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ABSTRACT
The subject of this paper is about the conceptual design

of parallel Schoenflies motion generators based on the wrench
graph.

By using screw theory and Grassmann geometry, some con-
ditions on both the constraint and the actuation wrench systems
are generated for the assembly of limbs of parallel Schoenflies
motion generators, i.e., 3T1R parallel manipulators. Those con-
ditions are somehow related to the kinematic singularitiesof the
manipulators. Indeed, the parallel manipulator should notbe
in a constraint singularity in the starting configuration for a
valid architecture, otherwise it cannot perform the required mo-
tion pattern. After satisfying the latter condition, the parallel
manipulator should not be in an actuation singularity in a gen-
eral configuration, otherwise the obtained parallel manipulator
is permanently singular.

Based on the assembly conditions, six types of wrench
graphs are identified and correspond to six typical classes of
3T1R parallel manipulators. The geometric properties of these
six classes are highlighted. A simplified expression of the su-
perbracket decomposition is obtained for each class, whichal-
lows the determination and the comparison of the singulari-
ties of 3T1R parallel manipulators at their conceptual design
stage. The methodology also provides new architectures of par-
allel Schoenflies motion generators based on the classification of
wrench graphs and on their singularity conditions.

INTRODUCTION
The primary concern of the conceptual design is the genera-

tion of physical solutions to meet certain design specification [1].
The concept generated at this phase affects the basic shape gen-
eration and material selection of the product concerned. Inthe
subsequent phase of detailed design, it becomes exceedingly dif-
ficult, or even impossible to make a correction the shortcomings
of a poor design concept formulated at the conceptual design
stage [2]. Therefore, the conceptual design of parallel manip-
ulators (PMs) is crucial task which aims at defining the architec-
tures of the associated kinematic chains. In this paper, thefocus
of conceptual design process is the Schoenflies Motion Genera-
tors (SMGs).

The parallel manipulators are called Schoenflies Motion
Generators if they can perform four degree of freedom (dof) dis-
placements of a rigid body. These motions involve three indepen-
dent translations and one rotation about a fixed axis [3]. This set

of displacements was first studied by the German mathematician-
mineralogist Arthur Moritz Schoenflies (1853-1928).

Over the past few decades, the creation of various designs of
3T1R parallel manipulators were broaden, especially afterhuge
success of the Quattro [4]. Gogu discovered an isotropic archi-
tecture (its jacobian matrix is diagonal and constant), named the
Isoglide4 [5, 6], which is composed of four legs with prismatic
actuators. Another topology within the same family was intro-
duced by Gosselin [7], named the Quadrupteron.

The symmetrical design was proposed by Angeles [3],
namely the McGill SMG, with two identical legs which in turn
decreases the number of joints. There exist two architecture
varieties of H4 family, either with revolute or prismatic actua-
tors [8–10]. The H4 robot designed by Pierrotet al. [8, 9], is
a fully-parallel mechanism with no passive kinematic chainbe-
tween the base and the nacelle. This idea brought out the mech-
anism with four legs. Each revolute joint in the leg is actu-
ated. Whereas the H4 robot with prismatic actuators mounted
to the base, was presented by Wuet al. [10]. Another mecha-
nism constructed by three identical legs was proposed by Briot
and Bonev [11, 12], called Pantopteron-4, where each leg com-
prises a pantograph linkage. Since it only employs three legs,
the Pantopteron-4 gains great advantage in terms of workspace
volume and acceleration capacities.

The type synthesis approach based upon screw theory is
widely used for generating many parallel manipulators as shown
by Kong and Gosselin [13]. This approach allows us to produce
numerous kinematic chains, by discovering the wrench system
W that is reciprocal to the twist systemT of the moving plat-
form.

Based upon the reciprocity condition, Joshi and Tsai devel-
oped a procedure to express Jacobian matrixJ of limited dof
parallel manipulators, comprises both constraint and actuation
wrenches [14]. In this paper, this matrix is named the extended
Jacobian matrixJE. The rows ofJE are composed ofn linearly
independent actuation wrenches plus (6-n) linearly independent
constraint wrenches.

These wrenches correspond to six Plücker lines, composing
J. The determinant of thisJ is equal to the superjoin of 6 Plücker
lines, named superbracket of Grassmann-Cayley Algebra. Ital-
lows a translation of synthetic geometric conditions into invariant
(coordinate-free) algebraic expression [15].

The superbracket decomposition was employed by Ben-
Horin and Shoham [16–18] to analyse the singularity of 6dof
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parallel manipulators, for instance Gough-Stewart Platforms.
However, this procedure does not consider the plane at infinity,
which obviously cannot represent a line at infinity. Indeed,a line
at infinity correlates to a pure moment emerged from limiteddof
parallel manipulators.

