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Radiative transfer with partial coherence in optically thick plasmas

J. Rosato∗

Aix-Marseille Université, CNRS, PIIM UMR 7345, F-13397 Marseille Cedex 20, France

A quantum transport model for atomic line radiation in plasmas is developed and analyzed. It
is found that the Wigner phase space formulation of QED provides a consistent way to address the
wave-particle duality in radiative transfer problems. If the photons’ thermal de Broglie length is
much smaller than all of the spatial scales of the problem under consideration (large spectral band
limit), the radiation is not coherent and radiative transfer can be addressed with usual treatments.
In the general case, the Heisenberg uncertainty relation yields ambiguities in the description of
the radiation-matter interaction mechanisms. We examine this issue and show that an accurate
description of radiative transfer should involve a model with nonlocal interactions, and requires an
appropriate coarse-graining procedure. Calculations of transmission factors and absorption spectra
in ideal cases are performed, and indicate that significant misinterpretations can be done in spectro-
scopic diagnostics if the radiation coherence is not well accounted for. Applications to laser physics
are also discussed.

PACS numbers: 05.60.Gg, 52.25.Os, 42.25.Kb, 32.70.Jz

I. INTRODUCTION

The usual approach to address radiative transfer prob-
lems involves a transport equation of Boltzmann-type,
referred to as “radiative transfer equation”, accounting
for radiation-matter interaction processes such as spon-
taneous/stimulated emission and absorption [1, 2]. The
most natural domain of application is astrophysics [1],
where information on the objects can only be obtained
from passive observation of the emitted radiation. The
large size of galaxies, stellar atmospheres or nebula leads
to the presence of reabsorption effects and makes the use
of a transport theory for photons unavoidable. Opac-
ity models for radiative transfer are widely used in high-
energy density physics, in astrophysics (e.g. in the core of
stars) but also in the framework of fusion research, e.g.,
to characterize the warm and hot dense matter present
in imploding inertial confinement capsules [3–7]. Another
important application of opacity models is provided by
spectroscopic diagnostics and radiation transport simu-
lations in magnetic fusion, in particular with the prepa-
ration of ITER (currently under construction in France)
and the development of integrated modeling codes sup-
porting its operation [8–14]. Applications can be found in
other contexts, e.g., in investigations of magneto-optical
traps (“photon bubbles” [15]), gas discharge lamps [16],
biology [17]. As a rule, reliability in the interpretation
of spectra, as well as in predictions, relies on the devel-
opment of accurate spectroscopy models accounting for
opacity effects.

Although the particle (“photon”) picture of radia-
tion transport is suitable for numerical simulations (e.g.
based on Monte-Carlo procedure [9, 18]), it may be inac-
curate if the light’s coherence length λ2/∆λ (with λ, ∆λ
being the characteristic wavelength of the radiation and
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its spectral width, respectively) [19] is significant with
respect to the spatial scales of interest of the system un-
der consideration. This concerns atomic spectral lines in
particular given the largeness of λ/∆λ, by definition. An
interpretation of this inaccuracy is provided by the cor-
respondence between the coherence length and the pho-
tons’ thermal de Broglie length h̄/∆p for radiation with
the typical momentum detuning ∆p. The Heisenberg
uncertainty principle prevents one from localizing light
quanta in a volume smaller than (h̄/∆p)3, in contrast
with the predictions of the standard radiative transfer
theory, which is essentially local in space. A quantum
version of the radiative transfer equation, accounting for
coherence, cannot be obtained from direct application
of the correspondence principle because the photon as
viewed from QED does not have a definite position op-
erator due to symmetry considerations [20–24] (see also
[25–28] for recent works). A more convenient approach is
provided by the quantum phase space formalism adapted
to second quantization (e.g. [29–34] and Refs. therein).
The quantum phase space formalism has been introduced
in the seminal article by Wigner more than eighty years
ago [35] and has found applications in many domains,
including collision theory [36], solid state physics [37],
general transport phenomena [38], and also fundamen-
tal quantum mechanics (“phase space formulation” [39];
e.g. [40, 41] for recent applications). The quantum phase
space formalism is also used in optics, e.g. for the mod-
eling of the propagation of fields [42]. However, in spite
of a rich literature on the subject there has been only
a few explicit applications to problems involving radia-
tion transport. Recently [43–45], a quantum transport
model for photons that accounts for spatial coherence
has been derived and applications to ideal systems have
indicated an alteration of the one-photon Wigner func-
tion in cases where the coherence length is comparable
either to the photon mean free path or to the charac-
teristic size of the system. Although more general than
the standard radiative transfer theory, this model has no
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obvious interpretation. The transport equation involves
source and loss terms delocalized through a phase space
integral that cannot be reduced to simple convolution,
which makes standard treatments based on Fourier anal-
ysis tricky. On the other hand, the presence of complex
line shape functions raises a problem of consistency in
the probabilistic interpretation of the emission and ab-
sorption processes. The aim of this paper is to provide an
analysis of these issues and to illustrate the applicability
of the model in realistic cases. A theoretical deduction
of the transport equation, based on the previous works
[43–45], is presented. Our development involves a master
equation for photons and uses concepts of the theory of
open quantum systems. The master equation is derived
in Sec. II, and it is adapted to the quantum phase space
formalism in Sec. III. It is shown that accounting for co-
herence effects amounts to write down a master equation
of Lindblad-type and to keep non-diagonal terms of the
radiation density matrix in the Fock states. Section IV
addresses the link between Wigner functions and observ-
able quantities. In Sec. V, the transport of atomic excita-
tion is examined within a generalization of the Holstein-
Biberman theory. A simplification the transport model,
based on a series expansion in powers of h̄, is examined in
Sec. VI. Absorption lines in a slab geometry are consid-
ered as an example of application. Finally, applications
to laser physics are discussed in Sec. VII.

II. MASTER EQUATION FOR THE PHOTONS

The development presented hereafter concerns spec-
tral lines in particular, given the largeness of λ/∆λ. The
emitters and absorbers can be either neutral atoms or
multicharged ions. Because of their formal similarity (in
terms of energy levels), these species will simply be re-
ferred to as “atoms”. The system of interest is a gas
of atoms interacting with the radiation field described
within the second quantization. The standard discretiza-
tion procedure is adopted [46]: we take an infinite set of
quantum harmonic oscillators, each mode is labeled by
the wavevector kj = 2πnj/L (nj is a triplet of integers)
and the polarization vector εj , and the quantization is
done in a cubic box with periodic boundary conditions.
The formal developments are done keeping the size L
of the cube finite, and then taking the limit L → ∞.

