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ABSTRACT

The subject of this paper is about the conceptual design
of parallel Schoenflies motion generators based on the virenc
graph.

By using screw theory and Grassmann geometry, some con-

ditions on both the constraint and the actuation wrenchesysst
are generated for the assembly of limbs of parallel Schaenfli
motion generators, i.e., 3T1R parallel manipulators. Téosn-
ditions are somehow related to the kinematic singularitiethe
manipulators. Indeed, the parallel manipulator should bet
in a constraint singularity in the starting configurationrfa
valid architecture, otherwise it cannot perform the regairmo-
tion pattern. After satisfying the latter condition, therakel
manipulator should not be in an actuation singularity in ange
eral configuration, otherwise the obtained parallel mangiar
is permanently singular.

Based on the assembly conditions, six types of wrench
graphs are identified and correspond to six typical classks o
3T1R parallel manipulators. The geometric properties @fsth
six classes are highlighted. A simplified expression of the s
perbracket decomposition is obtained for each class, whleh
lows the determination and the comparison of the singulari-
ties of 3T1R parallel manipulators at their conceptual desi
stage. The methodology also provides new architecturearef p
allel Schoenflies motion generators based on the classditat
wrench graphs and on their singularity conditions.

INTRODUCTION

The primary concern of the conceptual design is the genera-
tion of physical solutions to meet certain design specificgtl].

The concept generated at this phase affects the basic shape g
eration and material selection of the product concernedhén
subsequent phase of detailed design, it becomes excegdifigl
ficult, or even impossible to make a correction the shortogi

of a poor design concept formulated at the conceptual design
stage [2]. Therefore, the conceptual design of parallelipran
ulators (PMs) is crucial task which aims at defining the dezhi
tures of the associated kinematic chains. In this papefpities

of conceptual design process is the Schoenflies Motion Gener
tors (SMGs).

The parallel manipulators are called Schoenflies Motion
Generators if they can perform four degree of freeddof)dis-
placements of a rigid body. These motions involve threepede
dent translations and one rotation about a fixed axis [3]s $at
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of displacements was first studied by the German matheraatici
mineralogist Arthur Moritz Schoenflies (1853-1928).

Over the past few decades, the creation of various designs of
3T1R parallel manipulators were broaden, especially &ftigre
success of the Quattro [4]. Gogu discovered an isotropiai-arc
tecture (its jacobian matrix is diagonal and constant), edithe
Isoglide4 [5, 6], which is composed of four legs with prisioat
actuators. Another topology within the same family wasantr
duced by Gosselin [7], named the Quadrupteron.

The symmetrical design was proposed by Angeles [3],
namely the McGill SMG, with two identical legs which in turn
decreases the number of joints. There exist two architectur
varieties of H4 family, either with revolute or prismatictaa-
tors [8-10]. The H4 robot designed by Piergidtal. [8, 9], is
a fully-parallel mechanism with no passive kinematic cHagn
tween the base and the nacelle. This idea brought out the-mech
anism with four legs. Each revolute joint in the leg is actu-
ated. Whereas the H4 robot with prismatic actuators mounted
to the base, was presented by \Wual. [10]. Another mecha-
nism constructed by three identical legs was proposed hyt Bri
and Bonev [11, 12], called Pantopteron-4, where each leg com
prises a pantograph linkage. Since it only employs thres, leg
the Pantopteron-4 gains great advantage in terms of workspa
volume and acceleration capacities.

The type synthesis approach based upon screw theory is
widely used for generating many parallel manipulators asvsh
by Kong and Gosselin [13]. This approach allows us to produce
numerous kinematic chains, by discovering the wrench syste
W that is reciprocal to the twist systef of the moving plat-
form.

Based upon the reciprocity condition, Joshi and Tsai devel-
oped a procedure to express Jacobian makrof limited dof
parallel manipulators, comprises both constraint andedicio
wrenches [14]. In this paper, this matrix is named the extend
Jacobian matriXg. The rows ofJg are composed af linearly
independent actuation wrenches plus8inearly independent
constraint wrenches.