Points at infinity were used initially in a superbracket to ex-
amine the singularity of 3-UPU by Kanaan et al [19, 20]. This
improvement enhanced the application of Grassmann-CayleyAl-
gebra for limiteddof parallel manipulators. The method was
later expanded to represent the wrenches in a projective space,
namedwrench graphby Amine et al [21–23]. The wrench graph
depicts all geometrics properties between the constraint and ac-
tuation wrenches of manipulators and highlight points at infinity
in a superbracket.

The concept of wrench graph consequently completes the
type synthesis process (based on screw theory) at the conceptual
design stage. This idea will be applied in this paper to illustrate
all the constraint and actuation wrenches. It allows to construct
new architectures of 3T1R parallel manipulators based on the
classification of wrench graph and the singularity conditions.

TYPE SYNTHESIS OF 3T1R PMs
The moving platform of a 3T1R PM provides three inde-

pendent translationaldof and one rotationaldof about an axis of
fixed direction. Without loss of generality, we consider that the
rotationaldof is about an axis directed alongz.

Constraint Wrench System
In a general configuration, the constraint wrench system,Wc,

of a 3T1R PM must be reciprocal to the 3T1R motion. Thus, it
is a 2-$∞-system containing infinite-pitch wrenches (pure mo-
ments) whose directions are orthogonal toz. Accordingly,Wc

can be written as:

Wc = span(M̂c1, M̂c2) (1)

whereM̂c1 = (0, z×m1), M̂c2 = (0, z×m2) andz, m1 andm2

are three mutually independent unit vectors.
The constraint momentM̂c1 corresponds to a line at infinity

passing through pointsj= (z, 0) andi= (m1, 0). Thus,M̂c1 =

ji. Likewise, M̂c2 = jk wherek = (m2, 0). As a result, the

constraint wrench systemWc = span(M̂c1, M̂c2) corresponds (in
a general configuration) to a flat pencil containing all linesat
infinity through pointj = (z, 0), z being parallel to the axis of
the allowed rotation of the PM’s moving platform.

Constraint Singularities The constraint singularities
of a 3T1R PM correspond to configurations in which the con-
straint wrench system fails to be a 2-system corresponding to a
flat pencil of lines at infinity through pointj. In such configura-
tions, the PM can switch to another motion mode whose motion
pattern is no longer a 3T1R motion.

However, if the constraint wrench system of a 3T1R PM
corresponds to the 2-system in any configuration, then the PM
will be free of constraint singularities. Thus, it is possible to

avoid such configurations with an appropriate choice of the PM’s
architecture, as shown thereafter in this paper.

Actuation Wrench System
In a general configuration, by locking all the actuated joints

of a PM its moving platform must be fully constrained, i.e., its
actuation wrench system must span in addition to the constraint
wrench system a 6-system. Thus, the actuation wrench system
Wa of a 3T1R PM must be (in a general configuration) a 4-system
and the linear combination ofWc andWa must lead to a 6-system,
otherwise the robot is permanently singular.

Actuation Singularities The actuation singularities oc-
cur when the actuation wrench system of the PM does not satisfy
any longer the previous condition while the PM is not in a con-
straint singularity. Thus, a 3T1R PM exhibits an actuation singu-
larity whenever: 1.Wa fails to be a 4-system; and 2. the linear
combination ofWa andWc fails to be a 6-system whileWc is a
2-system.

Comparison of Limbs for 3T1R PMs
A list of 4- and 5-dof limbs for 3T1R PMs withR- and/orP-

joints was obtained in [13]. Without loss of generality, we con-
sider the rotationaldof of the 3T1R PMs under study is about
an axis directed alongz. Accordingly, the following conditions
should necessarily be satisfied:

• In a given limb, the axes of theR-joints must lie in parallel
planes;

• If the axes of all theR-joints in a limb are parallel, then they
will be necessarily directed alongz;

In order to highlight the axis direction of a revolute joint,let:

1. R̀ denote a revolute joint of axis parallel toz;
2. Ŕ can be:

(a) a revolute joint,R̄, of axis parallel to the horizontal
plane (xOy);

(b) a revolute joint̃R whose axis is neither parallel toz nor
to the horizontal plane (xOy).

3. In theith limb, letmi denote the unit vector along the direc-
tion of the revolute joint axes that are not parallel toz;

Therefore, allR̄-joints (all R̃-joints, respectively) in a given
limb have parallel axes. Now let us reformulate the list of limbs
for 3T1R PMs obtained in [Kong] under the above assumptions.
Accordingly, Tab. 1 is obtained. Here, we examine this list by a
comparative analysis of the limbs in terms of both constraint and
actuation wrench systems.

