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Shallow water asymptotic models for the propagation of internal waves

We are interested in asymptotic models for the propagation of internal waves at the interface between two shallow layers of immiscible fluid, under the rigid-lid assumption. We review and complete existing works in the literature, in order to offer a unified and comprehensive exposition. Anterior models such as the shallow water and Boussinesq systems, as well as unidirectional models of Camassa-Holm type, are shown to descend from a broad Green-Naghdi model, that we introduce and justify in the sense of consistency. Contrarily to earlier works, our Green-Naghdi model allows a non-flat topography, and horizontal dimension d = 2. Its derivation follows directly from classical results concerning the one-layer case, and we believe such strategy may be used to construct interesting models in different regimes than the shallowwater/shallow-water studied in the present work.

Introduction

The study of gravity waves at the surface of a homogeneous layer of fluid has attracted a lot of interests in a broad range of scientific communities. We let the reader refer to [START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF] for a comprehensive survey of the state of the art concerning this problem, and its many interesting aspects, and we quickly discuss here some known results and methods, relevant to the present work.

While the equations governing the motion of a homogeneous layer of ideal, incompressible, irrotationnal fluid under the only influence of gravity, that we name full Euler system, are relatively easy to derive, their theoretical study is extremely challenging. This explains why the rigorous, mathematical analysis of the governing equations is quite recent, and still enjoys present-day improvements from an active community. In particular, the well-posedness of the Cauchy problem outside of the analytical framework has been discussed among others by Nalimov [START_REF] Nalimov | The Cauchy-Poisson problem[END_REF], Yosihara [START_REF] Yosihara | Gravity waves on the free surface of an incompressible perfect fluid of finite depth[END_REF], Craig [START_REF] Craig | An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits[END_REF], Wu [START_REF] Wu | Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent[END_REF][START_REF] Wu | Well-posedness in Sobolev spaces of the full water wave problem in 3-D[END_REF] and Lannes [START_REF] Lannes | Well-posedness of the water-waves equations[END_REF]. Such results are regularly improved (time of existence, regularity of the initial data, etc.); see [START_REF] Wu | Almost global wellposedness of the 2-D full water wave problem[END_REF][START_REF] Wu | Global wellposedness of the 3-D full water wave problem[END_REF][START_REF] Germain | Global solutions for the gravity water waves equation in dimension 3[END_REF][START_REF] Alazard | On the cauchy problem for gravity water waves[END_REF][START_REF] Ionescu | Global solutions for the gravity water waves system in 2d[END_REF][START_REF] Alazard | Global solutions and asymptotic behavior for two dimensional gravity water waves[END_REF] and references therein.

Nevertheless, the solutions of these equations are very difficult to describe, and the relevant hydrodynamic processes are not easily visible in these equations. At this point, a classical method is to select an asymptotic regime (described by dimensionless parameters of the domain and of the flow), in which we look for approximate models and hence for approximate solutions.

Many such asymptotic models have been derived, going back to the late 19 th century. For example, Saint-Venant [START_REF] De Saint-Venant | Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit[END_REF] derived the classical shallow-water equation, by assuming that the depth of the layer of fluid is small, so that the horizontal velocity across the layer may be averaged as a constant; while Boussinesq [START_REF] Boussinesq | Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire[END_REF][START_REF] Boussinesq | Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond[END_REF] derived the model which bears his name, describing the propagation of gravity-waves of small amplitude and long wavelength. Later on, Serre [START_REF] Serre | Contribution à l'étude des écoulements permanents et variables dans les canaux[END_REF] and Green,Naghdi [START_REF] Green | A derivation of equations for wave propagation in water of variable depth[END_REF] introduced a higher order model, which has since been widely used in coastal oceanography, as it takes into account the dispersive effects neglected by the shallow-water (Saint-Venant) model and allows waves of greater amplitude than the Boussinesq model.