We denote aj the photon annihilation operator, a†j the

creation operator, and Nj = a†jaj the number operator.
The annihilation and creation operators satisfy the com-

mutation rules [aj , a
†
j′ ] = δjj′ and [aj , aj′ ] = 0 = [a†j , a

†
j′ ].

The quantized electric and magnetic field are described
in terms of the creation and annihilation operators as

E(r) =
∑

j

i

√

h̄ωj

2ε0L3
(aje

ikj ·r − a†je
−ikj ·r)εj , (1)

B(r) =
∑

j

i

√

h̄

2ε0ωjL3
(aje

ikj ·r−a†je−ikj ·r)kj ×εj , (2)

where ωj = ckj is the frequency corresponding to mode
j. The Hamiltonian of the free radiation field HR is given
by

HR =
∑

j

h̄ωj

(

Nj +
1

2

)

. (3)

Its eigenvectors are elements of the Fock space
formed by the kets |n1 . . . np . . .〉. Each ket
|01 . . . 0p−1, np, 0p+1 . . .〉 ≡ |np〉 denotes a state with
np photons of momentum pp = h̄kp and polarization
εp. The state with no photons |01 . . . 0p . . .〉 ≡ |0〉 is
the vacuum state. The Hamiltonian contains additional
terms HA and V , which account for the dynamics of
the atoms and their interaction with the radiation field,
respectively. In the following we consider bound-bound
transitions and describe the interaction term within the
dipole approximation:

V =
∑

a

−da ·E(ra). (4)

Here, da and ra are respectively the dipole operator and
position operator of the center of mass of the ath atom.
We assume that the radiation and matter are weakly cou-
pled, so that the evolution of the density operator can be
described using a quantum master equation. Following
standard approaches [47–49], we write

dρR
dt

(t) = − i

h̄
[HR, ρR(t)]

− 1

h̄2

∫ ∞

0

dτTrA[V, [Ṽ (−τ), ρ(t)]], (5)

where ρR = TrA(ρ) denotes the density operator of the
radiation, obtained from partial trace of the whole sys-
tem’s density operator ρ over the atomic states, and
Ṽ (−τ) = e−iH0τ/h̄V eiH0τ/h̄ is the interaction taken in
the interaction picture with H0 = HA + HR. The
weak coupling approximation yields the factorization
ρ = ρAρR in the second term of the right-hand side with
ρA = TrR(ρ). Equation (5) can be written in a form
similar to the Lindblad equation, by using techniques
involved in the theory of open quantum systems [50].
We expand the commutator and write it as a quadratic
function of the creation and annihilation operators. The

terms proportional to ρRajaj′ , ρRa
†
ja

†
j′ , and their permu-

tations, are neglected since they are not resonant (this
assumption is similar to the rotating wave approxima-
tion [32]). Algebraic manipulations yield the following
expression

− 1

h̄2

∫ ∞

0

dτTrA[V, [Ṽ (−τ), ρ(t)]]

=
∑

jj′

[

Γ∗
1jj′ajρRa

†
j′ + Γ∗

2jj′a
†
jρRaj′

−Γ1jj′a
†
jaj′ρR − Γ2jj′aja

†
j′ρR

]

+H.c., (6)
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where H.c. stands for Hermitian conjugate and Γ1jj′ ,
Γ2jj′ are two scalars that depend on the atomic vari-
ables only. They are defined as half-Fourier transforms
of correlation functions

Γ1jj′ =

√
ωjωj′

2ε0h̄L3

∑

aa′

∫ ∞

0

dτ〈DajD̃
†
a′j′(−τ)〉eiωj′τ , (7)

Γ2jj′ =

√
ωjωj′

2ε0h̄L3

∑

aa′

∫ ∞

0

dτ〈D†
ajD̃a′j′(−τ)〉e−iωj′τ , (8)

and they are related to the spectral profile of the emis-
sion and absorption processes, as will be shown below.
Daj = da · εj exp(−ikj · ra) is a shortcut notation; the
exponential stems from the decomposition of the elec-
tric field given in Eq. (1). The brackets 〈...〉 denote a
statistical average performed over the atomic states, in-
ternal and external. If we assume independent atoms,
with independent external and internal states, moving
classically along straight lines during the characteristic
correlation time, the averages are factorized and the Γs
become simpler

Γ1jj′ =

√
ωjωj′Nat

2ε0h̄L3

∫ ∞

0

dτ〈d · εjd̃(−τ) · εj′〉

×〈e−ikjj′ ·rei(ωj′−kj′ ·v)τ 〉, (9)

Γ2jj′ =

√
ωjωj′Nat

2ε0h̄L3

∫ ∞

0

dτ〈d · εjd̃(−τ) · εj′〉

×〈e−ikjj′ ·rei(ωj′−kj′ ·v)τ 〉∗. (10)

Here, the indices a, a′ have been removed and the sums
have been replaced by multiplication with the number
of atoms Nat, in agreement with the independent atoms
assumption. The first average is performed over the in-
ternal atomic states and provides the dipole autocorrela-
tion function. In the following we assume unpolarized
radiation, so that 〈d · εjd̃(−τ) · εj′〉 can be replaced

by 〈d · εjd̃(−τ) · εj〉δεjεj′
, with δεjεj′

being the Kro-
necker symbol. The second average is performed using
the atoms’ one-particle phase space distribution. In the
exponential, the notation kjj′ = kj − kj′ is used. It is
convenient to introduce the following notations:

χc,abs(r,p, t) =
h̄ω0

4π
BgeNg(r, t)φc(ω, n̂, r, t), (11)

χc,em(r,p, t) =
h̄ω0

4π
BegNe(r, t)φc(ω, n̂, r, t), (12)

χc = χc,abs − χc,em. (13)

In Eqs. (11), (12), Ng(r, t) and Ne(r, t) denote the pop-
ulation densities of the lower (g) and upper (e) levels
of the transition at location r and time t, Bge and Beg

are the Einstein coefficients for absorption and stimu-
lated emission, and h̄ω0 is the corresponding energy. The
quantity φc denotes the complex spectral line shape func-
tion, with ω = |p|c/h̄ and n̂ = p/|p| being the fre-
quency and the normal unit vector corresponding to the
photon momentum p, respectively. The complex line
shape function is normalized over the frequencies, i.e.,
∫

dω
∫

(dΩ/4π)φc(ω, n̂, r, t) = 1. Using the same nota-
tion as in [44], we write it as follows