Limbs Constraint Wrench System
The constraint wrench system of a given limb only depends

on the joint types and the joint axes. However, the arrangement of
the joints within the limb may affect the constraint singularities
of the obtained 3T1R PM.
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TABLE 1 . LIMBS FOR 3T1R PMs.

dof Class Type

4 3R-1P Permutation ofPR̀R̀R̀

2R-2P Permutation ofPPR̀R̀

1R-3P Permutation ofPPPR̀

5 5R Permutation of̀RR̀R̀ŔŔ

Permutation of̀RR̀ŔŔŔ

4R-1P Permutation ofPR̀R̀R̀Ŕ

Permutation ofPR̀R̀ŔŔ

Permutation ofPR̀ŔŔŔ

3R-2P Permutation ofPPR̀R̀Ŕ

Permutation ofPPR̀ŔŔ

2R-3P Permutation ofPPPR̀Ŕ

Four dof Limbs Any 4-dof limb of Tab. 1 applies a 2-
$∞-system of constraint wrenches reciprocal to theR̀-joints of
the limb that are directed alongz. Thus, such a limb applies, in
any configuration, an infinite number of constraint moments that
correspond to lines at infinity passing through pointj= (z, 0). It
can be concluded that a 3T1R PM having at least one 4-dof limb
of Tab. 1 is over-constrained and free of constraint singularity.

It should be noted that for the 4-dof limbs given in Tab. 1
the directions of theP-joints are defined in such a way that the
limb generates a 3T1R motion. For example, let us consider the
PR̀R̀R̀ limb type. The threèR-joints generate, in a general con-
figuration, one rotation about an axis directed alongz and two
translations along vectors orthogonal toz. Thus, theP-joint is
necessarily alongz, otherwise the limb cannot provide the re-
quired 3-dof translational motion.

Five dof Limbs A 5-dof limb used in the topology of a
3T1R PMs must apply one constraint moment that corresponds
to a line at infinity passing through pointj= (z, 0). Accordingly,
the 3T1R PM must be assembled such that any 5-dof limb of the
PM provides a 3T2R motion in the starting configuration. The
5-dof limbs given in Tab. 1 can be classified into two types:

Type 1 There exist within the limb two revolute joints of parallel
axes that are neither successive nor separated by aP-joint.
Such a limb is not generally a 3T2R limb. The 3T1R PM
containing limbs of this type is obtained by imposing some
geometric constraints on the assembly.

Type 2 Two revolute joints of parallel axes within the limb are
either successive or separated by aP-joint. Such a limb is
generally a 3T2R limb.

In order to highlight the difference between the two types of
limbs let us consider two 3T1R PMs with identical limb struc-
tures, namely, a 4-̀RR̀R̄R̄R̀ PM and a 4-̀RR̀R̀R̄R̄ PM shown in
Fig. 1.

z

mi

Fi

Vi

Pi

(a) 4-R̀R̀R̄R̄R̀ (b) 4-R̀R̀R̀R̄R̄

FIGURE 1. TWO 3T1R PMs.

Clearly, for aR̀R̀R̄R̄R̀ limb, the last revolute joint axis is not
necessarily parallel to the first two. Thus, the 4-R̀R̀R̄R̄R̀ 3T1R
PM is obtained by assembling the PM such that:

• the condition of parallelism between the last revolute joint
axis and the first two is satisfied for all limbs;

• vectorsmi , i = 1, . . . ,4, are not all parallel.

In that case, the limbs apply altogether four constraint wrenches
that correspond to four lines at infinity passing through point j
and span a 2-system of constraint wrenches. However, if the
four vectorsmi become parallel, the PM will exhibit a constraint
singularity and can switch to another motion mode in which the
motion of the moving platform will no longer be a 3T1R motion.
In such a configuration, the last revolute joint axis in each limb of
the 4-R̀R̀R̄R̄R̀ PM will no longer be parallel toz and the moving
platform will no longer be parallel to the horizontal plane (xOy).

Now let us consider the 4-R̀R̀R̀R̄R̄ PM. Clearly, its limbs
do not need geometric assembly conditions in order to provide
a 3T2R motion for the limb and a 3T1R motion for the moving
platform. This PM is free of constraint singularities and the mov-
ing platform is always parallel to plane (xOy). Moreover, it can
be concluded that if a 3T1R PM contains at least one limb of type
2, its moving platform will always be parallel to plane (xOy) and
thus, the PM will be free of constraint singularities. However,
if all the limbs of the 3T1R PM are of type 1, then the PM may
have some constraint singularities.