These wrenches correspond to six Pliicker lines, composing
J. The determinant of thid is equal to the superjoin of 6 Pliicker
lines, named superbracket of Grassmann-Cayley Algebi- It
lows a translation of synthetic geometric conditions imtgairiant
(coordinate-free) algebraic expression [15].

The superbracket decomposition was employed by Ben-
Horin and Shoham [16—18] to analyse the singularity afdd



parallel manipulators, for instance Gough-Stewart Plaif
However, this procedure does not consider the plane attipfini
which obviously cannot represent a line at infinity. Indeeline
at infinity correlates to a pure moment emerged from limdetl
parallel manipulators.

Points at infinity were used initially in a superbracket te ex
amine the singularity of 3-UPU by Kanaan et al [19, 20]. This
improvement enhanced the application of Grassmann-Cayey
gebra for limiteddof parallel manipulators. The method was
later expanded to represent the wrenches in a projectiveespa
namedwrench graptby Amine et al [21-23]. The wrench graph
depicts all geometrics properties between the constrahiaa-
tuation wrenches of manipulators and highlight points fihity
in a superbracket.

The concept of wrench graph consequently completes the
type synthesis process (based on screw theory) at the doiatep
design stage. This idea will be applied in this paper tofitate
all the constraint and actuation wrenches. It allows to troos
new architectures of 3T1R parallel manipulators based en th
classification of wrench graph and the singularity condgio

TYPE SYNTHESIS OF 3T1R PMs

The moving platform of a 3T1R PM provides three inde-
pendent translationalof and one rotationalof about an axis of
fixed direction. Without loss of generality, we considertttiee
rotationaldof is about an axis directed alozg

Constraint Wrench System

In a general configuration, the constraint wrench syst#m,
of a 3T1R PM must be reciprocal to the 3T1R motion. Thus, it
is a 2-$,-system containing infinite-pitch wrenches (pure mo-
ments) whose directions are orthogonaktoAccordingly, #¢
can be written as:

We = Spa. My, M) (1)

where.Zy = (0,zx my), My = (0, zx my) andz, m; andm,
are three mutually independent unit vectors.

The constraint momen#; corresponds to a line at infinity
passing through points= (z, 0) andi = (my, 0). Thus,#c =
ji. Likewise,/ZCz = jk wherek = (my, 0). As a result, the
constraint wrench systewi. = spar.#c, .#) corresponds (in
a general configuration) to a flat pencil containing all lirzs
infinity through pointj = (z, 0), z being parallel to the axis of
the allowed rotation of the PM’s moving platform.

Constraint Singularities The constraint singularities
of a 3T1R PM correspond to configurations in which the con-
straint wrench system fails to be a 2-system correspondirzg t
flat pencil of lines at infinity through point. In such configura-
tions, the PM can switch to another motion mode whose motion
pattern is no longer a 3T1R motion.

However, if the constraint wrench system of a 3T1R PM
corresponds to the 2-system in any configuration, then the PM
will be free of constraint singularities. Thus, it is pogsilto

avoid such configurations with an appropriate choice of té&sP
architecture, as shown thereafter in this paper.

Actuation Wrench System

In a general configuration, by locking all the actuated int
of a PM its moving platform must be fully constrained, i.¢s, i
actuation wrench system must span in addition to the cdnstra
wrench system a 6-system. Thus, the actuation wrench system
Waof a 3T1R PM must be (in a general configuration) a 4-system
and the linear combination &f; and#; must lead to a 6-system,
otherwise the robot is permanently singular.

Actuation Singularities The actuation singularities oc-
cur when the actuation wrench system of the PM does notgatisf
any longer the previous condition while the PM is not in a con-
straint singularity. Thus, a 3T1R PM exhibits an actuatiogs-
larity whenever: 1.%#; fails to be a 4-system; and 2. the linear
combination of#; and#; fails to be a 6-system whil@: is a
2-system.

