,

which guarantees a global t-L2 gain from w to z less than

or equal to γ = 80.26.
Notice that the trend in presence of the DLAW compen-

sator is better than the previous two cases. All the simulations
start from the initial condition xp(0, 0) = −[0.6, 0.6]T ,

xc(0, 0) = 0 and τ(0, 0) = 3
2ρ.

V. CONCLUSIONS

A tool for the analysis of a class of hybrid systems

with input saturation has been presented. Moreover, a static
DLAW compensator design has been proposed to recover

(locally or globally) the exponential closed-loop stability in

the presence of plant input magnitude saturation whenever
the controller is plant order. The static DLAW synthesis is

convex for exponentially stable plants, whereas it may be not

numerically tractable otherwise.
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