Limbs Actuation Wrench System
For a given type of limbs given in Tab. 1, the actuation

wrenches do not depend on the arrangement of the joints within
the limb but on the actuated joints. The constraint wrench sys-
temW c of a limb is reciprocal to all the twists associated with the
limb’s kinematic joints. If the actuated joint of the limb islocked,
then the wrench system reciprocal to the other joints of the limb
will be given byU c such that: dim(U c) = dim(W c)+1 andU c

containsW c plus a set of some additional wrenches. Then, the
corresponding actuation wrench can be selected as one of these
additional wrenches.

Table 2 characterizes the locus of the actuation wrench for
each type of limbs obtained in Tab. 1 and for each type of actu-
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ated joints. Without loss of generality, we consider that one joint
per limb is actuated.

Validity Rule of the Actuation Wrench for 3T1R PM
In what follows, let us assume that the limbs apply a 2-

system of constraint wrenches spanned bŷMc1 and M̂c2 and
satisfying Eqn. (1). In this section, we develop some rules to ex-
amine the validity of the actuation wrench system of a 3T1R PM.
For instance, we consider that an actuation wrench applied by
a given limb of a PM is a zero- or an infinite-pitch wrench
namely, a pure force or a pure moment. LetF̂1, . . . ,F̂4 denote
actuation forces andM̂a, M̂a1 andM̂a2 denote actuation mo-
ments. In a general configuration of a 3T1R PM, one can state
the following rules.

R1 1 A basis of the actuation wrench systemW a can contain at
most one actuation moment.
Proof Let us consider that a basis ofW a contains
two actuation momentsM̂a1 and M̂a2. In that case,
W a +W c = span(F̂1, F̂2, M̂a1, M̂a2, M̂c1, M̂c2). Since
dim(span(M̂a1, M̂a2, M̂c1, M̂c2)) ≤ 3, the dimension of
W a+W c will be lower than or equal to 5 in any robot con-
figuration and thus the proposed PM will be permanently
singular.

R2 If a basis ofW a contains one actuation moment̂Ma, then the
line at infinity corresponding toM̂a should not pass through
pointj= (z, 0).
Proof Let us assume that a basis ofW a contains one ac-
tuation momentM̂a that corresponds to a line at infinity
passing through pointj, in a general configuration. In that

case, the actuation momentM̂a belongs to the constraint
wrench system in a general configuration. Clearly in that
case: dim(W a+W c)≤ 5.

R3 If the basis ofW a contains one actuation moment̂Ma and
three actuation forceŝF1, . . . ,F̂3, then none of the three ac-
tuation forces can be parallel to another.
Proof Indeed, ifF̂1 andF̂2 are parallel, then span(F̂1, F̂2)
is equivalent to span(F̂1, M̂12), M̂12 being the line at infin-
ity of the finite plane containingF̂1 andF̂2. Accordingly,
one can find a basis ofW a containing two actuation mo-
ments, and thus, ruleR1 is not satisfied in that case.

R4 If a basis ofW a contains one actuation moment̂Ma and
three actuation forcesF̂1, . . . ,F̂3, then the three actuation
forces cannot be coplanar.
Proof Indeed, if F̂1, F̂2 and F̂3 are coplanar, then
span(F̂1, F̂2, F̂3) is equivalent to span(F̂1, F̂2, M̂a1),
M̂a1 being the line at infinity of the finite plane containing
F̂i (i = 1, . . . ,3). Accordingly, ruleR1 is not satisfied in that
case.

R5 If a basis ofW a is composed of four actuation forces, then
it can contain at most one pair of parallel actuation forces,
provided that their plane does not contain the unit vectorz.
Proof Clearly, if a basis ofW a contains more than one pair
of parallel actuation forces, then one can compute another
basis ofW a with more than one actuation moment, and thus,
ruleR1 will not be satisfied.

1R1 stands for rule 1

R6 If a basis ofW a is composed of four actuation forces where
two forcesF̂1 andF̂2 are parallel, then the plane containing
these forces must not contain the unit vectorz.
Proof If the plane containing the two parallel actua-
tion forces contains the unit vectorz, it follows that
the two actuation forcesF̂1 and F̂2 and the two con-
straint momentsM̂c1 and M̂c2 will belong altogether to
the union of two flat pencils of lines. Accordingly,
dim(span(F̂1, F̂2, M̂c1, M̂c2)) ≤ 3 and the dimension of
W a+W c will be lower than or equal to 5 in any robot con-
figuration.

R7 If a basis ofW a is composed of four actuation forces, then
at most three of these forces can be coplanar.
Proof Indeed, if the four forces are coplanar, then the ac-
tuation wrench system fails to be a 4-system in a general
configuration, since four coplanar forces can span at most a
3-system.

