
HAL Id: hal-00830517
https://hal.science/hal-00830517v1

Submitted on 5 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Implicit Tensor-Mass solver on the GPU for soft
bodies simulation

X. Faure, F. Zara, F. Jaillet, J.-M. Moreau

To cite this version:
X. Faure, F. Zara, F. Jaillet, J.-M. Moreau. An Implicit Tensor-Mass solver on the GPU for soft bod-
ies simulation. Eurographics Workshop on Virtual Reality Interaction and Physical Simulation (VRI-
PHYS), Dec 2012, Darmstadt, Germany. �10.2312/PE/vriphys/vriphys12/001-010�. �hal-00830517�

https://hal.science/hal-00830517v1
https://hal.archives-ouvertes.fr

Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2012)
J. Bender, A. Kuijper, D. W. Fellner, and É. Guérin (Editors)

An implicit Tensor-Mass solver on the GPU
for soft bodies simulation

X. Faure1,2 and F. Zara2 and F. Jaillet2,3 and J-M. Moreau2

1Financed by the PRRH (Rhône-Alpes Research Program on Hadrontherapy) for ETOILE (National French Hadrontherapy Centre)
2Université de Lyon, CNRS, Université Lyon 1, LIRIS, SAARA team, UMR5205, F-69622, Villeurbanne, France

3Université de Lyon, IUT Lyon 1, Computer Science Department, F-01000, Bourg-en-Bresse, France

Abstract
The realistic and interactive simulation of deformable objects has become a challenge in Computer Graphics. In
this paper, we propose a GPU implementation of the resolution of the mechanical equations, using a semi-implicit
as well as an implicit integration scheme. At the contrary of the classical FEM approach, forces are directly
computed at each node of the discretized objects, using the evaluation of the strain energy density of the elements.
This approach allows to mix several mechanical behaviors in the same object. Results show a notable speedup of
30, especially in the case of complex scenes. Running times shows that this efficient implementation may contribute
to make this model more popular for soft bodies simulations.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation and Virtual Reality I.6.8 [Simulation And Modeling]: Types of Simulation—Parallel

1. Introduction

Following the increasing demand of realism in Computer
Graphics, physically-based simulation has become a very ac-
tive research field over the last decade. This is particularly
apparent in cloth and hair animation, medical simulation, in-
teractive entertainment, and more generally in all Virtual Re-
ality applications where animation, interaction or alteration
of deformable objects is required in interactive time.

Several methods have been published to model the phys-
ical behavior of deformable objects [NMK⇤06]. Among
them, the Finite Element Method (FEM) allows the reso-
lution of the differential equations systems governing the
movements of objects [Wor95, BLM00]. This method is
based on the discretization of each object into elements (hex-
ahedra or tetrahedra, for example) and provides the resolu-
tion of a linear system of the form KU = F , with K the stiff-
ness matrix of the considered object, U the displacement of
all nodes of the object, and F the external forces and bound-
ary conditions applied on the object. Moreover, K may be
dependent of U , judging from the mechanical behavior of
the object. As the physical properties of objects are directly
integrated in this mechanical formulation, this produces re-
alistic, physically-based simulations of deformable objects.

As an alternative to the classic approach used in the
FEM, the Tensor-Mass (TM) approach was introduced
in Computer Graphics by Delingette, Cotin and Picin-
bono [DCA99, CDA00, PDA00, Pic03], and extended by
Schwartz [SDR⇤05]. This approach consists in another way
to solve the mechanical equations of the objects, by directly
computing the forces applied on each node considering the
evaluation of the strain energy density.

To the difference of the classical FEM, the forces be-
tween elements do not need to be expressly computed, as
only the forces applied on nodes are considered. This ap-
proach allows to consider objects discretized on elements
with different geometrical models or mechanical properties.
The main difficulty remains in the formulation of the equa-
tions involved by the forces computation, more specially us-
ing an implicit integration scheme like the Euler implicit
one, which involves the computation of the differentials of
the forces. In our work, this problem is addressed using for-
mal computation.

Several formulations of the Tensor-Mass model have been
presented in Computer Graphics to account for various me-
chanical behaviors: the linear Hookean model [CDA00];
the non-linear geometrical model based on Saint Venant-

c� The Eurographics Association 2012.

X. Faure & F. Zara & F. Jaillet & J-M. Moreau / An implicit Tensor-Mass solver on the GPU for soft bodies simulation

Kirchhoff’s elasticity model [PDA00], or anisotropic mate-
rial [Pic03]. Moreover, Schwartz [SDR⇤05] presented an-
other extension for non-linear visco-elastic deformations,
with some pre-computing of the various tensors to accelerate
the process.

Concerning parallel physically-based animation on the
GPU, several papers were presented: for non-linear FEM
soft tissue modeling based on CUDA [CTAO08], FEM
cloth simulation [RNSS⇤06], implicit FEM solver for
deformation simulation [ACF11], or Mass-Springs Sys-
tems [MHS05, GW05]. With respect to the Tensor-Mass
model, Mosegaard [SM06] addressed its parallelization for
the linear case with an explicit integration scheme, using tex-
ture memory.

But, as far as we know, the topic of the parallel imple-
mentation on the GPU of the Tensor-Mass model has not yet
been addressed neither for the non-linear elasticity model,
nor using an implicit integration scheme. An approach based
on the texture memory as in [SM06] would be possible, but
would not permit to consider topological changes in the sim-
ulated object’s mesh.

