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Abstract. Endomicroscopy allows in vivo and in situ imaging with cel-
lular resolution. One limitation of endomicroscopy is the small field of
view which can however be extended using mosaicing techniques. In this
paper, we describe a methodological framework aiming to reconstruct a
mosaic of endomicroscopic images acquired following a noisy robotized
spiral trajectory. First, we infer the topology of the frames, that is the
map of neighbors for every frame in the spiral. For this, we use a Viterbi
algorithm considering every new acquired frame in the current branch
of the spiral as an observation and the index of the best neighboring
frame from the previous branch as the underlying state. Second, the
estimated transformation between each spatial pair previously found is
assessed. Mosaicing is performed based only on the pairs of frames for
which the registration is considered successful. We tested our method on
3 spiral endomicroscopy videos each including more than 200 frames: a
printed grid, an ex vivo tissue sample and an in vivo animal trial. Re-
sults were statistically significantly improved compared to reconstruction
where only registration between successive frames was used.

1 Endomicroscopy during surgical intervention

Probe-based Confocal Laser Endomicroscopy (pCLE) is an imaging technique
that provides in vivo video sequences of soft tissues at cellular level [8]. The
work presented in this paper is part of a gastrointestinal surgery project where
we aim to perform an optical biopsy during the procedure using pCLE. Like
most microscopy imaging techniques, pCLE offers high resolution images at the
expense of the field of view. Mosaicing techniques can be used to extend the field
of view by stitching series of overlapping images and create a large field of view
image. Mosaicing algorithms can be separated in two classes. In the first category
are methods with no a priori on the acquisition trajectory (e.g. handheld mi-
croscopes) based on topology inference [6] where the configuration of the frames
has to be entirely recovered from registration [1,4,7]. These methods are powerful
but by definition do not take advantage of any topology information which tends
to make them less robust and more computationally demanding on long videos.
In the second category are methods adapted for known - usually robotized -
acquisition trajectories (e.g. microscope with motorized platform) where the a
priori knowledge directly provides the topology [3]. For our project, a dedicated
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device was designed to allow video mosaic acquisitions wherein a robot holds the
probe and follows a pre-defined spiral trajectory [2]. The theoretical trajectory
given as a command to the robot can be actually very disturbed due to tissue
friction and mechanical distortions (see Fig. 5, right). In a similar context, the
mechanical perturbations were considered so dramatic that the estimation of
the transformation between successive frames actually served as a velocity sen-
sor to control the robot [5]. For mosaic reconstruction of videos acquired with
our setup, theoretically we fall into the category of known trajectory. However,
surgical conditions imply that we can not entirely rely on the trajectory informa-
tion to infer the acquisition topology. Moreover, the actual neighbors might offer
very little overlap preventing from performing reliable registration. The contri-
bution of this paper is to propose a strategy to tackle the problem of mosaic
reconstruction with weak a priori on the trajectory. We propose a three step
method: first we infer the frames topology using Viterbi algorithm, second we
estimate for each neighboring frames previously found the quality of the regis-
tration, and finally we rely on the best associations only to perform the final
mosaic reconstruction.

2 Material and method

2.1 Material

We used three film sequences acquired following the same spiral trajectory. The
first sequence is a test sequence; it was acquired on a sheet of white paper with
a printed image of a regular black grid using an industrial robot. The second
sequence was acquired ex vivo on chicken breast using the same industrial robot.
The last sequence was acquired in vivo on pig liver using the surgical actuator.
Trajectories were three loop Archimedean spirals of polar equation r = aθ with
a = d0/2π where d0 = 150µm is the theoretical inter-branch distance. The
field of view of the mini-probe is approximately circular with a size of 200µm,
which implies a maximum theoretical overlap of 50µm between two frames from
successive branches belonging to the same radius (see Fig. 1).