Comparison of Limbs for 3T1R PMs

A list of 4- and 5-dof limbs for 3T1R PMs withR- and/orP-
joints was obtained in [13]. Without loss of generality, wane
sider the rotationafiof of the 3T1R PMs under study is about
an axis directed along Accordingly, the following conditions
should necessarily be satisfied:

e In a given limb, the axes of thie-joints must lie in parallel
planes;

o Ifthe axes of all théR-joints in a limb are parallel, then they
will be necessarily directed alorm)

In order to highlight the axis direction of a revolute joilet;

1. R denote a revolute joint of axis parallelzp
2. Rcan be:

(a) a revolute jointR, of axis parallel to the horizontal
plane €Oy); _

(b) arevolute joinR whose axis is neither parallel tonor
to the horizontal planexQy).

3. Intheith limb, letm; denote the unit vector along the direc-
tion of the revolute joint axes that are not paralletto

Therefore, alR-joints (all Ii-joints, respectively) in a given
limb have parallel axes. Now let us reformulate the list oftls
for 3T1R PMs obtained in [Kong] under the above assumptions.
Accordingly, Tab. 1 is obtained. Here, we examine this lisab
comparative analysis of the limbs in terms of both constral
actuation wrench systems.

Limbs Constraint Wrench System

The constraint wrench system of a given limb only depends
onthe jointtypes and the joint axes. However, the arrangeofe
the joints within the limb may affect the constraint singitlas
of the obtained 3T1R PM.



TABLE1. LIMBS FOR3TI1R PMs.

dof Class Type
4 3R-1P  Permutation oPRRR
2R-2P  Permutation oPPRR
1R-3P  Permutation oPPPR
5 5R Permutation o0RRRRR
Permutation oRRRRR
4R-1P  Permutation oPRRRR
Permutation 0PRRRR
Permutation 0PRRRR
3R-2P  Permutation oPPRRR
Permutation oPPRRR
2R-3P  Permutation oPPPRR

Four dof Limbs Any 4-dof limb of Tab. 1 applies a 2-
$.,-system of constraint wrenches reciprocal to Bwpints of
the limb that are directed alormy Thus, such a limb applies, in
any configuration, an infinite number of constraint mometmas t
correspond to lines at infinity passing through pgiat (z, 0). It
can be concluded that a 3T1R PM having at least odef4imb
of Tab. 1 is over-constrained and free of constraint singfyla

It should be noted that for the dief limbs given in Tab. 1
the directions of thé>-joints are defined in such a way that the
limb generates a 3T1R motion. For example, let us consider th
PRRR limb type. The thred?-joints generate, in a general con-
figuration, one rotation about an axis directed alarand two
translations along vectors orthogonalzo Thus, theP-joint is
necessarily along, otherwise the limb cannot provide the re-
quired 3dof translational motion.

Five dof Limbs A 5-dof limb used in the topology of a

(a) 4RRRRR (b) 4RRRRR

FIGURE 1. TWO 3T1R PMs.

Clearly, for BRRRRR limb, the last revolute joint axis is not
necessarily parallel to the first two. Thus, th&@RRRR 3T1R
PM is obtained by assembling the PM such that:

e the condition of parallelism between the last revolutetjoin
axis and the first two is satisfied for all limbs;
e vectorsm;,i=1,...,4, are not all parallel.

In that case, the limbs apply altogether four constrainnehes
that correspond to four lines at infinity passing throughmpgi
and span a 2-system of constraint wrenches. However, if the
four vectoram; become parallel, the PM will exhibit a constraint
singularity and can switch to another motion mode in whiah th
motion of the moving platform will no longer be a 3T1R motion.
In such a configuration, the last revolute joint axis in eatiblof
the 4RRRRR PM will no longer be parallel ta and the moving
platform will no longer be parallel to the horizontal plax©§).
Now let us consider the RRRRR PM. Clearly, its limbs
do not need geometric assembly conditions in order to peovid
a 3T2R motion for the limb and a 3T1R motion for the moving
platform. This PM is free of constraint singularities aned thov-
ing platform is always parallel to plang@y). Moreover, it can
be concluded that if a 3T1R PM contains at least one limb o typ

3T1R PMs must apply one constraint moment that corresponds 2, its moving platform will always be parallel to planedy) and

to a line at infinity passing through point= (z, 0). Accordingly,
the 3T1R PM must be assembled such that adp&imb of the

PM provides a 3T2R motion in the starting configuration. The
5-dof limbs given in Tab. 1 can be classified into two types:

Type 1 There exist within the limb two revolute joints of parallel
axes that are neither successive nor separatedmjoant.
Such a limb is not generally a 3T2R limb. The 3T1R PM
containing limbs of this type is obtained by imposing some
geometric constraints on the assembly.