In this work, we consider both linear and non-linear elas-
tic models, with two of the most employed formulations in
interactive simulations, namely Hookean and Saint Venant-
Kirchhoff’s models. Moreover, we present the main steps of
the resolution of the mechanical equations using the Tensor-
Mass approach, employing a semi-implicit as well as an im-
plicit integration scheme to ensure unconditional stability for
any time step. The topic of its parallelization on the GPU
is also addressed. Obtained results exhibit notable speedup,
enabling the interactive simulation of soft-bodies with linear
or non-linear mechanical behaviors. Running times shows
that this implementation will be valuable for relatively large
scenes, contributing to make this model more popular in the
domain of deformable object simulation.

2. Simulation of object deformations
Continuum mechanics deals with a continuous way to de-
scribe an object moving or being deformed under the ac-
tion of stress. The deformation F may be formulated accord-
ing to the displacement U(X) of a point X of the object by
F(X) = X +U(X).

Different elasticity models exist depending on the ex-
pected mechanical behavior of the material. The strain-
tensor e is deduced from the deformation gradient rF =
I +rU , a quantity depending on rU . Therefore, e may be
directly expressed as a function of rU . Moreover, the de-
formation energy W , involved by the deformation, naturally
depends on the material’s characteristics. Its derivative gives
the corresponding opposite force causing the deformation.

Finally, the movement of the deformable object may be
expressed by the following differential equations system:

MÜ +DU̇ +KU = F, (1)

with U the displacement of the object and M, D, K respec-
tively the mass, damping and stiffness matrices of the simu-
lated object.

As for the classical FE approach, the TM formulation is
based on the domain’s discretization into several elements,
and naturally, some steps are similar. However, its specificity
is the discrete and local resolution of the mechanical equa-
tions. Details of the mains steps involved for each node of
each element are now presented.

2.1. Discretization of the displacement in an element

The displacement of a point X(x,y,z) inside an element E of
the object is defined by:

UE(X)'
n�1

Â
j=0

L j(X)Uj, (2)

with n the number of nodes Pj = (Pjx,Pjy,Pjz) defining the
element, Uj the displacement of each node Pj from its ini-
tial position, and L j(X) some interpolation functions. These
functions are defined according to the type of element used
for the discretization, with:

n�1

Â
j=0

L j(X) = 1. (3)

One of the simplest and most used subdivision of the
domain consists in P1 tetrahedral elements (with n = 4
interpolating nodes placed at each vertex). Indeed, this
kind of element corresponds to a linear interpolation, that
is valid for both considered cases in this paper, namely
Hookean and Saint Venant-Kirchhoff’s materials, as pointed
out in [Pic03].

The linear interpolation functions are defined using the
barycentric coordinates of X inside the element, leading, for
a tetrahedron, to:

L j(X) = a j ·X +b j (4)
= a jx x+a jy y+a jz z +b j (5)

for j = 0..3 with (considering O the origin and OPj the po-
sition of Pj from this origin):
⇢

a j = (�1) j(OPj+2�OPj+1)⇥ (OPj+3�OPj+1)
b j = (�1) jOPj+1 · (OPj+2⇥OPj+3).

(6)

2.2. Strain energy for an element

Let us define the strain-tensor and the energy of deformation
according to the mechanical behavior of the object.

Hooke’s law. For small deformations (or strains) – usually
less than 10% of the size of the object – the elasticity is con-
sidered as linear with a linear relationship between stress
and strain. To model such behaviors, only the linear part of
the Green-Saint Venant strain-tensor is considered:

el(X) =
1
2

⇣
rUT (X)+rU(X)

⌘
, (7)

c� The Eurographics Association 2012.

X. Faure & F. Zara & F. Jaillet & J-M. Moreau / An implicit Tensor-Mass solver on the GPU for soft bodies simulation

with

rU(X) =

2

664

∂Ux(X)
∂x

∂Ux(X)
∂y

∂Ux(X)
∂z

∂Uy(X)
∂x

∂Uy(X)
∂y

∂Uy(X)
∂z

∂Uz(X)
∂x

∂Uz(X)
∂y

∂Uz(X)
∂z

3

775 . (8)

The energy density of deformation, measuring the strain en-
ergy per unit undeformed volume on an infinitesimal domain
around the material point X , is then defined by

Wl(X) =
l
2
(tr el(X))2 +µ tr el(X)2, (9)

where l and µ are the Lamé coefficients characterizing ma-
terial stiffness.

Saint-Venant Kirchhoff’s constitutive law. For displace-
ments larger than 10% of the object’s size, the non-linear
elasticity behavior must be considered. The simplest hyper-
elastic model is a direct extension of the linear elastic mate-
rial. It is based on the Green-Saint Venant strain-tensor enl ,
and its associated strain energy density Wnl with:

enl(X) = 1
2

⇣
rUT (X)+rU(X)+rUT (X)rU(X)

⌘

Wnl(X)= l
2 (tr enl(X))2 +µ tr enl(X)2.

(10)

Generalization. AsrU andrUT are constant inside an el-
ement when considering P1 tetrahedral elements, the strain-
tensor and the deformation energy density (noted elaw and
Wlaw according to the chosen mechanical law – Hooke’s or
Saint Venant-Kirchhoff’s) are also constant inside the tetra-
hedron (i.e., do not depend on X). Hence, the total strain
energy WE of a P1 tetrahedron follows:

WE =
Z

E
Wlaw(X) dX =Wlaw

Z

E
dX =Wlaw VolE , (11)

with VolE the initial volume of the considered element.