R8 A basis ofW a can contain at most one actuation force par-
allel to z.
Proof Indeed, if two actuation forces,F̂1 and F̂2, are
directed alongz, then span(F̂1, F̂2) is equivalent to
span(F̂1, M̂12) whereM̂12 corresponds to a line at infin-
ity that necessarily passes through pointj= (z, 0). Accord-
ingly, in that case, ruleR2 will not be satisfied.

R9 If a basis ofW a is composed of four actuation forces, these
forces cannot be orthogonal to a common direction.
Proof Indeed, if the four actuation forces are (in a general
configuration) orthogonal to a common direction, then they
will intersect a common line at infinity, which necessarily
intersects all the wrenches of the constraint wrench system.
Thus, in that case, the four actuation forces plus the 2-$∞-
system of constraint wrenches form a singular complex.

TWO MAIN CLASSES OF SMGs
Based on the properties presented in the previous section,

two main classes of 3T1R PMs can be identified. For PMs of
the first class, one can find (in a general configuration) a basis of
the actuation wrench system that contains one actuation moment.
On the other hand, a basis of the actuation wrench system of PMs
of the second class can be composed only of actuation forces.By
following rulesR1. . .R9, some sub-classes of each class can be
obtained.

For instance, we will represent the wrench graphs of three
sub-classes of each class. However, by following the same pro-
cedure and satisfying rulesR1. . .R9, other sub-classes can be
obtained. It is noteworthy that each sub-class is characterized
by the description of the actuation wrench system, the constraint
wrench system being the same for any 3T1R PM.

1. Class A: The actuation wrench system contains one line at
infinity.

A.1 One actuation moment plus three actuation forces. In
that case, the three actuation forces cannot be coplanar
and none of these forces can be parallel to another;

A.2 Two parallel actuation forces plus two other actuation
forces;
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A.3 Three coplanar actuation forces plus a fourth actuation
force that does not belong to the plane of the first three
ones.

A wrench graph for each sub-class is given in Tab. 3.

2. Class B: The actuation wrench system does not contain any
line at infinity.

B.1 Four actuation forces that are mutually skew where
none of the four forces is parallel toz;

B.2 Four actuation forces that are mutually skew where one
of the four forces is parallel toz;

B.3 Two pairs of concurrent actuation forces.

A wrench graph for each sub-class is given in Tab. 3.

Superbracket Decomposition for Class A
A.1- One actuation moment plus three actuation forces

Let us consider a PM of class A.1. A basis of the actuation
wrench systemW a of the PM can be composed of three
actuation forcesF̂1, F̂2 andF̂3 and one actuation moment
M̂a. Now letM̂c1 andM̂c2 be two constraint moments that
form a basis of the constraint wrench systemW c of the PM.
Accordingly, the extended Jacobian matrix of this sub-class
of SMGs takes the form:

JT
E = [F̂1 F̂2 F̂3 M̂a M̂c1 M̂c2] (2)

From ruleR1, the actuation momentM̂a must correspond
to a line at infinity that does not pass through pointj, in
a general configuration of the PM. Moreover, in a general
configuration, the three actuation forces cannot be copla-
nar and none of these forces can be parallel to another. Let
us consider the general case satisfying these conditions by
considering that the three actuation forces are skew (in a
general configuration). We know that three moments are
always mutually concurrent. Thus, the six wrenches com-
posing JE can be written as:F̂1 = (f1, rA1 × f1) = ab,
F̂2 = (f2, rA2 × f2) = cd, F̂3 = (f3, rA3 × f3) = ef, M̂a =

(0, ma) = ik, M̂c1 = ij = (0, mc1) M̂c2 = kj = (0, mc2)
The corresponding superbracket is then expressed and sim-
plified as follows:

S= [ab cd ef ik ij kj] = [abdf][cikj][eikj] (3)

Such a PM has two singularity conditions:

(a) (f1× f2) · f3 = 0
(b) (mc1×mc2) ·ma = 0

A.2- Two parallel actuation forces plus two other skew actua-
tion forces
The extended Jacobian matrix of this sub-class of SMGs
takes the form:

JT
E = [F̂1 F̂2 F̂3 F̂4 M̂c1 M̂c2] (4)

whereF̂1 is parallel toF̂2. Let F̂1 = (f1, rA1 × f1) = ab,
F̂2 =(f1, rA2× f1) = cb, F̂3 =(f3, rA3× f3) = ef andF̂4 =
(f4, rA4 × f4) = gh be the four actuation forces. In turn, let
M̂c1 = (0, mc1) = ij andM̂c2 = (0, mc2) = kj be the two
constraint moments.