Type 2 Two revolute joints of parallel axes within the limb are
either successive or separated bl-gpint. Such a limb is
generally a 3T2R limb.

In order to highlight the difference between the two types of
limbs let us consider two 3T1R PMs with identical limb struc-
tures, namely, a #RRRR PM and a 4RRRRR PM shown in
Fig. 1.

thus, the PM will be free of constraint singularities. Hoeev
if all the limbs of the 3T1R PM are of type 1, then the PM may
have some constraint singularities.

Limbs Actuation Wrench System

For a given type of limbs given in Tab. 1, the actuation
wrenches do not depend on the arrangement of the jointsrwithi
the limb but on the actuated joints. The constraint wrenah sy
tem# ¢ of alimb is reciprocal to all the twists associated with the
limb’s kinematic joints. If the actuated joint of the limblacked,
then the wrench system reciprocal to the other joints ofithé |
will be given by% ¢ such that: dinfZ ¢) =dim(#©)+ 1 and% ¢
contains?” © plus a set of some additional wrenches. Then, the
corresponding actuation wrench can be selected as ones# the
additional wrenches.

Table 2 characterizes the locus of the actuation wrench for
each type of limbs obtained in Tab. 1 and for each type of actu-



ated joints. Without loss of generality, we consider tha fmint
per limb is actuated.

Validity Rule of the Actuation Wrench for 3T1R PM

In what follows, let us assume that the limbs apply a 2-
system of constraint wrenches spanned.#% and.Z. and
satisfying Eqn. (1). In this section, we develop some rudesxt
amine the validity of the actuation wrench system of a 3T1R PM
For instance, we consider that an actuation wrench applyed b
a given limb of a PM is a zero- or an infinite-pitch wrench
namely, a pure force or a pure moment. L#,...,.%4 denote
actuation forces and#,, .#,1 and.#5> denote actuation mo-
ments. In a general configuration of a 3T1R PM, one can state
the following rules.

R1 ! A basis of the actuation wrench syste#? can contain at
most one actuation moment.

Proof Let us consider that a basis o#? contains
two actuation moments/lal and ///az In that case,
Wa+ W = spaniJl, Fa, ///al, Mg, Me, M3). Since
d|m(spar(,//lal, Mg, M, //lcz)) < 3, the dimension of
# 2+ ¢ will be lower than or equal to 5 in any robot con-
figuration and thus the proposed PM will be permanently
singular. A

If a basis of#2 contains one actuation momewt,, then the
line at infinity corresponding to#, should not pass through
pointj = (z,0).

Proof Let us assume that a basis #f® contains one ac-
tuation moment#, that corresponds to a line at infinity
passing through point, in a general configuration. In that

case, the actuation momem?a belongs to the constraint
wrench system in a general configuration. Clearly in that
case: dinf#@+ #°) <5.

If the basis of# @ contains one actuation momema and
three actuation force@l, e ,Jg, then none of the three ac-
tuation forces can be parallel to another. o

Proof Indeed, if.#; and.% are parallel, then spé&gry, .72)

is equivalent to spat”y, .#12), .#12 being the line at infin-

ity of the finite plane containing#; and.%,. Accordingly,
one can find a basis 6#2 containing two actuation mo-
ments, and thus, ruR1 is not satisfied in that case.

If a basis of 7 contains one actuation moment, and
three actuation force$,...,.73, then the three actuation
forces cannot be coplanar. A

Proof Indeed, if 7, %, and 3 are coplanar, then
spar(ﬁl, J 3) is equivalent to spat#y, .Zo, Ma1),
M= being the line at infinity of the finite plane containing
Zi (i=1,...,3). Accordingly, ruleR1is not satisfied in that
case.