2.3. Computation of the forces and their differentials

Considering a given element E of the discretized object, the
forces applied on any node Pi for i 2 [0,n� 1] of this ele-
ment, is defined by:

FE(Pi) =�
∂WE(Pi)

∂Ui
, (12)

with WE(Pi) the energy density of deformation of the con-
sidered element, evaluated at node Pi.

Whereas the information of the forces is sufficient for
an explicit or semi-implicit integration scheme (enabling
to compute velocities and displacements according to ac-
celerations and velocities, respectively), the computation of
their differentials is mandatory when an implicit integration
scheme is used [TPBF87, BW98]. Considering an element
E, the differentials of the force on node Pi is given by:

dFE(Pi) =
h
dF0

E (Pi) . . . dFn�1
E (Pi)

i
, (13)

where dF j
E (Pi) =

h
∂FE (Pi)

∂Uj

i

33
for j 2 [0,n�1].

Finally, if we consider the whole object involving m
nodes, the force applied on PI with I 2 [0,m� 1] is com-
puted by summing all the contributions from the neighboring
elements, with:

F(PI) = FI = Â
E2NI

FE(Pi) = Â
E2NI

�∂WE(Pi)
∂Ui

, (14)

where NI is the set of elements containing node PI , and
with i 2 [0,n� 1] the local node in E corresponding of the
global node I of the object (in the global vertex indexation).

Considering the whole object involving m nodes, the dif-
ferentials of the force on PI with I 2 [0,m�1] follows:

dF(PI) = dFI =
h
dF0

I . . . dFm�1
I

i
, (15)

with, for J 2 [0,m�1]

dFJ
I = Â

E2NJ
I

dF j
E (Pi) = Â

E2NJ
I

∂FE(Pi)

∂Uj

�

33
,

where NJ
I is the set of elements containing global nodes PI

and PJ , and with i (resp. j) 2 [0,n� 1] the local node in E
corresponding of global node I (resp. J) of the object.

2.4. Equation of movement for each node

Once the forces applied on each node have been computed,
Newton’s equation governing the movement of the object
may be used. At time t, considering the node Pi of mass mi,
we have:

mi Üi(t) = Fi(t). (16)

This equation is linked to the differential equations sys-
tem (1) by assuming the sparse matrix M to be diagonal,
and distributing the object’s mass (computed according to
its density r) on each node of its discretization. This simpli-
fication, called mass-lumping, yields to the formulation of
equation (16) for each node, which enables the computation
of the acceleration according to the applied forces.

The next section will explain in particular our parallel im-
plementation of Euler’s semi-implicit and implicit integra-
tion schemes used to obtain velocity (from acceleration) and
displacement (from velocity) of the nodes throughout simu-
lation.

3. Parallel integration in SOFA

The Open Source Framework SOFA was used for our par-
allel implementation of the Tensor-Mass model using the
OpenCL language [SGS10]. This framework, written in
C++ and using the XML script language, enables com-
parisons between models and methods implemented by
research groups in medical simulation (http://www.sofa-
framework.org) [ACF⇤07].

c� The Eurographics Association 2012.

X. Faure & F. Zara & F. Jaillet & J-M. Moreau / An implicit Tensor-Mass solver on the GPU for soft bodies simulation

The objects simulated in SOFA are defined by their topol-
ogy, geometry and visual model (by loading OBJ files, for
example), their mechanical state (position, velocity, acceler-
ation and force stored as vectors), their mechanical behavior
(constitutive laws), as well as the collision model. Then, the
simulation loop is executed, involving the following main
steps for each node of the discretized object: (1) computation
of the forces, (2) computation of the acceleration according
to Newton’s second law of motion, (3) integration of the ac-
celeration to obtain velocity, (4) integration of the velocity
to obtain displacement.

To integrate the Tensor-Mass model in SOFA, only
two functions, namely addForce() and addDforce(),
should be implemented, enabling the computation of
the forces and their differentials (only required for Eu-
ler’s implicit integration scheme) for each node. But, as
the initial GPU implementation of SOFA is based on
CUDA [CTAO08], the various steps of the simulation loop
have also been parallelized using the OpenCL language.

3.1. Forces computation on the GPU
Strategy of parallelization. The same parallelization strat-
egy as the one presented in [ACF11] for an implicit Finite
Element solver was adopted in this work, and tailored to
our case. Thus, to obtain an efficient parallelization on the
GPU, the object’s mesh is not partitioned (as this would im-
ply concurrent conflicts), but a two-step process is used in-
stead, involving a parallel computation of forces divided into
two tasks, each involving a set of kernels:

1. First, the forces applied on each node of a given element
are computed and stored. This computation (kernel1)
is done for each element of the object.

2. Second, for each node of the object (kernel2), these
partial forces are summed to obtain the total forces ap-
plied on each node (involved by the different elements of
the object).

Moreover, to ensure an efficient pooling of these kernels
(i.e. an efficient use of cores), the number of nodes and ele-
ments may be chosen as a power of 2, involving grouping of
kernels running in parallel of size a power of 2.