φc(ω, n̂, r, t) =

∫

d3vf(v; r, t)φ0c(ω(1− n̂ · v/c), n̂, r, t),
(14)

φ0c(ω, n̂, r, t) =
1

π

∫ ∞

0

dτC(τ ; n̂, r, t)e−iωτ , (15)

where f is the atoms velocity distribution function that
accounts for thermal Doppler broadening and C is the
autocorrelation function of the atomic dipole projected
onto the polarization plane in reduced units. The quan-
tity χc defined in Eq. (13) has the dimensions of an
inverse length and denotes a complex extinction coeffi-
cient. Equations (11) and (12) allows one to write the Γs
in a more compact form

Γ1jj′ =
cδεjεj′

2L3

∫

d3re−ikjj′ ·rχ∗
c,abs(r, h̄kj′), (16)

Γ2jj′ =
cδεjεj′

2L3

∫

d3reikjj′ ·rχc,em(r, h̄kj′). (17)

Here the time dependence has not been written explicitly
for the sake of simplicity. Algebraic manipulations with
Eqs. (5) and (6) yield an equation of Lindblad-type for
the density operator ρR:

dρR
dt

(t) = − i

h̄
[HR +HS , ρR(t)] +D(ρR(t)). (18)

The shift is given by

HS =
∑

jj′

[

S1jj′a
†
jaj′ + S2jj′aja

†
j′

]

, (19)

and the dissipator reads

D(ρR) =
∑

jj′

γ1jj′

[

aj′ρRa
†
j −

1

2
{a†jaj′ , ρR}

]

+
∑

jj′

γ2jj′

[

a†j′ρRaj −
1

2
{aja†j′ , ρR}

]

, (20)

where {, } is the usual anticommutator. Here we have
explicitly introduced the Hermitian and anti-Hermitian
parts of the Γ matrices, writing Γ1jj′ = γ1jj′/2+iS1jj′/h̄
with γ1jj′ = Γ1jj′+Γ∗

1j′j and S1jj′ = (h̄/2i)(Γ1jj′−Γ∗
1j′j)

(similar relations hold for Γ2jj′ , γ2jj′ , and S2jj′). The γ
and S matrices are Hermitian, i.e. γ∗1,2jj′ = γ1,2j′j and
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S∗
1,2jj′ = S1,2j′j . The dissipator term describes an irre-

versible evolution of the radiation field induced by pho-
ton emission and absorption processes. The shift (HS

term) corresponds to a Hamiltonian contribution to the
dynamics and may be interpreted as a renormalization
of the radiation energy due to the atoms present in the
system. A quantity of interest is the average photon num-
ber 〈Nj(t)〉 = Tr(ρR(t)Nj). It denotes the mean number
of radiation quanta with the mode j in the quantization
volume, hence provides a measure of the radiation’s total
energy at time t. It obeys a closed evolution equation if
the nondiagonal elements of the various operators in Eq.
(18) are neglected:

d〈Nj〉
dt

= γ2jj − (γ1jj − γ2jj)〈Nj〉. (21)

The first term of the right-hand side denotes spontaneous
emission and the second term denotes absorption cor-
rected by stimulated emission. Because of its simple in-
terpretation, this equation has been used successfully in
quantum-based deductive treatments of radiative trans-
fer [48, 49].

III. QUANTUM PHASE SPACE

The nondiagonal matrix elements of the density op-
erator ρR in the Fock basis denote radiation coherence,
a typical feature of the wave nature of light. In this
section, we develop a formalism suitable to account for
this property in radiative transfer. Our starting point
is the master equation (18) [or, equivalently, Eqs. (5)
and (6)] and its formulation within the quantum phase
space formalism. The fundamental quantity of interest
is the one-photon Wigner function W (r,p, t), defined as
the average of the phase space photon number operator
N(r,p, t) [51]:

W (r,p, t) = TrR[ρR(t)N(r,p)], (22)

N(r,p) =
1

π3h̄3

∑

ε

∫

d3ka†
ε

(p

h̄
− k

)

aε

(p

h̄
+ k

)

e2ik·r.

(23)
Here a†

ε
(k) and aε(k) are the continuous versions of

the creation and annihilation operators, respectively.
They are related to their discrete versions as aεj

(kj) =

(L/2π)3/2aj and a†
εj
(kj) = (L/2π)3/2a†j , and obey the

commutation rules [aε(k), a
†
ε
′(k′)] = δεε′δ(k − k′) and

[aε(k), aε′(k′)] = 0 = [a†
ε
(k), a†

ε
′(k′)]. Examination of

Eqs. (22) and (23) shows that W (r,p, t) is normalized to
the total number of photons. It is convenient to write
the Wigner function in terms of the discretized modes

W (r,p, t) =

(

2

h̄L

)3
∑

jj′

δεjεj′
δ

(

kj + k′
j −

2p

h̄

)

×Njj′(t)e
−ikjj′ ·r. (24)

Here Njj′(t) = Tr(ρR(t)a
†
jaj′) is a generalization of the

average photon number defined in the previous section.
This quantity obeys the following evolution equation

dNjj′

dt
= iωjj′Njj′ + γ2jj′ −

∑

j′′

(Γjj′′Nj′′j′ + Γ∗
j′j′′Njj′′),

(25)
which is obtained from Eq. (18), using the commutation
relations satisfied by the creation and annihilation oper-
ators. The first term in the right-hand side describes free
evolution, i.e., in the absence of emission and absorption
processes. By convention, ωjj′ = ωj − ωj′ . The second
term is a source independent of Njj′ and denotes sponta-
neous emission. The third term denotes absorption cor-
rected by stimulated emission. By convention, Γjj′ =

Γ∗
1jj′ − Γ2jj′ = (cδεjεj′

/2L3)
∫

d3reikjj′ ·rχc(r, h̄kj′). A
transport equation for the Wigner function is obtained
from Eqs. (24), (25), using the following relation [43]

Njj′(t) =

(

2πh̄

L

)3 δεjεj′

2

∫

d3reikjj′ ·rW

(

r,
h̄kj

2
+
h̄kj′

2
, t

)

(26)
and taking the continuum limit:

∂W

∂t
(r,p, t) + T [W ](r,p, t) = S(r,p, t)− L[W ](r,p, t).