If a basis of#'@ is composed of four actuation forces, then
it can contain at most one pair of parallel actuation forces,
provided that their plane does not contain the unit veztor
Proof Clearly, if a basis of##2 contains more than one pair
of parallel actuation forces, then one can compute another
basis of# 2 with more than one actuation moment, and thus,
rule R1 will not be satisfied.

R2

R3

R4

R5

1R1 stands for rule 1

R6 If a basis of#® is composed of four actuation forces where
two forces%#; and.%;, are parallel, then the plane containing
these forces must not contain the unit veaor

Proof If the plane containing the two parallel actua-
tion forces contains the unit vecta, it follows that
the two actuation forces”; and %, and the two con-
straint moments# and .#., will belong altogether to
the union of two flat pencils of lines. Accordingly,
dim(span.#1, %, M1, #)) < 3 and the dimension of
2+ ¢ will be lower than or equal to 5 in any robot con-
figuration.

If a basis of#@ is composed of four actuation forces, then
at most three of these forces can be coplanar.

Proof Indeed, if the four forces are coplanar, then the ac-
tuation wrench system fails to be a 4-system in a general
configuration, since four coplanar forces can span at most a
3-system.

R8 A basis of #'2 can contain at most one actuation force par-
allel toz. A A

Proof Indeed, if two actuation forces#; and .7,, are
directed alongz, then spah%, 2) IS equivalent to
spanjﬁl, //12) where,//llz corresponds to a line at infin-
ity that necessarily passes through pgiet (z, 0). Accord-
ingly, in that case, rul®2 will not be satisfied.

If a basis of##@ is composed of four actuation forces, these
forces cannot be orthogonal to a common direction.

Proof Indeed, if the four actuation forces are (in a general
configuration) orthogonal to a common direction, then they
will intersect a common line at infinity, which necessarily
intersects all the wrenches of the constraint wrench system
Thus, in that case, the four actuation forces plus the,2-$
system of constraint wrenches form a singular complex.

R7

R9

TWO MAIN CLASSES OF SMGs

Based on the properties presented in the previous section,
two main classes of 3T1R PMs can be identified. For PMs of
the first class, one can find (in a general configuration) astudsi
the actuation wrench system that contains one actuationanbm
On the other hand, a basis of the actuation wrench system sf PM
of the second class can be composed only of actuation fdBges.
following rulesR1...R9, some sub-classes of each class can be
obtained.

For instance, we will represent the wrench graphs of three
sub-classes of each class. However, by following the same pr
cedure and satisfying rulg®l...R9, other sub-classes can be
obtained. It is noteworthy that each sub-class is chatiaetér
by the description of the actuation wrench system, the caimst
wrench system being the same for any 3T1R PM.

1. Class A: The actuation wrench system contains one line at
infinity.
A.1 One actuation moment plus three actuation forces. In
that case, the three actuation forces cannot be coplanar
and none of these forces can be parallel to another;

A.2 Two parallel actuation forces plus two other actuation
forces;



A.3 Three coplanar actuation forces plus a fourth actuation
force that does not belong to the plane of the first three
ones.

A wrench graph for each sub-class is given in Tab. 3.

. Class B: The actuation wrench system does not contain any

line at infinity.

B.1 Four actuation forces that are mutually skew where
none of the four forces is parallel

B.2 Four actuation forces that are mutually skew where one
of the four forces is parallel tg;

B.3 Two pairs of concurrent actuation forces.

A wrench graph for each sub-class is given in Tab. 3.

Superbracket Decomposition for Class A

A.l-

A.2-

One actuation moment plusthree actuation forces

Let us consider a PM of class A.1. A basis of the actuation
wrench systen#”/ @ of the PM can be composed of three
actuation forceﬁl, Jz andyg and one actuation moment
//a Now let ///cl and ///cz be two constraint moments that
form a basis of the constraint wrench syst#fi of the PM.
Accordingly, the extended Jacobian matrix of this subsclas
of SMGs takes the form:

\]E = [jl jz jg //Za /ch //202] (2)

From ruleR1, the actuation momen%fa must correspond
to a line at infinity that does not pass through pagjntin

a general configuration of the PM. Moreover, in a general
configuration, the three actuation forces cannot be copla-
nar and none of these forces can be parallel to another. Let
us consider the general case satisfying these conditions by
considering that the three actuation forces are skew (in a
general configuration). We know that three moments are
always mutually concurrent. T[]us the six wrenches com-
posing Je can be written as:.% = (f1,ra x f1) = ab,