Data structures. Specific data structures were defined for
a discretization of the object into N elements involving m
nodes, with n the number of nodes of each element and Nn
the maximal number of neighbor elements for a node (see
Fig. 2-3 for an illustrated example):

• index (of size N⇥n) stores the relationship between lo-
cal and global indexation for each node of each element.
For example, index[e][v] gives the global indexation
for node v of element e.

• PartialForce (of size Nn⇥m⇥4) enables the storage
of 3D coordinates of partial forces for each node consider-
ing its global indexation. Thus, PartialForce[][v]
gives partial forces of node v of the object.

• TotalForce (of size m⇥ 4) stores the sum of the par-
tial forces for each node considering its global indexation.
Thus, TotalForce[v] gives the forces of node v of the
object.

• ForceIndex (of size N ⇥ n) stores the index of data
structure PartialForce. For example, ForceIn-
dex[e][v] indicates where the forces applied on ver-
tex v involved by the element e are stored in Partial-
Force.

To be more efficient on the GPU, one may note that the
float4 data type is used for the storage of partial and total
forces. Moreover, basic arithmetic instructions are naturally
coded into the hardware (using Arithmetic and Logic Units).

Communication. Fig. 1 illustrates how the global memory
is accessed in reading for the initial volume’s value of each
element i (voli in equation (11)). The float4 data type is
again used. And to limit the number of accesses, only one
kernel over 4 in a grouping of kernels (wrap) will read
data from the global memory. In this example, kernel0
reads initial volumes {vol0,vol1,vol2,vol3} and kernel4
reads initial volumes {vol4,vol5,vol6,vol7}.

7

read

synchro

compute

0

1

2

3

4

5

6

Figure 1: Only kernels of a wrap (grouping of kernels)
with a multiple of 4 as number will read data from global
memory.

Note that, the same strategy is used to read masses of
nodes during the numerical integration scheme.

Parallel algorithm. Algorithm 1 presents the paral-
lel algorithm for force computation – SOFA function
addForce(). In this algorithm, function Force() en-
ables the force computation FE(Pi) of each node Pi in
an element (equation (12)). It depends on constant values
(Lamé coefficients l,µ; coefficients of interpolation func-
tions a j,b j for j = 0..3 – equation (6)) and some variables
(initial position and current displacements of nodes). This
function is written using formal computation software and
enables to easily generate equations (expressed as polynomi-
als in function of U) of any kind of elasticity models. Conse-
quently, we do not need to construct the matrix formulation
of the problem of the form K U =F as for the classical FEM.

c� The Eurographics Association 2012.

X. Faure & F. Zara & F. Jaillet & J-M. Moreau / An implicit Tensor-Mass solver on the GPU for soft bodies simulation

Algorithm 1 addForce() function on the GPU.
1: {N : number of elements}
2: {n : number of nodes per element}
3: {m : total number of nodes}
4: {Nn : max number of neighbor elements for a node}
5: // Task 1 - Computation of partial forces
6: for e = 0 to N�1 do
7: // Execution of N kernel1

8: for v = 0 to n�1 do
9: PartialForce[ForceIndex[e][v]][index[e][v]] Force();

10: end for
11: end for
12: // Task 2 - Sum of partial forces
13: for i = 0 to m�1 do
14: // Execution of m kernel2

15: for j = 0 to Nn�1 do
16: TotalForce[i] TotalForce[i] + PartialForce[i][j];
17: end for
18: end for

Illustration. To illustrate this parallelization, let us consider
a simple deformable object divided into 2 tetrahedra. Fig. 2
exhibits the local and global indexations of nodes. Fig. 3
presents the data structures resulting from this example.

(a) Local vertex indexation.

(b) Global vertex indexation.

Figure 2: Simple object discretized into 2 tetrahedral ele-
ments (N = 2,n = 4,m = 5,Nn = 2).

• Consider node P2 of element E0, and node P1 of element
E1. We have index[0][2] = index[1][1] = 2.
Consequently, node P2 in global indexation is a common
vertex of elements E0 and E1.

• Then, the partial forces applied on this node involved
by these two elements remain to be computed. Consider-
ing element E0 (resp. E1), ForceIndex[0][2] (resp.
ForceIndex[1][1]) containing value 0 (resp. 1) in-

dicates where the partial forces computation involved by
element E0 (resp. E1) is stored in PartialForce.

• Consequently, PartialForce[0][2] (resp. Par-

tialForce[1][2]) gives the partial forces computa-
tion involved by element E0 (resp. E1). Then, the sum
of these two contributions, stored in TotalForce[2],
yields the total force applied on node P2.

TotalForce

+3210

0

1

000

01 1

3210

0

1

310

43 1

0

2

−2 2 2

4

0 1 3 4

2

1

2

2

1

3

−1

0

1

index

ForceIndex

PartialForce

6 2

1 3 4

2

0

−2 3

2

Figure 3: Data structures for the GPU forces computation.

3.2. Semi-implicit integration method on the GPU
Once the forces and the acceleration (according Newton’s
law) are computed, a numerical integration scheme is used
to obtain the velocity (according to the acceleration) and dis-
placement (according to the velocity) of the nodes.
Euler’s semi-implicit scheme. Firstly, one of the simplest
integration methods is considered, namely the Euler semi-
implicit scheme (also called Euler symplectic), defined by:

Vi(t +h) = Vi(t)+h V̇i(t)
Ui(t +h) = Ui(t)+h Vi(t +h) (17)

where h is the time step and Vi represents the velocity U̇i.