(27)
Here T is a functional that describes free propagation

T [W ](r,p, t) = − c

π2
P

∫

d3r′
sin

[

2p
h̄ · (r− r′)

]

|r− r′|4
×W (r′,p, t), (28)

S denotes spontaneous emission

S(r,p, t) =
1

π3h̄4p3
Re

∫

d3r′
∫

d3p′ηc(r
′,p′, t)

×e−2i(r−r′)·(p−p′)/h̄, (29)

with ηc being the complex emissivity

ηc(r,p, t) =
h̄ω0

4π
AegNe(r, t)φc(ω, n̂, r, t), (30)

(Aeg is the corresponding Einstein coefficient) and L de-
notes the absorption corrected by stimulated emission

L[W ](r,p, t) =

∫

d3r′
∫

d3p′K(r,p, t; r′,p′)W (r′,p′, t),

(31)

K(r,p, t; r′,p′) =
c

(πh̄)6
Re

∫

d3r′′
∫

d3p′′χc(r
′′,p′′, t)

× e2i[(r−r′)·(p′−p′′)−(r−r′′)·(p−p′)]/h̄.(32)

In Eq. (28), P denotes the Cauchy principal value. Equa-
tion (27) is a generalization of the radiative transfer equa-
tion, which takes into account the wave nature of light.
We refer to it as a “quantum radiative transfer equation”
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(QRTE) in the following. The space integral involved in
the free propagation term T denotes an ambiguity in the
definition of a photon trajectory if the Wigner function
is not homogeneous at the radiation wavelength scale.
This ambiguity is inherent to the inadequacy of using
a particle picture for radiation with large wavelengths,
and this inadequacy is well known in standard textbooks
on radiative transfer (e.g. [2]). If the geometrical limit
(λ → 0) is assumed, the propagation term comes down
to simple advection in the phase space

T [W ](r,p, t) ≃ cn̂ · ∂W
∂r

(r,p, t). (33)

In the source and loss terms Eqs. (29), (31), and (32),
the integrals imply delocalization over a space volume
of typical extent (h̄/∆p)3, with ∆p denoting the typical
momentum detuning of the atomic line under consider-
ation. The characteristic length h̄/∆p corresponds to
the photons’ thermal de Broglie wavelength and may be
identified as the radiation coherence length λ2/∆λ. It
is much larger than the radiation wavelength for atomic
lines, which means that such a delocalization can be rele-
vant even at the short wavelength limit. Only in the lim-
iting case where both the Wigner function and the emis-
sion and absorption coefficients are homogeneous over
this scale, the QRTE becomes local and identical with
the standard radiative transfer equation, namely

(

1

c

∂

∂t
+ n̂ · ∂

∂r

)

I = η − χI, (34)

where I = h̄cp3W is identified as the radiation specific
intensity, η = Reηc and χ = Reχc are the usual emission
and extinction coefficients.
The QRTE can be reformulated in terms of the Moyal

star product [52]. For two functions f(r,p), g(r,p), it is
defined with the following integral

(f ⋆ g)(r,p) =
1

(πh̄)6

∫

d1

∫

d2f(r+ r1,p+ p1)

×g(r+ r2,p+ p2)e
2i(r1·p2−r2·p1)/h̄, (35)

where d1 = d3r1d
3p1 and d2 = d3r2d

3p2 are shortcut
notations for the phase space infinitesimal volume. The
star product is noncommutative and has some specific
properties. It can be expanded as a power series of h̄ and
reduces to simple multiplication in the limit h̄ → 0. An
application of the series expansion will be examined in
Sec. VI. In terms of the star product, the propagation
term takes a simple form

T [W ] = c{W, |p|}M , (36)

where {f, g}M = (f ⋆ g− g ⋆ f)/ih̄ is the so-called Moyal
bracket. In the limit h̄→ 0, it is equivalent to the Poisson
bracket {f, g} = (∂f/∂r) · (∂g/∂p) − (∂f/∂p) · (∂g/∂r)
and the propagation term reduces to advection, Eq. (33).
The source and loss terms can be written as follows

S(r,p, t) =
1

h̄p3
lim
r0→r
p0→p

Re(ηc ⋆∆
∗
r0,p0

)(r,p, t), (37)

L[W ](r,p, t) = c lim
r0→r
p0→p

Re((W∆∗
r0,p0

) ⋆ χc)(r,p, t), (38)

where ∆r0,p0
(r,p) = exp [2i(r− r0) · (p− p0)/h̄] ≡

(πh̄)3(δr0 ⋆ δp0
)(r,p) denotes a phase space filter of

characteristic volume h̄3 [with δr0(r) = δ(r − r0) and
δp0

(p) = δ(p − p0) being the usual delta functions in
the r− and p−spaces]. They reduce to η/h̄p3 and cχW
in the limit h̄ → 0 and the QRTE is equivalent to the
standard radiative transfer equation (34).

IV. MODELING OF DETECTOR FUNCTIONS

The quantum radiative transfer equation (27) has not
necessarily a positive-definite solution, even though the
initial and/or bondary conditions are positive, so that a
probabilistic interpretation is not straightforward. This
issue stems from the Heisenberg uncertainty principle. It
is customary to introduce a coarse-graining with a phase
space cell of size larger than h̄3. This procedure amounts
to considering the following quantity

W̄ (r,p, t) =

∫

d3r′
∫

d3p′f(r,p; r′,p′, t)W (r′,p′, t),

(39)
instead of the Wigner function, and to interpret it as
a probability density function. The explicit expression
for the smoothing function f(r,p; r′,p′, t) depends on
the problem under consideration. For example, a Gaus-
sian function f(r,p; r′,p′, t) = exp[−a(r− r′)2/h̄− (p−
p′)2/ah̄]/(πh̄)3 (with a > 0) leads to the so-called Husimi
distribution, positive everywhere (e.g. [53]). Other
smoothing functions have been proposed (even for the
radiative transfer equation, e.g. [31, 32]). There is a cor-
respondence between Eq. (39) and “observable” quan-
tities in the terminology of Monte-Carlo kinetic simula-
tions. The phase space integral denotes a particular case
of a “response” function, namely the response of a de-
tector characterized by the f function to the radiation
field (e.g. [54, 55]). For photons, as well as for massive
particles, the quantities involved in fluid equations (den-
sity, temperature, etc.) can be written as such a phase
space integral, and, hence, are other particular cases of
response functions. The point of view of using response
functions is practical if one needs the description of a
photodetection signal, e.g., from a spectrometer. To il-
lustrate it we consider as a particular case an isolated
atom in its ground state |g〉, located at r = 0. A photon
is considered detected if the atom is ionized after interac-
tion with the radiation field. Denoting |a〉 an ionization
state and Pg→a the probability of transition g → a, we
define the photo-detection signal at time t as [47]