JZ = (fy, ra, X fz) = cd, yg = (fs, rAs x f3) = ef, ﬂa =

(0, mg) = ik, ///cl =ij = (0, mcy) ///cz =kj= (0, mc2)

The corresponding superbracket is then expressed and sim-
plified as follows:

S=[abcd ef ik ij kj]

= [abdf][cikj]leikj] (3)

Such a PM has two singularity conditions:

€) (fl X fz) -f3=0
(b) (M1 x Me2) -Ma =0

Two parallel actuation forces plustwo other skew actua-

tion forces

The extended Jacobian matrix of this sub-class of SMGs
takes the form:

WhereJ1 is parallel ton Let %1 = (f1,ra, x f1) = ab,
JZ = (fl, ra, X fl) =cb, J3 = (f3, I'ag X fg) =ef and</4 =
(f4, ra, X f4) = gh be the four actuation forces. In turn, let
Mg = (0,me1) =ij and Mep = (0, mcz) = kj be the two
constraint moments.

The corresponding superbracket is expressed and decom-
posed as:

S=

abcbef ghijkj]

ei ]([abch][geij] [abcf][beh_]])

[
= [edk]
— leikj] [abeh]bef ] ) (5)
=

eikj]( (abc) A (bej) A (ﬁ))

Let uyc be the unit vector of the finite line joining the pro-
jective points andc. This sub-class of SMGs has two main
singularity conditions:

(@) (mey x mep) -z = 0. Clearly, this is the condition for
constraint singularities.
(b) ((f1x Uac) x (f1x 2)) - (fa x f3) =
1. f1 ] Uac;
2. f1] z
3. f3 | fa.

0=

A.3- Three coplanar actuation forces plus a fourth actuation

force
The extended Jacobian matrix of this sub-class of SMGs
takes the form:

J-lE- = [jl jz j3 jA Q/ch </ZC2] (6)

whereJl Jg and J3 intersect each one another at a finite
point. LetJl =ac, % = ae, J3 =ce andJ4 = gh be the
four actuation forces. In turn, Ie%/cl =1ij and/lcz =kj

be the two constraint moments. B B

The corresponding superbracket is expressed and developed
as follows:

S=[acaeceghijkj| = [aceh][acej][gik]j] (7)

This sub-class of SMGs has three singularity conditions:

(@ (M1 xmep)-z=0
(b) plane(ace) || fa
(c) plane(ace) | z

Superbracket Decomposition for Class B

B.1- Four skew lineswhere none of them isdirected along z

JT = [9:1 J 3\3 le ///cl ///c2] 4)

The extended Jacobian matrix of this sub-class of SMGs



takes the form:

J-lE- = [9:1 jz 2 cjzl ///cl ///c2] (8)

where %1 %>, %3 and.%4 correspond to four finite lines
that are mutually skew and none of them is directed along
z. There exists (in a general configuration) a finite line
. i paraIIeI toz that crosses any couple of actuation forces
J| and JJ Let Jl = (f1,r1 x f1), Jz = (fp,r2 x f2),
J3 = (f3, rz xf3) andJ4 = (f4, r4 x f4) be the four actua-
tion forces. In turn, Ietx//cl =ij and,//lcg =kj be the two

constraint moments. The superbracket then is depicted anq3 3

developed as:

S=

~ [gikj] [a@ncg@)
— [gik 3] (abd) A (cgj) A (£0))

(9)

This sub-class of SMGs has two main singularity condi-
tions:

(@) (Mg xMep)-z=0.
(b) ((Z X ch) X (fl X fg)) : (f4 X f3) =0

whereucg is the unit vector of a finite line non-parallel o
and crossing line¥1, and.%3a.