Parallel algorithm. Algorithm 2 presents the parallel al-
gorithm for the computation of the velocity and displace-
ment for each node, using this numerical integration scheme
(equation (17)). As previously for the computation of the
forces, the float4 data type is used to store accelerations
(Accel), velocities (V) and displacements (U) of nodes.

Algorithm 2 Computation of velocities and displacements
on the GPU using Euler’s semi-implicit method.

1: {m : total number of nodes}
2: // Task 3 - Computation of velocities
3: for i = 0 to m�1 do
4: // Execution of m kernel3

5: V[i] V[i] + h * Accel[i] ;
6: end for
7: // Task 4 - Computation of displacements
8: for i = 0 to m�1 do
9: // Execution of m kernel4

10: U[i] U[i] + h * V[i] ;
11: end for

The parallel implementation of this scheme is straightfor-
ward. However, to obtain a stable simulation, the time step h
must be small, especially when stiffness increases.

c� The Eurographics Association 2012.

X. Faure & F. Zara & F. Jaillet & J-M. Moreau / An implicit Tensor-Mass solver on the GPU for soft bodies simulation

3.3. Implicit integration method on the GPU

Euler’s implicit scheme. To enable stability for larger time
steps, an implicit integration scheme is mandatory like the
Euler implicit scheme defined by:

Vi(t +h) = Vi(t)+hV̇i(t +h),
Ui(t +h) = Ui(t)+hVi(t +h). (18)

Noting M, F , V and U the mass matrix, forces, velocities
and displacements vectors, respectively, this scheme may be
reformulated in a linear form (Ax = b) [TPBF87, BW98]:

✓
M�h

∂F
∂V
�h2 ∂F

∂U

◆

| {z }
A

DV|{z}
x

= h F(t)+h2 ∂F
∂U

V (t)
| {z }

b

(19)

with DV =V (t+h)�V (t) and ∂F
∂U , ∂F

∂V the Jacobian matrices
encoding the variation of forces resulting from displacement
and velocity changes. Consequently, we have to solve this
linear system to obtain DV and next update the velocities
and the displacements with:

V (t +h) = DV +V (t)
U(t +h) = U(t)+h V (t +h). (20)

Conjugate Gradient method. The Conjugate Gradient
(CG) method, presented in Algorithm 3, is usually favored
to solve the linear system (19) in a few iterations [BW98].
In this algorithm, the matrix ∂F

∂V is null since only internal
forces (depending on displacement U) are considered. Thus
in this algorithm, only ∂F

∂U is considered but never explicitly
computed, directly computed h2 ∂F

∂U V (t) or h ∂F
∂U DV .

Algorithm 3 Conjugate Gradient algorithm to solve the
Ax = b system from Euler’s implicit integration scheme.

1: b h F(t)+h2 ∂F
∂U V (t)

2: x 0
3: d r b
4: r0 < r,r >
5: for i = 1 to n do
6: d f �h2 ∂F

∂U d
7: A Md +d f
8: a ri�1

<d,A>
9: x x+a d

10: r r�a A
11: ri < r,r >
12: b ri

ri�1

13: d r+b d
14: if (ri > e2 r0)
15: break
16: end for

Parallel algorithms. The parallel computation of differ-
ential forces (SOFA’s function addDForce()) is simi-
lar to the parallel computation of forces (SOFA’s function
addForce()) presented in Algorithm 1. The only differ-
ence resides in the use of function DForce() instead of

Force() at line 9, to compute differential forces dFE(Pi)
of each node Pi in an element (equation (13)). This function
depends on the same parameters, in addition to the time step
h and the current nodes’ velocity, to in fact directly compute
h2 dFE(Pi) VE(t) or h dFE(Pi) DVE (with VE(t) and DVE the
elements of V (t) and DV corresponding to E).

For the parallel implementation of the CG method, we
used the same parallel strategy as in [ACF11], but using the
OpenCL language instead of CUDA. During the execution
of this algorithm, only data a, b and r are transmitted be-
tween GPU and CPU to detect the end of the algorithm.

Finally, the velocities and displacements of nodes are up-
dated in a similar way to Algorithm 2, but replacing the
equations (17) by (20).

4. Results

For the simulations, a CPU Intel R� Xeon R�, 4 cores
@3.07 GHz; and a GPU GeForce GTX 560, 2047 MB, 56
cores @1.620 GHz are used. Moreover, a 3D beam of size
5⇥1⇥1 m is considered, with a density r = 1,000 Kg.m�3

and a Young modulus of 100 MPa.

4.1. Semi-implicit and implicit solvers

Precision. To test the precision of the two numerical inte-
gration schemes implemented, a traction test is performed on
a Hookean beam discretized into 2,000 parallelepipeds, all
split into 6 tetrahedra [MHS05]. A small deformation corre-
sponding to 5 % of the initial beam size is imposed progres-
sively with a displacement of nodes performed with a linear
velocity.

Time step Computed Young’s modulus (Pa) Running time (s)
0.00005 98,775,400 220
0.00010 99,360,500 108
0.00020 100,041,000 52
0.00012 99,392,300 127 (average)

Table 1: Results for Euler’s semi-implicit scheme.

Time step Computed Young’s modulus (Pa) Running time (s)
0.00005 96,177,200 841
0.00010 97,839,800 418
0.00020 98,910,300 205
0.00012 97,642,430 488 (average)

Time step Computed Young’s modulus (Pa) Running time (s)
0.040 99,993,400 5
0.080 99,998,200 2
0.160 99,998,500 1
0.093 99,996,700 3 (average)

Table 2: Results for Euler’s implicit scheme.