The corresponding superbracket is expressed and decom-
posed as:

S= [ab cb ef gh ij kj]

= [eikj]
(

[abch][befj]− [abcf][behj]
)

= [eikj]
(

[abc
•
h][be

•
fj]

)

= [eikj]
(

(abc)∧ (bej)∧ (hf)
)

(5)

Let uac be the unit vector of the finite line joining the pro-
jective pointsa andc. This sub-class of SMGs has two main
singularity conditions:

(a) (mc1 ×mc2) · z = 0. Clearly, this is the condition for
constraint singularities.

(b)
(

(f1×uac)× (f1× z)
)

· (f4× f3) = 0 ⇒

1. f1 ‖ uac;
2. f1 ‖ z;
3. f3 ‖ f4.

A.3- Three coplanar actuation forces plus a fourth actuation
force
The extended Jacobian matrix of this sub-class of SMGs
takes the form:

JT
E = [F̂1 F̂2 F̂3 F̂4 M̂c1 M̂c2] (6)

whereF̂1 F̂2 andF̂3 intersect each one another at a finite
point. LetF̂1 = ac, F̂2 = ae, F̂3 = ce andF̂4 = gh be the
four actuation forces. In turn, letM̂c1 = ij andM̂c2 = kj

be the two constraint moments.

The corresponding superbracket is expressed and developed
as follows:

S= [ac ae ce gh ij kj] = [aceh][acej][gikj] (7)

This sub-class of SMGs has three singularity conditions:

(a) (mc1×mc2) · z = 0
(b) plane(ace) ‖ f4

(c) plane(ace) ‖ z

Superbracket Decomposition for Class B
B.1- Four skew lines where none of them is directed along z

The extended Jacobian matrix of this sub-class of SMGs
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takes the form:

JT
E = [F̂1 F̂2 F̂3 F̂4 M̂c1 M̂c2] (8)

whereF̂1 F̂2, F̂3 and F̂4 correspond to four finite lines
that are mutually skew and none of them is directed along
z. There exists (in a general configuration) a finite line
Li j parallel toz that crosses any couple of actuation forces
F̂i and F̂ j . Let F̂1 = (f1, r1 × f1), F̂2 = (f2, r2 × f2),
F̂3 = (f3, r3× f3) andF̂4 = (f4, r4× f4) be the four actua-
tion forces. In turn, letM̂c1 = ij andM̂c2 = kj be the two
constraint moments. The superbracket then is depicted and
developed as:

S= [ab cd ef gh ij kj]

= [gikj]
(

[abd
•
f][cg

•
hj]

)

= [gikj]
(

(abd)∧ (cgj)∧ (fh)
)

(9)

This sub-class of SMGs has two main singularity condi-
tions:

(a) (mc1×mc2) · z = 0.
(b)

(

(z×ucg)× (f1× f2)
)

· (f4× f3) = 0

whereucg is the unit vector of a finite line non-parallel toz
and crossing linesL12 andL34.

B.2- Four skew lines where one of them is directed along z
The extended Jacobian matrix of this sub-class of SMGs
takes the form:

JT
E = [F̂1 F̂2 F̂3 F̂4 M̂c1 M̂c2] (10)

whereF̂1 F̂2, F̂3 andF̂4 correspond to four finite lines that
are mutually skew andF̂4 is parallel toz. We know that, in a
general configuration, there exists a finite lineLi j parallel to
z that crosses any couple of actuation forces amongF̂1, F̂2

andF̂3. Thus, letL12 ‖ z = ac be the finite line parallel to
z that crosses, in a general configuration,F̂1 andF̂2 at the
finite pointsa andc, respectively. Thus, pointsa, c andj
are aligned.

Let F̂1 = ab, F̂2 = cd, F̂3 = ef andF̂4 = gj be the four

actuation forces. In turn, letM̂c1 = ij andM̂c2 = kj be the
two constraint moments.

The corresponding superbracket is expressed and simplified

as follows:

S== [ab cd ef gj ij kj]

= [gikj]
(

[ab
•
cj][

•
defj]

)

= [gikj]
(

(abj)∧ (efj)∧ (cd)
)

(11)

This sub-class of SMGs has two singularity conditions:

(a) (mc1×mc2) · z = 0.
(b)

(

(f1× z)× (f3× z)
)

· f2 = 0

B.3- Two pairs of intersecting actuation forces
The extended Jacobian matrix of this sub-class of SMGs has
the form:

JT
E = [F̂1 F̂2 F̂3 F̂4 M̂c1 M̂c2] (12)

whereF̂1 = (f1, r1 × f1) = ab, F̂2 = (f2, r1 × f2) = ad,
F̂3 = (f3, r3× f3) = ef, F̂4 = (f4, r4× f4) = eh, M̂c1 = ij

and M̂c2 = kj.