Four skew lineswhere one of them isdirected along z
The extended Jacobian matrix of this sub-class of SMGs
takes the form:

I = [F1 Fo T3 Foa My M) (10)

where; %, %3 and%4 correspond to four finite lines that
are mutually skew ang, is parallel toz. We know that, in a
general configuration, there exists a finite lifh parallel to

z that crosses any couple of actuation forces am@mg/z
and.Zs. Thus, let%, | z= ac be the finite line parallel to
z that crosses, in a general conﬁguratléﬁ andyz at the
finite pointsa andc, respectively. Thus, points, ¢ and j
are aligned. h

Let #1 = ab, F2 = cd, F3 = ef andF, = gj be the four
actuation forces. In turn, let/c, = 1j and.Zc, =kj be the
two constraint moments.

as follows:

(11)

This sub-class of SMGs has two singularity conditions:

(@) (Mg xmMgp)-z=0.
(b) ((f1x2) x (f3x2))-f=0

Two pairs of inter secting actuation forces

The extended Jacobian matrix of this sub-class of SMGs has
the form:

F4 (12)

J.lE- [fl Fp F3 M //102]

Wherefl = (fl, r{ x fl) = ab, Jz = (fz, r{ x fz) = ad,
F3= (f3, raxf3) =ef, J4 = (fg,raxfq) =eh, M1 = 1]
and A = kj.

The corresponding superbracket is expressed and simplified
as follows:

S=

= [ej] ([abd] [aea;])
— leikj]((abd) A (aej) A (£0))

(13)

This sub-class of SMGs has two main singularity condi-
tions:

(@) (Me1 x mep)-z=0.
(b) ((Z X Uge) X (f1 x fz)) (faxf3)=0

whereu,, is the unit vector of the finite line joining poinss
ande.

APPLICATIONS
The Quadrupteron PM (Class A.2)

The Quadrupteron PM [7] illustrated in Fig. 2, is composed
of three identical limbsz; = P'/RyR,R5R, i = 1, 2, 3, plus one
limb £4 = P*RiR5Rs.

The actuated joinP' of theith limb (i = 1, 2, 3) is directed
alongm; which is parallel to the axes of the limb’s thrﬁejomts
such tham;j || ms || x andmy || y. In turn, the actuated joirﬂ4
of the fourth limb is directed alongwhich is parallel to the axes

of the limb’s threeR'—joints. It is noteworthy that vectors, y

The corresponding superbracket is expressed and simplified andz have fixed directions.
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TABLE 2.

ACTUATION WRENCH OF LIMBS FOR 3T1R PMs WITH ONE ACTUATED JQIT.

dof  Types Actuated Actuated wrench
joint
4 Permutation ofPRRR (the P A force directed along
P-joint being along) R A force orthogonal ta and lying in the plane containing the axes of two unactuigoints
Permutation oPPRR P A force non orthogonal to the direction of the actualebint, orthogonal to the direction
of the actuatedP-joint and lying in the plane containing the axes of two unatédR-joints
R A force non parallel ta, orthogonal to the directions of tw-joints and crossing the axis
of the unactuate®-joint
Permutation oPPPR P A force orthogonal to the directions of twjoints and crossing the axis of the unactuated
R-joint
R A moment corresponding to a line at infinity that does not lassugh pointj = (z, 0)
5 Permutation oRRRRR R A force collinear with the intersection line of two planebeffirst one containing the axes of
two R-joints and the second one containing the axes of two untectéajoints
R A force parallel taz and intersecting the axis of unactuafegoint
Permutation oRRRRR R A force parallel tom; and intersecting the axis of the unactuaiegbint
R A force collinear with the intersection line of two planesteacontaining the axes of two
R-joints and the second one containing the axes of two unactéajoints
Permutation oPRRRR P A force parallel taz and intersecting the axis of thejoint
(theP-joint being R The determination of the actuation wrench requires furtletails on the geometry of the
limb
alongz) R A force directed along
Permutation o0PRRRR P A force collinear with the intersection line of two planekeffirst one containing the axes of
two R-joints and the second one containing the axes off4joints
R The determination of the actuation wrench requires furtletails on the geometry
R of the limb
Permutation oPRRRR P A force parallel tom; and intersecting the axis of th&joint
(the P-joint being R A force parallel tom;
alongm;) R
Permutation oPPRRR P
R
R The determination of the actuation wrench requires furtietails on the geometry
Permutation oPPRRR P of the limb
R
R
Permutation oPPPRR P
R A moment corresponding to a line at infinity that does not passugh pointj = (z, 0)
R A moment corresponding to a line at infinity that does not plassugh pointa = (m;, 0)