2.2 Method

The baseline information most video mosaicing algorithms rely on is the tem-
poral registration between successive frames. Although fallible, this registration
is considered sufficiently reliable since successive frames usually offer good over-
lapping provided that the speed of the probe is low enough. The goal of the
topology inference is to add some extra associations between frames that are
not temporal neighbors to constrain the global reconstruction and to prevent
error propagation. We will refer to these extra associations as spatial neighbors.
In this work, we will consider that the transformation between frames can be
modeled by a translation estimated by maximization of the absolute value of
correlation coefficient: we will refer to the estimated transformation as the best

translation in the following.
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Fig. 1. The configuration of the spiral trajectory acquisition (left). The principle of
checking the current spatial transformation by checking the registration consistency
with previous frames (right).

Viterbi algorithm The first part of the method consists of estimating the
spatial neighbor frames. Let us consider a hidden Markov model where at a
given time index j, the observation is the current frame Fj and the hidden state
sj is the index of the frame in the previous branch that has the largest overlap
with Fj (see Fig. 1). The frame Fsj corresponding to the hidden state sj will also
be referred to as the best match for Fj . Following the Viterbi algorithm, we aim at
recovering the most probable sequence of hidden states, s0→j = {s0, s1, · · · , sj},
given the sequence of observed frames, F 0→j = {F0, F1, · · · , Fj}:

ŝ0→j = argmax
s0→j

P (s0→j |F 0→j). (1)

Let δj(i) = maxs0→j−1 P (s0→j−1, sj = i, F 0→j) be the probability of the best
sequence of states ending at state sj = i. Similarly to the standard Viterbi algo-
rithm but keeping the complete set of observations in the emission probability
we find that:

δj(i) = P (Fj |sj = i, F 0→j−1) ·max
i′

[P (sj = i|sj−1 = i′) · δj−1(i
′)] . (2)

Thanks to (2), the dynamic programing approach of the Viterbi algorithm allows
us to solve for (1) by keeping back-pointers to the antecedent of each possible
last hidden state. In this work, the transition probability PT

j is taken such that,
if Fj has Fi as best match, i.e. sj = i, the most likely a priori best match for
Fj+1 will be Fi+1, i.e. sj+1 = i+ 1:

PT
j (i, i′) = P (sj+1 = i′|sj = i) = N (i′; i+ 1, σT ), (3)

where N (i′; i + 1, σT ) is the Gaussian probability function of mean i + 1 and
standard deviation σT , with σT controlling the strength of the a priori on the
temporal smoothness of the sequence of states. The emission probability PE

j is
chosen such that a frame Fj is likely to have Fi as best match if the registration
between Fj and Fi leads to a good similarity criterion and to a transformation
that is close to the expected one:

PE
j (i, Fj) = P (Fj |sj = i, F 0→j−1) = N (dij ; d0, σD) · Corr(Fi, Fj), (4)
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where dij is the euclidean distance between frames Fi and Fj , d0 is the expected
distance between successive branches, σD reflects the expected precision of the
robot and Corr(Fi, Fj) is the best absolute value of the correlation coefficient
when registering frames Fi and Fj with translation transformations.

Filtering of associations We deduct from the Viterbi path the global topology
providing spatial associations between frames of the video sequence. However,
some of these associations might be erroneous and even correct associations
might not offer sufficient overlap and features for successful registration. To only
keep pairs of frames that are both actual neighbors and successfully registered,
we operate a filtering of the pairs. For a given pair of frames Fi of branch bn
and Fj of branch bn+1 supposedly spatial neighbors, we compute the following
transformation consistency criterion TC: TCij = ‖Tji − T(i−1)i ◦ T(j−1)(i−1) ◦
Tj(j−1)‖ where Tji is the best estimated translation between Fi and Fj (see
Fig. 1). We then evaluate the reliability of the association between frames Fi

and Fj based on three criteria: the transformation consistency TCij , the absolute
value of the correlation coefficient CCij and the distance consistency DCij =|
d0 − dij |. We only keep spatial pairs respecting one of the following conditions:

– TCij < TCstrict and CCij > CCloose and DCij < DCloose

– TCij < TCloose and CCij > CCstrict and DCij < DCloose

– TCij < TCloose and CCij > CCloose and DCij < DCstrict

– TCij < TCmid and CCij > CCmid and DCij < DCmid

where subscript tags {strict, mid, loose} refer to 10th, 20th, 30th percentiles of
the set of values TC, DC and 90th, 80th, 70th percentiles of the set of values CC
estimated for all the pairs of frames derived from the Viterbi path and ranked
in increasing order.