However, the previously mentioned works are restricted to the formal level, and the rigorous, mathematical justification of asymptotic models received a satisfactory answer only recently. We say that a model is fully justified (using the terminology of [START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF]) if the Cauchy problem for both the full Euler system and the asymptotic model is well-posed for a given class of initial data, and over the relevant time scale; and if the solutions with corresponding initial data remain close. The full justification of a system (S) follows from:

• (Consistency) One proves that families of solutions to the asymptotic model, existing and controlled over the relevant time scale satisfies the full Euler system up to a small residual.

• (Existence) One proves that solutions of the full Euler system and solutions of the the model (S) with corresponding initial data do exist.

• (Convergence) One proves that the solutions of the full Euler system, and the ones of the asymptotic model, with corresponding initial data, remain close over the relevant time scale.

A result of Alvarez-Samaniego and Lannes [START_REF] Alvarez-Samaniego | Large time existence for 3D water-waves and asymptotics[END_REF] provides the existence and uniqueness of a solution to the full Euler system over the relevant time scale, uniformly with respect to the dimensionless parameters at stake, as well as a stability result with respect to perturbation of the equations. As a consequence, any consistent and well-posed asymptotic model is automatically justified in the sense described above. This strategy may be applied to the (quasilinear, hyperbolic) shallow-water model, to various Boussinesq models [START_REF] Kano | A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves[END_REF][START_REF] Bona | Boussinesq equations and other systems for smallamplitude long waves in nonlinear dispersive media. I. Derivation and linear theory[END_REF][START_REF] Bona | Boussinesq equations and other systems for smallamplitude long waves in nonlinear dispersive media. II. The nonlinear theory[END_REF][START_REF] Chazel | Influence of bottom topography on long water waves[END_REF][START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems[END_REF] and to Green-Naghdi models [START_REF] Alvarez-Samaniego | Large time existence for 3D water-waves and asymptotics[END_REF][START_REF] Israwi | Derivation and analysis of a new 2D Green-Naghdi system[END_REF][START_REF] Israwi | Large time existence for 1d Green-Naghdi equations[END_REF]. We let the reader refer to [37, Appendix C] for a reader's digest of the numerous known results on this aspect.

All the aforementioned models coincide at the lower order of precision as a simple wave equation, which in dimension d = 1 predicts that any initial perturbation of the free surface will split up into two counter-propagating waves. An important family of models is dedicated to the precise study of the evolution of one of the two waves when higher order terms are included. The most famous example of such model is the Korteweg-de Vries [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF] equation, but various extensions and generalizations have been proposed; see [START_REF] Johnson | Camassa-Holm, Korteweg-de Vries and related models for water waves[END_REF][START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[END_REF][START_REF] Israwi | Variable depth KdV equations and generalizations to more nonlinear regimes[END_REF] and references therein. Again, the full justification of such models is recent: see [START_REF] Kano | A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves[END_REF][START_REF] Schneider | The long-wave limit for the water wave problem. I. The case of zero surface tension[END_REF][START_REF] Bona | Long wave approximations for water waves[END_REF][START_REF] Chazel | On the Korteweg-de Vries approximation for uneven bottoms[END_REF][START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[END_REF][START_REF] Israwi | Variable depth KdV equations and generalizations to more nonlinear regimes[END_REF].

All the aforementioned works are concerned with the case of a single layer of homogeneous fluid. Such assumption of may seem too crude for applications to oceanographic problems, as variations of salinity induce variation of density. In the present work, we are interested in the simplest setting that models such a variation of density: we consider a system of two layers of homogeneous, immiscible fluid, and we are interested in the evolution of the interface between the two layers. A considerable amount of interests has been given to such bi-fluidic systems; see [START_REF] Helfrich | Long Nonlinear Internal Waves[END_REF] for a comprehensive review of the ins and outs on this topic.