Pion(t) =
∑

a

RaPg→a(t), (40)

where Ra is the efficiency of detection after ionization
in the |a〉 state. The probability Pg→a can be evaluated
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using the standard perturbation theory. As in Sec. II,
dipole interaction may be considered. If we neglect non-
resonant terms, we get, at second order in V

Pg→a(t) =
|dag|2
3h̄2

∫ t

0

dt′
∫ t

0

dt′′G(t′′, t′)eiωag(t
′−t′′),

(41)
where G(t′, t′′) = 〈E(−)(t′′) · E(+)(t′)〉 denotes a cor-
relation function of the electric field, with E(+) =
∑

j i(h̄ωj/2ε0L
3)1/2εjaj and E(−) = E(+)∗. The tran-

sition probability can be written as a Fourier transform

Pion(t) =
1

2π

∫ t

0

dt′
∫ t

0

dt′′
∫ +∞

−∞

dωs(ω)eiω(t′−t′′)G(t′′, t′),

(42)
where s(ω) is given by

s(ω) =
2π

3h̄2

∑

a

Ra|dag|2δ(ω − ωag). (43)

and denotes the spectral sensitivity of the detector. A
correspondence with the Wigner function is obtained
from Eq. (26), identifying the correlation function as
a phase space average at initial time

G(t′′, t′) =
h̄ω0

2ε0(πh̄)3

∫

d3r

∫

d3p

∫

d3p′W (r,p, 0)

×e2ip′·r/h̄eic[|p+p′|t′′−|p−p′|t′]/h̄. (44)

Here, for simplicity it has been assumed that the Wigner
function evolves at a time scale much larger than the radi-
ation’s characteristic period (∼ ω−1

0 ) and coherence time
(∼ ∆ω−1

0 , with ∆ω0 being the characteristic spectral
band). If the radiation is homogeneous at the detector’s
location, one can set W (r,p, 0) ≃ W (0,p, 0) ≡ W (p)
in Eq. (44). The correlation function depends on the
difference t′ − t′′ only

G(t′′, t′) =
h̄ω0

2ε0

∫

d3pW (p)eicp(t
′′−t′)/h̄ ≡ G(t′ − t′′),

(45)
and a simple expression holds for the transition proba-
bility at large times

Pion(t) ∼ Γt, (46)

where

Γ =
h̄ω0

2ε0

∫

d3pW (p)s
(cp

h̄

)

. (47)

This quantity can be interpreted as a transition rate and
it provides a response function. Equation (47) is a phase
space adaptation of the formula involved in the model-
ing of photodetection signals. The photon is detected
if its energy pc is in the typical spectral band of the s
function. For small-band detector, the transition rate is
proportional to the Wigner function and the latter can be
interpreted as a Fourier transform of the electric field’s
autocorrelation function. On the contrary, a large band

detector yields a signal proportional to the Wigner func-
tion integrated over the momentum, and the latter is
proportional to the square of the electric field amplitude.
The method described above can be adapted to realistic
detectors used in plasma spectroscopy. A generalization
of Eq. (47), involving integral over the spatial extent of
the detector, can be obtained in a straightforward man-
ner, taking the transition probability Pion for a set of
atoms instead of one atom only. Such a treatment re-
quires the detector’s geometry be well accounted for, and,
hence, is strongly dependent of the experimental device.

V. HOLSTEIN-BIBERMAN THEORY

The Holstein-Biberman theory [56, 57] provides a de-
scription of opacity effects based on the modeling of
atomic excited levels, with no explicit reference to the
radiative transfer equation. Take a set of two-level atoms
and, for simplicity, neglect their interaction with massive
particles (collisions). The following evolution equation is
obtained (“Holstein-Biberman equation”)

∂N2

∂t
(r, t) = −γN2(r, t)+γ

∫

d3r′G(r, r′)N2(r
′, t). (48)

It provides a closed relation for the density of excited
atoms, N2. The rate γ denotes the reciprocal of the life
time for the excited state (here γ ≡ A21 since collisions
are neglected), and G(r, r′) is a kernel that describes the
production of excited atoms at r given deexcitation at
r′. An explicit expression is obtained from the solution
of the standard radiative transfer equation (34) in the
adiabatic limit (∂/∂t ≡ 0), using the identity

γ

∫

d3r′G(r, r′)N2(r
′, t)

= N1B12

∫

dω

∫

dΩ

4π
φ(ω, n̂)I(ω, n̂, r, t), (49)

where B12 is the Einstein coefficient for absorption (stim-
ulated emission is neglected for simplicity) and N1 is the
density of atoms in the fundamental state. The latter,
as well as the line shape function φ(ω, n̂), are assumed
here space and time independent. For simplicity we also
assume isotropic line shape function, i.e. φ(ω, n̂) ≡ φ(ω)
and χ(p) ≡ χ(ω). The solution of the radiative transfer
equation [2] leads to an expression for G that depends on
|r− r′| only, namely

G(r, r′) ≡ G(s) = − 1

4πs2
dT

ds
(s), (50)

where s = |r − r′| ≡ |s| and T (s) is referred to as the
“transmission factor”. It denotes the probability that
an emitted photon travels the distance s without being
absorbed, it is defined by