Tables 1 and 2 show the running times to achieve the final
state (directly linked to the given time step h) and the Young
modulus computed according to the resulting strain. To en-
sure the stability using the semi-implicit scheme, the largest

c� The Eurographics Association 2012.

X. Faure & F. Zara & F. Jaillet & J-M. Moreau / An implicit Tensor-Mass solver on the GPU for soft bodies simulation

time step is h = 0.0002, whereas in the implicit case, it is left
unconstrained. However, to be complete, tests with the same
time steps are presented is the first rows of Table 2.

The precision ratio (initial Young modulus compared to
the average of the computed ones) reach 1.00611 (with a
time step of 0.00012) and 1.00003 (with a time step of
0.093) for the semi-implicit and the implicit scheme, respec-
tively. Therefore, despite its additional computation cost, an
implicit scheme permits to achieve better precision at a re-
duced final time cost as the time steps may be considerably
increased without loosing stability.

Memory. Table 3 shows the memory usage (linear accord-
ing to the number of elements) and for each data structure,
the percentage according to the total required memory. Here,
a beam discretized into N = 60,000 tetrahedra is considered,
involving m = 10,000 nodes, with a max number Nn = 24
of neighbor elements for any node. Moreover, an implicit
scheme is employed, involving the additional vectors V or
DV for the semi-implicit one. Note that P(t0) and P(t) de-
note the initial and current positions of nodes in this table.

P(t0) P(t) V ou DV a j VolE
Kb 160 160 160 2,880 240
% 1.68 1.68 1.68 30.25 2.52

PartialForce index ForceIndex TotalForce
Kb 3,840 960 960 160
% 40.34 10.08 10.08 1.68

Table 3: Memory required for each data structure.

Only 9.52 Mb are required for our similation, compared
to the 560 Mb needed by the Abaqus FE software for the
same scene. In the sequel, we will consider only the Euler
implicit scheme, which provides very good results, both in
precision and time.

4.2. Performances on the GPU

As previously, traction tests are preformed on beams (dis-
cretized into 12,000 tetrahedra) with an imposed 5 % defor-
mation of their initial size.

Wrap’s size. Fig. 4 presents running times (with time step
h = 0.1) in function of the wrap’s size, i. e. the number of
cores involved at the same time (Fig. 1).

A stagnation in the execution time appears around 32 ker-
nels in parallel for a total number of 56 cores. Indeed, the
number of nodes and elements are chosen as a power of 2,
involving an optimal wrap’s size equal to a power of 2. In
the remaining part of our analysis, we assume the wrap size
to be 64, the nearest power of 2 greater than 56.

Number of elements per kernel. In Algorithm 1 for
SOFA’s function addForce(), we chose to execute in
Task1 one kernel1 per element, and we used a similar strat-
egy for SOFA’s function addDForce().

Fig. 5 presents the variation of the number of elements
treated in kernel1 and inside its equivalent kernel in function
addDForce(), requiring additional loops inside them.
The results validate our strategy, i.e. to treat only one ele-
ment per kernel.

 0

 0.05

 0.1

 0.15

 0.2

 0 10 20 30 40 50 60

A
ve

ra
g
e
 t
im

e
 in

 s
e
co

n
d

Wrap’s size

Saint Venant-Kirchhoff
Hooke

Figure 4: Average time (in second) of one step as a function
of the number of kernels executed in parallel (wrap’s size).

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120 140

A
ve

ra
g
e
 t
im

e
 in

 s
e
co

n
d

Number of elements per kernel

Saint Venant-Kirchhoff
Hooke

Figure 5: Average time (in second) of one step as a function
of the number of elements per kernel.

Execution times. Table 4 presents running times (in sec-
ond) for different parts of the simulation loop, in the case
of Hookean and Saint Venant-Kirchhoff’s (SVK) elasticity
models. For each function, the percentage is given according
to the total time. As expected, most of the execution time is
consumed by the addDForce function.

addForce addDForce CG Total
Hooke (s) 0.0150 0.1367 0.0059 0.1576
Hooke (%) 9.53 86.75 3.72 100
SVK (s) 0.0147 0.1865 0.0048 0.2060
SVK (%) 7.14 90.53 2.33 100

Table 4: Execution times (in second) for Hookean and Saint
Venant Kirchhoff’s elasticity models.

c� The Eurographics Association 2012.

X. Faure & F. Zara & F. Jaillet & J-M. Moreau / An implicit Tensor-Mass solver on the GPU for soft bodies simulation

Speedup. Fig. 6 presents the speedup between the ex-
ecution times on GPU and CPU. Results obtained with
our parallel TM approach, for Hookean and Saint Venant-
Kirchhoff’s elasticity models, are compared to those ob-
tained using SOFA’s FEM (which corresponds to the FEM
model presented by Nesme [NP05], that considers non-
linear behaviors by computing displacements in a rotated lo-
cal coordinate system; its GPU version is implemented fol-
lowing [ACF11]).

 10

 15

 20

 25

 30

 35

 0 50000 100000 150000 200000 250000 300000 350000

S
p
e
e
d
u
p

Number of elements

Hooke’s - TM
Saint Venant-Kirchhoff’s - TM

Corotational’s - FEM

Figure 6: Speedup between CPU and GPU for TM and
SOFA’s corotational FEM.