The corresponding superbracket is expressed and simplified
as follows:

S= [ab ad ef eh ij kj]

= [eikj]
(

[abd
•
f][ae

•
hj]

)

= [eikj]
(

(abd)∧ (aej)∧ (fh)
)

(13)

This sub-class of SMGs has two main singularity condi-
tions:

(a) (mc1×mc2) · z = 0.
(b)

(

(z×uae)× (f1× f2)
)

· (f4× f3) = 0

whereuae is the unit vector of the finite line joining pointsa
ande.

APPLICATIONS
The Quadrupteron PM (Class A.2)

The Quadrupteron PM [7] illustrated in Fig. 2, is composed

of three identical limbs:Li = PiR̄
i
1R̄

i
2R̄

i
3R̀

i
, i = 1, 2, 3, plus one

limb L4 = P4R̀
4
1R̀

4
2R̀

4
3.

The actuated jointPi of the ith limb (i = 1, 2, 3) is directed

alongmi which is parallel to the axes of the limb’s threēR
i
-joints

such thatm1 ‖ m3 ‖ x andm2 ‖ y. In turn, the actuated jointP4

of the fourth limb is directed alongz which is parallel to the axes

of the limb’s threeR̀
i
-joints. It is noteworthy that vectorsx, y

andz have fixed directions.
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TABLE 2 . ACTUATION WRENCH OF LIMBS FOR 3T1R PMs WITH ONE ACTUATED JOINT.

dof Types Actuated Actuated wrench

joint

4 Permutation ofPR̀R̀R̀ (the P A force directed alongz

P-joint being alongz) R̀ A force orthogonal toz and lying in the plane containing the axes of two unactuatedR̀-joints

Permutation ofPPR̀R̀ P A force non orthogonal to the direction of the actuatedP-joint, orthogonal to the direction

of the actuatedP-joint and lying in the plane containing the axes of two unactuatedR̀-joints

R̀ A force non parallel toz, orthogonal to the directions of twoP-joints and crossing the axis

of the unactuated̀R-joint

Permutation ofPPPR̀ P A force orthogonal to the directions of twoP-joints and crossing the axis of the unactuated

R̀-joint

R̀ A moment corresponding to a line at infinity that does not passthrough pointj= (z, 0)

5 Permutation of̀RR̀R̀ŔŔ R̀ A force collinear with the intersection line of two planes: the first one containing the axes of

two Ŕ-joints and the second one containing the axes of two unactuatedR̀-joints

Ŕ A force parallel toz and intersecting the axis of unactuatedŔ-joint

Permutation of̀RR̀ŔŔŔ R̀ A force parallel tomi and intersecting the axis of the unactuatedR̀-joint

Ŕ A force collinear with the intersection line of two planes: one containing the axes of two

R̀-joints and the second one containing the axes of two unactuatedŔ-joints

Permutation ofPR̀R̀R̀Ŕ P A force parallel toz and intersecting the axis of théR-joint

(theP-joint being R̀ The determination of the actuation wrench requires furtherdetails on the geometry of the
limb

alongz) Ŕ A force directed alongz

Permutation ofPR̀R̀ŔŔ P A force collinear with the intersection line of two planes: the first one containing the axes of

two R̀-joints and the second one containing the axes of twoŔ-joints

R̀ The determination of the actuation wrench requires furtherdetails on the geometry

Ŕ of the limb

Permutation ofPR̀ŔŔŔ P A force parallel tomi and intersecting the axis of thèR-joint

(theP-joint being R̀ A force parallel tomi

alongmi) Ŕ

Permutation ofPPR̀R̀Ŕ P

R̀

Ŕ The determination of the actuation wrench requires furtherdetails on the geometry

Permutation ofPPR̀ŔŔ P of the limb

R̀

Ŕ

Permutation ofPPPR̀Ŕ P

R̀ A moment corresponding to a line at infinity that does not passthrough pointj= (z, 0)

Ŕ A moment corresponding to a line at infinity that does not passthrough pointm= (mi , 0)
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TABLE 3 . WRENCH GRAPHS AND SUPERBRACKET DECOMPOSITION FOR SMGs OF CLASSES A AND B.