Mosaic reconstruction For the final mosaic reconstruction, we modified the
mosaicing algorithm described in [7] so as to be able to inject the spatial pairs
previously obtained to impose the topology. The rest of the algorithm remains
unchanged: the best transformation is estimated between successive frames (tem-
poral neighbors) as well as between given spatial pairs. A robust Fréchet mean
of all the transformations - temporal and spatial - is then computed leading to
the estimation of one unique transformation to the common reference per frame.
Each point of each frame is then transformed to populate the final common ref-
erence. A smooth scattered data approximation is finally performed to construct
the final mosaic image from the irregularly sampled point distribution.

Validation We compared our results to results obtained using the mosaicing
algorithm as described in [7]. Standard topology inference did not work in a
satisfactory way on our large spiral datasets1. We therefore used translation
mode with no topology inference as the baseline method for comparison.

1 cf. supplemental material at http://hal.archives-ouvertes.fr/hal-00830447

http://hal.archives-ouvertes.fr/hal-00830447
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As a ground truth for the paper grid, we acquired an image using a regu-
lar benchtop confocal microscope with a motorized platform performing raster
scanning and we performed subsequence mosaic reconstruction using built in
software from the microscope (see Fig. 3, left). We performed affine registration
between the benchtop confocal image and the results of the mosaic reconstruc-
tion obtained with the baseline algorithm and our proposed method. We then
estimated the correlation coefficient between each frame of the reconstructed
mosaic and the confocal image for both methods.

For validation purpose of the chicken breast and pig liver reconstruction,
since no benchtop confocal image was available as a reference, we relied on an
oracle approach by manually infering the topology through visual assessment and
we then injected the spatial associations obtained into the mosaicing algorithm.
The reconstruction obtained was taken as reference and will be referred to as the
oracle reconstruction. For both the baseline algorithm and our proposed method,
we estimated the displacement between successive frames and compared it to the
oracle results. More precisely, let XO

i , XB
i , XV

i be the positions of frame Fi in
the final mosaic image obtained using the oracle, the baseline algorithm and our
proposed Viterbi framework. we computed for each frame ∆B

i = (XB
i+1−XB

i )−
(XO

i+1 −XO
i ) and ∆V

i = (XV
i+1 −XV

i )− (XO
i+1 −XO

i ).

3 Results

In Fig. 2, we present for the three video sequences the result of the emission
probability estimation for all frames versus all frames of the video. We overlaid
the Viterbi path in white (for all images) and the oracle path in red obtained
manually by visual assessment of overlapping frames (for the chicken and liver
acquisition only where no ground truth image was available). All estimations
were computed using σT = 2 frames for the transition probability. We set σd =
15µm for the industrial robot trajectories (grid and chicken breast) and σd =
400µm for liver acquisition using the in vivo manipulator (where branches can
intersect). The selected pairs obtained after the filtering step are indicated with
green crosses.

We also compared the mosaic reconstruction of the grid image obtained with
the baseline algorithm and our method to the reference image of the grid ac-
quired on a benchtop confocal microscope. For each method, we estimated the
correlation coefficient of every frame with the registered reference confocal im-
age. We then compared the sets of correlation coefficients for each frame of the
baseline reconstruction and of our method using a sign test. Correlation coeffi-
cients proved significantly higher for our method (p-value=4.7037e-20). In Fig. 3,
next to the confocal image (left), we present images of the mosaic reconstruction
(top) and images of the correlation coefficients for each frame (bottom middle
and right) for both methods.