T (s) =

∫

dωφ(ω)e−χ(ω)s, (51)
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and it satisfies T (0) = 1 and T (s) → 0 when s → ∞.
A related quantity is the escape factor (with some differ-
ent conventions in the definition [58]) used in collisional-
radiative codes (e.g. [10, 11, 59]).
The treatment above can be adapted in such a way to

account for spatial coherence. A preliminary investiga-
tion [44] has indicated the possibility for an alteration of
escape factors if the coherence length is of the same or-
der as the photon mean free path and/or the medium’s
characteristic size. In that work, the model was based
on the quantum transport equation (27) and the corre-
spondence I ↔ h̄cp3W was used in Eq. (49). This is not
fully consistent if coherence effects are present, because
the integral in the right-hand side of Eq. (49) implies lo-
cal interaction. A more precise development can be done
along the lines of the formalism developed in Secs. II
and III, writing down a master equation for the atomic
populations from first principles. It is obtained from an
equation for the atomic density matrix ρA = TrR(ρ) for-
mally identical to Eq. (5). We do not give details on
the procedure because it is similar to that done for pho-
tons in Sec. II. The resulting evolution equation for the
population of the excited level reads

∂N2

∂t
(r, t) = −A21N2(r, t) + B[W ](r, t), (52)

where the functional B denotes absorption and provides a
source of excited atoms. It is nonlocal in phase space, in
the same way as the quantum radiative transfer equation
(27), and it is related to the loss term L[W ] [Eqs. (31)
and (32), or Eq. (38)] through the following integral

B[W ](r, t) =

∫

d3pL[W ](r,p, t). (53)

An analysis of the quantum radiative transfer equation
indicates that the photon density (first-order moment,
m−3) N(r, t) =

∫

d3pW (r,p, t) obeys the same evolu-
tion equation as does the excited level population Eq.
(52), up to a minus sign in the source and loss terms,
which indicates a conservation of the total (atoms +
photons) particle density. A closed equation for the
atomic population is obtained by inserting the solution
of the quantum radiative transfer equation in B[W ]. As-
suming homogeneous and stationary absorption coeffi-
cient [χ(r,p, t) ≡ χ(p)], and taking the adiabatic limit
(∂/∂t ≡ 0), the QRTE reads

cn̂ · ∂W
∂r

(r,p, t) = S(r,p, t)− L[W ](r,p, t), (54)

where the loss term involves a space integral only, of
convolution-type

L[W ](r,p, t) =

∫

d3r′K0(r− r′,p)W (r′,p, t), (55)

K0(r,p) =
c

(πh̄)3
Re

∫

d3p′χc(p
′)e2ir·(p−p′)/h̄. (56)

The solution has a simple structure in the Fourier space

Ŵ (k,p, t) =
Ŝ(k,p, t)

icn̂ · k+ K̂0(k,p)
. (57)

Here, by convention, f̂(k) =
∫

d3rf(r) exp(−ik · r) for
any function of the space coordinates f(r). A general-
ization of the Holstein-Biberman kernel G(r, r′) is thus
obtained from Eq. (52), using the identity

γ

∫

d3r′G(r, r′)N2(r
′, t) = B[W ](r, t), (58)

taking the solution (57), and using that Ŝ is proportional
to the Fourier transform of the population N2. The cal-
culation, tedious but with no major difficulties, yields an
isotropic kernel [G(r, r′) ≡ G(s)] with a rather simple
expression in the Fourier space

Ĝ(k) =

∫

dω

∫

dΩ

4π

ψ(p,k)K̂0(k,p)

icn̂ · k+ K̂0(k,p)
. (59)

Here, by definition, Ĝ(k) =
∫

d3sG(s) exp(−ik · s) and
ψ(p,k) = [φc(p+ h̄k/2)+φ∗c(p− h̄k/2)]/2 [with the con-
vention φc(ω = |p|c/h̄, n̂ = p/|p|) ≡ φc(p)]. A similar
expression has been obtained in [60] in a different con-
text, but there is no clear interpretation of the role of
coherence.

A generalization of the transmission factor, accounting
for coherence effects, can be obtained from Eq. (50), tak-
ing the inverse Fourier transform of Eq. (59). Its proba-
bilistic interpretation is not straightforward because this
quantity can be negative in the same way as the Wigner
function. We have estimated the transmission factor in
the case of a Doppler-broadened spectral line, taking
the Maxwellian velocity distribution for the atoms. The
complex line shape depends on the frequency detuning
∆ω = ω − ω0 only and is given by

φc(∆ω) =
1

∆ωD
√
π
w∗

(

∆ω

∆ωD

)

, (60)

where ∆ωD = ω0v0/c is the Doppler width, with v0 =
(2T/m)1/2 being the atoms’ thermal velocity at tem-
perature T , and w(z) is the complex Faddeeva func-
tion [61]. The real part of φc is the usual Gaussian
shape; the imaginary part is an odd, slowly decreas-
ing function of |∆ω| (see Fig. 1). To simplify the
numerical calculation we have used the approximation
|p± h̄k/2| ≃ |p| ± h̄k · n̂/2 in the evaluation of ψ(p,k),
which stems from the orderings |∆ω|, kc≪ ω0 (k is esti-
mated as the inverse gradient length of the Wigner func-
tion). A further simplification is provided by the sub-
stitution φc(∆ω ± n̂ · kc/2) ↔ φc(∆ω ± iχ0c/2) where
χ0 = χ(∆ω = 0) is the real absorption coefficient (m−1)
at the line center. This substitution is suggested from
the structure of the integral in Eq. (59). The presence of
a denominator indicates that the integrand is significant
when |icn̂ ·k+ K̂0(k,p)| is small. If one allows k to have
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FIG. 1: Plot of the complex Doppler line shape. The real
part is the usual Gaussian shape and the imaginary part is
an odd, slowly decreasing function of |∆ω|.

complex coordinates, a sufficient condition is provided by
the relation icn̂ · k ≃ −K̂0(k,p). Evaluating the latter
term by its real part at the line center, −χ0, yields the
approximation. It should be noted that this substitution
is drastic, because the possibility for allowing k to be
a complex vector is not guaranteed. Here our motiva-
tion is given by the need of an analytical evaluation of
the inverse Fourier transform of Ĝ(k), hence, we leave
detailed mathematical analysis as a further work. Since
now φc is independent of the Fourier variable, this also
holds for ψ and K0 and one can write ψ(p,k) ≡ ψ(∆ω)

and K̂0(k,p) ≡ K0(∆ω); the inverse Fourier transform
is analytical and the corresponding transmission factor
has a simple form

T (s) = Re

∫

d∆ωψ(∆ω)e−K∗

0
(∆ω)s, (61)

which is similar to that obtained within the usual radia-
tive transfer theory, Eq. (51). Figure 2 shows a plot
of the transmission factor for finite coherence length λc,
taking λc = c/∆ωD as a definition and assuming var-
ious values for the adimensional parameter χ0λc. The
latter characterizes the amplitude of the modifications
in the radiation field induced by spatial coherence. As
can be seen, the presence of spatial coherence alters the
transmission factor, with a strong deviation at large pen-
etration length. It is not clear that such deviations are
directly observable given the non-positivity of this quan-
tity and the large number of approximations used in
our treatment, but this result suggests that an accurate
modeling of radiative transfer in optically thick medium
should involve a more advanced formalism than the usual
one.