TABLE 3. WRENCH GRAPHS AND SUPERBRACKET DECOMPOSITION FOR SMGs OEASSES A AND B.

sub-class

wrench graph

superbracket

decomposition

A.l
ieMa K
b
e d : £
Do v % 1 °
R3
PR T
1
F 1 ]:—2 f‘ 3

[abdf][cikj][eik]]

A.2

R AUV
g \ \

~ ; c

R e Fi

F3

sub-class

wrench graph

superbracket

decomposition

A.3

[aceh][acej][gik]]

sub-class

wrench graph

superbracket

decomposition

B.2

lgik 3] ([ab] A [e£3] A led])

le13) ((abd) A (aej) A (£1))

Limb L4 is a 4dof limb of Tab. 1. This limb is sufficient to
make the Quadrupteron PM free of constraint singularities.
From Tab. 2, it follows that the four limbs of the

Quadrupteron PM apply four actuation forcés = (X, ra, XX),

Gy = (Y, Ta, XY), F3= (X, I ag X X) and. %y = (2, T p, X 2). Ac-
cording to class A.2, the Quadrupteron PM exhibits an aictnat
singularity whenever:



I

OF

FIGURE 3. ACTUATION THE

QUADRUPTERON PM.

SINGULARITY

1. f1 H Uasc
2. f1 H z
3. f3 [ fa

For the Quadrupteron PMy =fz=x, fo =y, f4 =2z and
Uac is the unit vector of lineA1Az. As a result, the second and
the third singularity conditions are impossible. Consetjye
the only possible singularity condition i$A1Az || X), which is
illustrated in Fig. 3.

A 2-PRRU-PRRR-PRPP PM (class A.1)

Now let us modify the architecture of the Quadrupteron PM
in order to obtain a PM of the sub-clasdsl. Accordingly, we
should replace the third limii3 of the Quadrupteron PM with
a limb generating an actuation moment. From Tab. 2, the limb
PRPP satisfies the required condition. As a result, theRRU-
PRRR-PRPP PM, shown in Fig. 4, is obtained.

It can be noticed that the proposed PM is free of constraint
singularities. The condition for actuation singularitisggiven

FIGURE 4. A 2-PRRU-PRRR-PRPP PM.

by: (f1 x f2) -f3 = 0. Since, for the proposedPRRU-PRRR-
PRPP PM, f; = x, f, =y andfz = z, this PM is also free of
actuation singularities.

CONCLUSION

The conceptual design of parallel Schnflies Motion Genera-
tors (SMGs) was addressed in this paper. The screw theary, th
Grassmann-Cayley Algebra (GCA) and the Grassmann Geome-
try (GG) were used to define a procedure to consider the singu-
larities at the conceptual design stage parallel SMGs.

First, we generated some conditions for the assembly of
limbs. Then, the limbs likely to be used in the design of a par-
allel SMG were compared based on their influence on the con-
straint singularities of the obtained SMG. Moreover, theuwof
the actuation wrench for each type of limbs and for each type
of actuated joints was presented in Tab. 2. Based on screw the
ory and GG some rules for the validity of the selection of the
actuated joints for parallel SMGs were generated. Accafigin
six types of wrench graph corresponding to six typical dass
of parallel SMGs were developed. The geometric properties o
these classes were highlighted in order to determine angamm
the singularities of 3T1R PMs at the conceptual design stéige
nally, the results were applied to one PM of each class.

As a result, it is possible to generate new architectures of
parallel SMGs by using:

(i) the six typical wrench graphs with known singularity condi-
tions;

(ii) the comparison of limbs likely to be used in the design of a
parallel SMG based on their influence on its constraint sin-
gularities;

(iii) the locus of the actuation force for each choice of limb pre-
sented in Tab. 2.

The proposed approach developed for parallel SMGs can be ap-
plied to consider the singularities at the conceptual aesigge
of other classes of lower-mobility PMs.
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