The results of mosaic reconstruction obtained for the chicken breast and the
pig liver using the baseline algorithm and our method were compared quantita-
tively to the oracle reconstruction: the sign test between populations ∆B

i and
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Fig. 2. Emission probability matrices for the grid (left), the chicken breast (middle)
and the pig liver (right) spiral video sequences. The white line is the Viterbi path found.
The red line is the oracle path obtained by visual identification of corresponding frames
between successive branches (middle and right images only): the green crosses are the
selected associations.
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Benchtop confocal Baseline Proposed

Fig. 3. Image representing the value of the correlation coefficient of each frame with
the reference benchtop confocal image of the grid for the mosaic reconstruction using
the baseline algorithm and using our proposed method.

∆V
i with hypothesis ∆B

i > ∆V
i showed significant differences (p-value=5.5362e-

13 for the chicken and p-value=2.1568e-08 for the pig liver) proving that the
relative position of frames in the final mosaic reconstruction were closer to the
oracle reconstruction using our method compared to the baseline. In Fig. 4, we
also display both the mosaic reconstruction and a zoomed region for the chicken
breast using the oracle, baseline and our method. For the in vivo pig liver dataset,
the final mosaic reconstruction can be seen in Fig. 5 (right) using our method.

4 Discussion

The intuitive idea of using the equation of the trajectory directly to constrain the
pairing and registration of frames could not be effectively used in our problem.
In fact, the geometrical precision of the robot was not high enough to be relied
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Oracle Baseline Proposed

Fig. 4. Final result of mosaic reconstruction using the oracle reconstruction based on
visual frame pairing, the baseline algorithm and our proposed method (top row). Mag-
nification of the red frame region: the arrow indicates improvement in the registration
with our proposed method.

on. Moreover, the angular speed of the robot holding the probe is instable due
to tissue friction: the consequence of the instability on the position of the frames
is amplified at each rotation making the pairing between frames from successive
branches non trivially predictable. We thus only used as a priori basic geometrical
properties of the spiral we programmed. These properties were 1) there was
theoretical overlap between successive branches which meant that from a certain
frame number corresponding to the beginning of the second branch, one could
always find at least one frame from the previous branch overlapping it and 2) if
frame Fi is overlapping frame Fj from next branch, then frame Fi+1 has very
high chances of overlapping a close neighbor of frame Fj+1. Formulating the
problem as a hidden Markov model was a natural choice to implement these
properties.

Correlation coefficient proved more robust than the natural sum of squared
differences as similarity criterion due to tissue evolution during acquisition. The
Viterbi path providing spatial associations could have been sufficient to recon-
struct the mosaic providing we could rely on the transformation estimated be-
tween every pair we found. However, in many occasions on real tissue inside the
body, texture and features are very homogeneous and similar to one another,
making the registration extremely challenging in some regions. Consequently,
when the registration between spatial neighbors could not be performed with
high confidence, we decided to discard it and to rely only on temporal trans-
formations between frames in these regions. The filtered spatial pairs finally
injected to the algorithm play the role of local anchors aiming at stabilizing the
mosaic reconstruction. They ought to be regularly reparted along the trajectory:
although we do not explicitly enforce the regularity of the pairs we inject, we
keep a sufficiently high number of pairs that we can expect a frequency of anchor
frames high enough to favorably help the reconstruction.
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Conclusion We presented a methodological framework to perform video mo-
saicing with a weak a priori on the trajectory. Our results showed statistically
significant improvements compared to the baseline mosaicing method. Future
work includes acquiring longer spiral videos in surgical conditions in vivo, using
more flexible transformations to account for tissue deformations and making the
mosaic reconstruction fast enough so that it may be used during surgery. We
also plan on adapting the proposed framework to groupwise registration prob-
lems where images follow a pseudo-periodic pattern such as cardiac images.

Fig. 5. In vivo clinical trial on pig liver: global setup when the probe is inserted (left),
laparoscopic view of the robot-probe in contact with the liver (middle), mosaic recon-
struction using our framework (right).
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