A speedup of 25.5 is obtained for SOFA’s corotational
FEM implementation and of 29.5 for our TM, for a Saint
Venant-Kirchoff’s material beam composed of 307,200 ele-
ments.

Consequently, we only used 55 % of the GPU power (with
56 cores), due to synchronization between CPU and GPU in
the Conjugate Gradient algorithm. Moreover, we may note
that the running time on the CPU is linear according to the
number of elements, whereas this time is affine on the GPU
with a constant time cost for any number of elements. There-
fore, our parallelization on the GPU is interesting for sim-
ulations with more than 1,000 elements due to the GPU’s
cost, judging from the elasticity model used (Hooke or Saint
Venant-Kirchhoff).

Data transfer. The data transfer between local and global
memory on the GPU is linear and corresponds for each ele-
ment to constant values (Lamé coefficients l,µ; coefficients
of interpolation functions a j,b j for j = 0..3 – equation (6))
and some variables (initial position and current displace-
ments of nodes), requiring a total memory of 160 bytes per
element.

Scaling study. Fig. 7 presents the computation time for
Hookean and Saint Venant-Kirchhoff’s elasticity models ac-
cording to the number of tetrahedra in the mesh. The running
times is nearly affine according to the number of elements.

 0

 1

 2

 3

 4

 5

 6

 0 300000 600000 900000 1.2e+06 1.5e+06 1.8e+06 2.1e+06

A
ve

ra
g
e
 t
im

e
 in

 s
e
co

n
d

Number of tetrahedra

Saint Venant-Kirchhoff
Hooke

Figure 7: Average time (in second) of one step as a function
of the number of elements in the mesh.

4.3. Hookean and Saint Venant-Kirchhoff’s behavior

Fig. 8 presents a rendered beam for Hookean and Saint
Venant-Kirchhoff’s material subjected to the gravitational
force. Fig. 9 shows a rabbit interactively deformed with Saint
Venant-Kirchhoff’s elasticity model. Fig. 10 presents some
results for torsion and bending of the beam considering both
Hookean and Saint Venant-Kirchhoff’s materials. In this ar-
ticle, a supplementary color MPEG file is also provided,
which contains several views of the 3D simulation for better
illustration of our results.

As expected, large deformations involved an increase of
the volume for Hooke’s elasticity model, whereas Saint
Venant-Kirchhoff’s material exhibits a much correct behav-
ior.

5. Discussion

These results show that our parallelization of the Tensor-
Mass formulation provided very positive results. Its effi-
ciency is increased for large simulations including more than
1,000 elements, that is due to the implementation cost on the
GPU.

We also note that the use of the Conjugate Gradient algo-
rithm (needed in the implicit scheme), generated some syn-
chronizations between the CPU and the GPU for data trans-
fer. But, as the majority of the running time is dedicated
to the addDForce() function, this does not really affect
overall performances.

Consequently, to increase speedup, we have now to op-
timize the addDForce() function, and more specifically
the DForce() function called inside it, which computes
the differentials of the forces. As we ever said, this compu-
tation is based on formal computation to easily obtain their
formulation and to generate the corresponding code. This is
one of the reasons why a better speedup is obtained than for
the corotational SOFA’s FEM (see Fig. 6).

c� The Eurographics Association 2012.

X. Faure & F. Zara & F. Jaillet & J-M. Moreau / An implicit Tensor-Mass solver on the GPU for soft bodies simulation

Figure 8: Rendered beam for Hookean and Saint Venant-Kirchhoff’s material, and its initial state (from left to right).

(a) Initial mesh (zoom) (b) Initial undeformed rabbit (c) Curved left ear (d) Little jump

Figure 9: Simulation of the deformation of a Saint Venant-Kirchhoff’s material rabbit (initial 3D mesh courtesy of L. Stan-
culescu, with radius-edge ratio q < 1.0).

(a) Initial beam (b) Torsion of a Hookean material (c) Torsion of a Saint Venant-Kirchhoff’s mate-
rial

(d) Bending of a Hookean material (e) Bending of a Saint Venant-Kirchhoff’s material

Figure 10: Hookean versus Saint Venant-Kirchhoff’s behavior for torsion and bending test an a beam.

c� The Eurographics Association 2012.

X. Faure & F. Zara & F. Jaillet & J-M. Moreau / An implicit Tensor-Mass solver on the GPU for soft bodies simulation

6. Conclusion

In this paper, we presented an implementation of the Tensor-
Mass model on the GPU that considerably speeds up the
simulation times. Comparisons between running times on
the CPU and the GPU suggest that the parallel implementa-
tion of the model becomes interesting for increasingly com-
plex computations.

Besides, we used a formal encoding for the equations of
the forces (function Force()). However, this allows us to
generalize the technique to almost any existing combination
of constitutive law and mesh type, without extensive addi-
tional coding. This is particularly interesting as it will al-
low to implement and perform easily a variety of tests and
comparisons for various materials on different solvers for an
object within the same framework (SOFA, for example).

Moreover, the differentials of the forces are also be ob-
tained formally (function DForce()), providing an easy
way to implement Euler’s implicit integration scheme, which
requires these differentials. This computation would other-
wise be very fastidious, as the energy equation must be de-
rived twice; and finally, an implicit solver had never been
implemented before for the Tensor-Mass model.