sub-class A.1 A.2

wrench graph

a ec

b
fd

i

j

k

Ω∞

R
3

F̂1 F̂2
F̂3

M̂a

a

e

c
g

bf
h

i

j

k

Ω∞

R
3

F̂1

F̂2

F̂3

F̂4

superbracket [abdf][cikj][eikj] [eikj]
(

(abc)∧ (bej)∧ (hf)
)

decomposition

sub-class A.3 B.1

wrench graph

a

e

c

g

b fd
h

i

j

k

Ω∞

R
3

F̂1

F̂2

F̂3

F̂4

a e

c g

b f
d h

i

j

k

Ω∞

R
3

F̂1

F̂2

F̂3

F̂4

T12 T34

superbracket [aceh][acej][gikj] [gikj]
(

(abd)∧ (cgj)∧ (fh)
)

decomposition

sub-class B.2 B.3

wrench graph

a

e

c

g

b f
d

i

j

k

Ω∞

R
3F̂1

F̂2

F̂3

F̂4

T12

a e

b
fd

h

i

j

k

Ω∞

R
3F̂1

F̂2 F̂3

F̂4

superbracket [gikj]
(

[abj]∧ [efj]∧ [cd]
)

[eikj]
(

(abd)∧ (aej)∧ (fh)
)

decomposition

Limb L4 is a 4-dof limb of Tab. 1. This limb is sufficient to
make the Quadrupteron PM free of constraint singularities.

From Tab. 2, it follows that the four limbs of the
Quadrupteron PM apply four actuation forcesF̂1 = (x, rA1 ×x),

F̂2 = (y, rA2 ×y), F̂3 = (x, rA3 ×x) andF̂4 = (z, rA4 × z). Ac-
cording to class A.2, the Quadrupteron PM exhibits an actuation
singularity whenever:
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F̂1

F̂2

F̂3

A1 A2

A3

F̂4

x
y

z

FIGURE 2. THE QUADRUPTERON PM.

A1

A3

x

FIGURE 3. ACTUATION SINGULARITY OF THE
QUADRUPTERON PM.

1. f1 ‖ uac

2. f1 ‖ z
3. f3 ‖ f4

For the Quadrupteron PM,f1 ≡ f3 ≡ x, f2 ≡ y, f4 ≡ z and
uac is the unit vector of lineA1A3. As a result, the second and
the third singularity conditions are impossible. Consequently,
the only possible singularity condition is:(A1A3 ‖ x), which is
illustrated in Fig. 3.

A 2-PRRU-PRRR-PRPP PM (class A.1)
Now let us modify the architecture of the Quadrupteron PM

in order to obtain a PM of the sub-classA.1. Accordingly, we
should replace the third limbL3 of the Quadrupteron PM with
a limb generating an actuation moment. From Tab. 2, the limb
PR̀PP satisfies the required condition. As a result, the 2-PRRU-
PRRR-PRPP PM, shown in Fig. 4, is obtained.

It can be noticed that the proposed PM is free of constraint
singularities. The condition for actuation singularitiesis given

F̂1

F̂2

F̂3

x
y

z

FIGURE 4. A 2-PRRU-PRRR-PRPP PM.

by: (f1× f2) · f3 = 0. Since, for the proposed 2-PRRU-PRRR-
PRPP PM, f1 ≡ x, f2 ≡ y and f3 ≡ z, this PM is also free of
actuation singularities.

CONCLUSION
The conceptual design of parallel Schnflies Motion Genera-

tors (SMGs) was addressed in this paper. The screw theory, the
Grassmann-Cayley Algebra (GCA) and the Grassmann Geome-
try (GG) were used to define a procedure to consider the singu-
larities at the conceptual design stage parallel SMGs.

First, we generated some conditions for the assembly of
limbs. Then, the limbs likely to be used in the design of a par-
allel SMG were compared based on their influence on the con-
straint singularities of the obtained SMG. Moreover, the locus of
the actuation wrench for each type of limbs and for each type
of actuated joints was presented in Tab. 2. Based on screw the-
ory and GG some rules for the validity of the selection of the
actuated joints for parallel SMGs were generated. Accordingly,
six types of wrench graph corresponding to six typical classes
of parallel SMGs were developed. The geometric properties of
these classes were highlighted in order to determine and compare
the singularities of 3T1R PMs at the conceptual design stage. Fi-
nally, the results were applied to one PM of each class.

As a result, it is possible to generate new architectures of
parallel SMGs by using:

(i) the six typical wrench graphs with known singularity condi-
tions;

(ii) the comparison of limbs likely to be used in the design of a
parallel SMG based on their influence on its constraint sin-
gularities;

(iii) the locus of the actuation force for each choice of limb pre-
sented in Tab. 2.

The proposed approach developed for parallel SMGs can be ap-
plied to consider the singularities at the conceptual design stage
of other classes of lower-mobility PMs.
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