VI. CALCULATIONS OF ABSORPTION LINES

The QRTE provides a tempting approach for retain-
ing coherence in radiative transfer models but practical
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FIG. 2: Generalized transmission factor for Doppler broaden-
ing, according to Eq. (61). Strong deviations are present at
large penetration length if the coherence length λc is signifi-
cant.

applications in realistic cases are tricky, given the nonlo-
cality of the equation and the oscillating behavior of the
various integrands. By analogy with Wigner transport
equations for massive particles, it is of interest to con-
sider series expansion of the star product in powers of h̄.
We give in this section an overview of such a procedure
for a specific problem, the absorption of a large band
radiation by an atomic mixture. Such a problem arises
typically in high-density plasma physics, where specific
experimental campaigns have been carried out [3]. We
focus on the irradiation of a pure Magnesium plasma in
a slab of size L at z = 0 and we examine the absorption
line Mg11+ 1s1/2-2p3/2 (Ly-α, blue component). Con-
sider the first-order approximation of the star product

f ⋆ g ≃ fg +
ih̄

2
{f, g}, (62)

where f and g are two arbitrary phase space functions.
The quantum radiative transfer equation within this ap-
proximation has the general form

[

∂

∂t
+ c

(

n̂− h̄

2

∂χI

∂p

)

· ∂
∂r

+
ch̄

2

∂χI

∂r
· ∂

∂p

]

W

=
η

h̄p30
− cχW, (63)

and reduces to
(

n̂z −
h̄

2

∂χI

∂pz

)

∂W

∂z
= −χW, (64)

if stationarity and homogeneity are assumed, and self-
emission is neglected. In Eqs. (63) and (64), χI denotes
the imaginary part of the complex absorption coefficient.
The Wigner function is space-dependent through the z
coordinate only and can be expressed as an exponential

W (z,p) =W0 exp−
[

χ(p)z

n̂z − h̄
2
∂χI

∂pz
(p)

]

. (65)
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Here W0 denotes the value taken by the Wigner func-
tion at the boundary z = 0. It does not depend on
the momentum p because large band radiation is consid-
ered. We have compared this model to the solution of the
QRTE for radiation propagating to the left (p ≡ |p|ẑ).
The approximation W (r′,p′) ≃ W (r′,p) has been used
in Eq. (27) and the boundary conditionW (z < 0,p) = 0,
W (z = 0,p) = 1 has been assumed (note, the setting of
boundary conditions on aWigner function is not straight-
forward, e.g. [62, 63]). The QRTE has been rewritten in
integral form, setting W (z,p) ≡W (z,∆ω),

W (z,∆ω) = H(z)−
∫ ∞

0

dz′K1(z, z
′,∆ω)W (z′,∆ω),

(66)
and it has been solved numerically. For simple evalua-
tion of the kernel K1 we have assumed Doppler and nat-
ural broadening only (a more elaborate line shape model
should include Stark broadening, e.g. [64, 65] for recent
works). The complex line shape function is analytical
and the corresponding kernel reads

K1(z, z
′,∆ω) = χ0Re

{

e−Ω2

[−H(m− z′)erfc(iΩ)

−H(z′ −m)erfc

(

iΩ− z′ −m

λc

)

+erfc

(

iΩ− z′

λc

)]}

, (67)

where H is the Heaviside step function, erfc is the com-
plementary error function, Ω = ∆ω/∆ωD+iA2p1s/2∆ωD

and m = min(z, L) are shortcut notations, and λc =
c/∆ωD denotes the Doppler coherence length. A specific
result is shown in Figs. 3 and 4. The Wigner function
of the radiation at the line center W (z,∆ω = 0) and the
spectral profile of the outgoing radiation W (z > L,∆ω)
are plotted. The calculations have been done for T = 160
eV, assuming N = 4 × 1019 cm−3 for the density of ab-
sorbers (Mg11+ in the 1s1/2 state). At such conditions
the coherence length is comparable to the photon mean
free path, with χ0λc = 0.7 (λc = c/∆ωD is used as an
estimate for the coherence length because A2p1s/2∆ωD

does not exceed 3% here). The photon mean free path is
estimated as χ−1

0 ≃ 1.7 × 10−6 m. The size L has been
set equal to 10χ−1

0 , in such a way that absorption effects
are significant. As shown in the figures, the coherence
alters the radiation penetration and yields a significant
change in the absorption spectrum. The slower decrease
of the Wigner function suggests that coherence leads to a
reduction of the opacity. This result is in agreement with
the previous investigations reported in [44, 45]. We have
compared the quantum transport model [Eqs. (66), (67)]
to the first-order approximation [Eq. (65) with W0 ≡ 1].
The results are in a very good agreement for small values
of χ0λc. An example is given in Fig. 5, where a plot
of the penetration for χ0λc = 0.2 is shown. The calcu-
lation was done assuming L = 10χ−1

0 again and taking
A2p1s/2∆ωD = 0.02. Deviations are obtained at larger
coherence length, because a first-order approximation is
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FIG. 3: Plot of the Wigner function at the line center
(∆ω = 0), for large-band incident radiation propagating in
an optically thick medium. “mfp” denotes the photon mean
free path, identical to χ−1

0
. The attenuation is weaker when

radiation coherence is retained (solid line).
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FIG. 4: Radiation spectrum outside the medium, at z = 2L,
neglecting (dashed line) and retaining (solid line) coherence.
Significant modifications are present at the line center.

inappropriate by definition in this case (Figs. 6 and 7).
A more precise approximation scheme, e.g., involving ex-
pansion to second-order in h̄, would provide a better re-
sult.