In addition, results are presented for tetrahedral meshes,
but the derivation for other element types is straightforward,
as long as interpolation functions L exist for each type (for
example: triangle or quadrangle in 2D, and quadratic or cu-
bic tetrahedron or hexahedron, prism, etc. in 3D). The only
issue is that WE in equation (11) is no more constant over
the element, necessitating computation that may be done for-
mally as suggested above.

Consequently, we believe that a GPU version of the TM
approach will help to make this model popular in the Com-
puter Graphics community. Our implicit parallel solver for
linear and non-linear behavior yields a stable version with
high time reduction, in comparison with the explicit CPU
implementation of the linear TM that may be found in the
literature. Moreover, relatively similar simulation times are
achieved in comparison to other existing FEM, but allowing
better interaction control. This leads to an efficient alterna-
tive implementation for interactive physically-based simula-
tion. Indeed, it combines advantages of discrete models (like
Mass-Spring Systems) such as topological changes and in-
teractions with the surrounding scene, and those of FEM, as
it is derived as well from continuum mechanics.

References
[ACF⇤07] ALLARD J., COTIN S., FAURE F., BENSOUSSAN P.-

J., POYER F., DURIEZ C., DELINGETTE H., GRISONI L.: Sofa
an open source framework for medical simulation. In MMVR’15
(Long Beach, USA, February 2007). 3

[ACF11] ALLARD J., COURTECUISSE H., FAURE F.: Implicit
FEM Solver on GPU for Interactive Deformation Simulation.
In GPU Computing Gems Jade Edition. NVIDIA/Elsevier, Sept.
2011, ch. 21. 2, 4, 6, 8

[BLM00] BELYTSCHKO T., LIU W., MORAN B.: Nonlinear
finite elements for continua and structures, vol. 1. Wiley New
York, 2000. 1

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simu-
lation. In Proc. of the 25th annual conference on Computer
Graphics and Interactive Techniques (1998), ACM, pp. 43–54.
3, 6

[CDA00] COTIN S., DELINGETTE H., AYACHE N.: A hybrid
elastic model for real-time cutting, deformations, and force feed-
back for surgery training and simulation. The Visual Computer
16, 8 (2000), 437–452. 1

[CTAO08] COMAS O., TAYLOR Z., ALLARD J., OURSELIN S.:
Efficient Nonlinear FEM for Soft Tissue Modelling and Its GPU
Implementation within the Open Source Framework SOFA. In
ISBMS 2008, London, UK, July 7-8, 2008: proceedings (2008),
vol. 5104, Springer-Verlag New York Inc, p. 28. 2, 4

[DCA99] DELINGETTE H., COTIN S., AYACHE N.: A Hy-
brid Elastic Model Allowing Real-Time Cutting Deformations
and Force Feedback for Surgery Training and Simulation.
In Computer Animation (Computer Animation’99) (no address,
États-Unis, 1999), Thalmann N., Thalmann D., (Eds.), IEEE
Computer Society, pp. 70–81. 1

[GW05] GEORGII J., WESTERMANN R.: Mass-spring systems
on the GPU. Simulation Modelling Practice and Theory 13, 8
(2005), 693–702. 2

[MHS05] MOSEGAARD J., HERBORG P., SORENSEN T.: A gpu
accelerated spring mass system for surgical simulation. Studies
in health technology and informatics 111 (2005), 342–348. 2, 6

[NMK⇤06] NEALEN A., MÜLLER M., KEISER R., BOXERMAN
E., CARLSON M.: Physically Based Deformable Models in
Computer Graphics. Computer Graphics Forum 25, 4 (Dec.
2006), 809–836. 1

[NP05] NESME M., PAYAN Y.: Efficient, physically plausible fi-
nite elements. Eurographics (short papers) (2005), 1–4. 8

[PDA00] PICINBONO G., DELINGETTE H., AYACHE N.: Real-
Time Large Displacement Elasticity for Surgery Simulation:
Non-linear Tensor-Mass Model. In Proceedings of MICCAI’00
(London, UK, 2000), Springer-Verlag, pp. 643–652. 1, 2

[Pic03] PICINBONO G.: Non-linear anisotropic elasticity for real-
time surgery simulation. Graphical Models 65, 5 (Sept. 2003),
305–321. 1, 2

[RNSS⇤06] RODRIGUEZ-NAVARRO J., SUSÍN SÁNCHEZ A.,
ET AL.: Non structured meshes for Cloth GPU simulation us-
ing FEM. In VriPhys 2006 (2006). 2

[SDR⇤05] SCHWARTZ J., DENNINGER M., RANCOURT D.,
MOISAN C., LAURENDEAU D.: Modelling liver tissue proper-
ties using a non-linear visco-elastic model for surgery simulation.
Medical Image Analysis 9, 2 (2005), 103–112. 1, 2

[SGS10] STONE J., GOHARA D., SHI G.: Opencl: A paral-
lel programming standard for heterogeneous computing systems.
Computing in science & engineering 12, 3 (2010), 66. 3

[SM06] SØRENSEN T., MOSEGAARD J.: An introduction to gpu
accelerated surgical simulation. Biomedical Simulation (2006),
93–104. 2

[TPBF87] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER
K.: Elastically deformable models. ACM Siggraph Computer
Graphics 21, 4 (1987), 205–214. 3, 6

[Wor95] WORKS P.: Finite element modeling for stress analysis.
John Wiley & Sons, 1995. 1

c� The Eurographics Association 2012.