VII. APPLICATION TO LASER PHYSICS

The radiative transfer theory is used for design pur-
poses in laser physics. A typical problem is to find the
optimal resonator parameters (such as the mirrors’ reflec-
tivity) which maximize the power output (e.g. [66–68]).
The usual treatments are based on the standard radiative
transfer equation (34) coupled to a collisional-radiative
model. In the simplest case, one assumes the population
of atoms in the upper laser level given by the following
balance relation (e.g. [69])

Rp =

[

1

τ
+B21Ī(z)

]

N2(z), (68)
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FIG. 5: Plot of the Wigner function at ∆ω = 0 obtained
within the first-order approximation (solid line) and solving
the quantum radiative transfer equation (QRTE) in integral
form, Eq. (66) (circles). Also shown in the plot is the result of
the standard radiative transfer equation (dashed line). The
first-order approximation provides a very good estimate of
coherence effects.
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FIG. 6: The first-order approximation is restricted to small
values of χ0λc. Here, plot of the Wigner function at ∆ω =
0 for χ0λc = 0.7. The approximation yields a significant
deviation, with an underestimate of the radiation attenuation.
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plot of the radiation spectrum at z = 2L, with the same
conditions as Fig. 6.

where Rp is the pump rate (m−3×s−1) into the up-
per level, τ denotes the lifetime of the level due to
spontaneous emission and collisional quenching, B21 is
the Einstein coefficient of the laser transition, Ī(z) =
∫

dω
∫

dΩφ(ω, n̂)I(ω, n̂, z)/4π is the specific intensity av-
eraged with the line shape function, and z denotes the
position inside the cavity (0 < z < L, see Fig. 8). The
laser flux (W/m2) is the superposition of two counter-
propagating components I+ and I−. They obey the fol-
lowing differential equation

±dI±
dz

(z) = [g(z)− α]I±(z), (69)

which stems from the RTE in stationary regime, assum-
ing the spontaneous emission negligible. g(z) denotes
the gain at the line center, identical to the opposite of
the extinction coefficient and positive for normal laser
operation, and α stands for nonsaturable losses. Equa-
tions (68) and (69) form a closed set, which provides the
specific intensity in the cavity and yields an expression
for the laser output power. For example, the treatment
reported in [69] for a KrF laser yields the following result

Iout = t2IS

√

δ

r2
, (70)

where IS = 4π/(B21φ0τ) is the so-called saturation flux
[φ0 denotes the line shape function evaluated at the line
center], t2, r2 are the transmission and reflection coef-
ficients of the output coupler, and δ is an adimensional
parameter determined from a transcendental equation

ln
√
r1r2−αL =

γ

p+ − p−
×ln

[

(
√

δ/r2 − p+)(
√
δr1 − p−)

(
√

δ/r2 − p−)(
√
δr1 − p+)

]

,

(71)
which is obtained from algebraic manipulations involving
the boundary conditions. γ = g0/α and p± = (1/2)[γ −
1 ±

√

(γ − 1)2 − 4δ] are adimensional parameters. g0 =
h̄ω0B21φ0Rpτ/4π is the so-called small-signal gain.

We have adapted this model in such a way to account
for coherence effects. The simplified QRTE (64) has been
adapted to laser radiation in a cavity with one perfectly
reflecting mirror (r1 = 1 − t1 = 1), assuming Doppler
broadening for the complex line shape function. The cal-
culation is similar to that neglecting coherence and it
leads to a transcendental equation for δ, formally similar
to Eq. (71), with the substitution γ ↔ γ − g0λc/

√
π in

the numerator in front of the logarithm. Figure 9 shows
the oscillator extraction efficiency ζ = Iout/(ISg0L) in
terms of the output coupling t2 = 1−r2, for g0L = 2 and
αL = 0.1, assuming a Doppler coherence length of 0.9/g0.
The result obtained neglecting coherence is also plotted.
The curves show a significant deviation, in particular for
large transmission coefficient. Such a deviation suggests
that an experimental validation of the QRTE could be
obtained from an analysis of the output of a laser with
large coherence length (such as He-Ne, e.g. [66]).
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present if the coherence is retained.

VIII. CONCLUSION

The standard radiative transfer theory assumes large
spectral band radiation, in such a way that the energy
quanta exchanged between emitters and absorbers are lo-
calized in space. In this work, we have addressed the lim-
itations of this assumption in the case of line radiation,
using a quantum transport model based on the Wigner
phase space formalism. This approach has the advantage
of describing the wave-particle duality in a consistent
way. The radiation is partially coherent when the charac-
teristic length λc ∼ λ2/∆λ is significant with respect to
the spatial scales of interest of the system under consid-
eration. This includes the inverse absorption coefficient,
commonly referred to as photon mean free path in the
standard radiative transfer literature. From the particle
point of view, radiation coherence implies photons with
finite thermal de Broglie wavelength, interacting nonlo-
cally with massive particles. The description of such non-

local interactions amounts to write down and solve an
integro-differential equation for the radiation. Because of
the Heisenberg uncertainty relations, the photon Wigner
function can take negative values and, hence, is not di-
rectly interpretable as a probability density function. We
have shown that the modeling of observable quantities re-
quires the evaluation of the response of appropriate de-
tector functions. Relevant detector models include phase
space coarse-graining at volume larger than h̄3, and also
more physical concepts such as photodetection signals.
The formalism developed in this work can be applied ei-
ther to the description of the radiation field or to the ki-
netics of atomic populations. With applications to ideal
cases, we have shown that both are sensitive to coherence
effects. The present investigation suggests a refinement
of the current radiative transfer models and can find ap-
plications to any domain relevant to plasma spectroscopy.
This includes astrophysics, inertial and magnetic fusion
research, laboratory experiments and technical applica-
tions. This also concerns laser physics. In this context,
calculations have shown that the output power of a laser
is affected by the radiation coherence, suggesting an ex-
perimental test of the theory. In its present form, the
transport model provides a challenging numerical issue
given the nonlocal structure of the quantum radiative
transfer equation. A complement to this work should be
devoted to a simplified treatment of the problem, e.g.,
based on the Moyal product series expansion. Another
issue concerns the description of partial redistribution in
radiation scattering, neglected in this investigation, and
could involve master equations similar to those consid-
ered in [49]. The formalism presented in this work has
been developed with a special emphasis on spatial co-
herence. A complementary investigation should address
temporal coherence on an equal footing, e.g., using gen-
eralized Wigner functions defined as both space and time
integrals (e.g. [70]).
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