The governing equations of the bi-fluidic systems share many aspects and properties of the aforementioned water-wave system, and its study has often been carried out in parallel. In particular, one can derive asymptotic models in analogy with the ones presented above. It is out of the scope of this introduction to present an exhaustive review of all the different models, as many settings are of interests. Here, and in the present work, we restrict ourselves to the case of a surface delimited by a flat, rigid lid (as deformation of the surface is in practice small compared to the deformation of the interface), and to the so-called shallow water/shallow water regime. In this regime, the two layers are assumed to be of comparable depth, and both small when compared to the typical horizontal wavelength of the flow. In that case, the models corresponding to the shallow water and Boussinesq systems have been derived in [START_REF] Choi | Weakly nonlinear internal waves in a two-fluid system[END_REF][START_REF] Craig | Hamiltonian long-wave expansions for free surfaces and interfaces[END_REF], and justified in the sense of consistency in [START_REF] Bona | Asymptotic models for internal waves[END_REF] (where, incidentally, a much larger range of scaling regimes are studied). Green-Naghdi type models where obtained in the one-dimensional case in [START_REF] Matsuno | A unified theory of nonlinear wave propagation in two-layer fluid systems[END_REF], and in the two-dimensional in [START_REF] Choi | Fully nonlinear internal waves in a two-fluid system[END_REF]. An extensive study of scalar models has been provided by one of the authors in [START_REF] Duchêne | Decoupled and unidirectional asymptotic models for the propagation of internal waves[END_REF]. Let us note that all the aforementioned works are restricted to the case of a flat bottom, contrarily to the present work.

As attested earlier, bi-fluidic models have a similar structure as the ones in the one-layer case. As a matter of fact, one recovers the latter from the former when we assume that the mass density of the top layer is zero. Yet a few remarkable differences arise, that originate interesting questions and mathematical challenges. Among them, we would like to emphasize 1. The role of surface tension. Contrarily to the water wave case, the Cauchy problem for the full Euler system is ill-posed in Sobolev spaces in the absence of surface tension. However, surface tension is very small in practical cases, so that its effect is systematically negligible in all present asymptotic models. In [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF], Lannes shows that a small amount of surface tension is sufficient to guarantee the well-posedness over times consistent with observations, provided that a stability estimate holds; see the somewhat more precise description in Section 2.2.

2. Absence of stability result. An equivalent result as the stability result (with respect to perturbations of the equation) for the full Euler system as described above is not known in the bi-fluidic case, partly due to the difficulties described in the previous item. In order to deal with this, a strategy consists in proving such stability result on the model itself. Thus the full justification of the model is a consequence of its well-posedness, and the full Euler system's consistency with the asymptotic model (and not the other way around). This strategy has been applied by the authors in [START_REF] Duchene | A new Green-Naghdi model in the Camassa-Holm regime and full justification of asymptotic models for the propagation of internal waves[END_REF], and we recall these results in Section 4.2.

3.

A non-local operator. As noticed in [START_REF] Bona | Asymptotic models for internal waves[END_REF], shallow water models for internal waves with a rigid lid contain a non-local operator, which involves in particular the projection into the space of gradient functions; see Definition 3.11 in Section 3.3. This operator appears only in the case d = 2, and under the rigid-lid configuration (see [START_REF] Duchêne | Asymptotic shallow water models for internal waves in a two-fluid system with a free surface[END_REF] for shallow water/shallow water models with a free surface). The precise effect and meaning of this non-local term is yet to be fully understood.

A critical-ratio.

There exists a critical ratio for the depth of the two layers for which the first order (quadratic) nonlinearities vanish; δ 2 = γ in, e.g., (4.11). This phenomenon does not occur in the one-layer case, and motivates a precise study of unidirectional asymptotic models with stronger nonlinearities than in the classical long wave regime, and especially in the Camassa-Holm regime, for which first order dispersion and nonlinearities are formally of same magnitude in the critical case. This study has been carried out in [START_REF] Duchêne | Decoupled and unidirectional asymptotic models for the propagation of internal waves[END_REF], completed in [START_REF] Duchene | A new Green-Naghdi model in the Camassa-Holm regime and full justification of asymptotic models for the propagation of internal waves[END_REF], and the results are presented in Section 4.4.

In the present work, we report and complete recent mathematical results concerning the bifluidic system under the rigid lid assumption; from the well-posedness of the full Euler system to the justification of various models in the shallow water regime. Our aim is to provide a unified and comprehensive exposition of the existing theory. The above concerns and remarks appear spontaneously in the course of the study. We would like to mention the work of Saut, which pursues similar objectives than ourselves in [START_REF] Saut | Lectures on Asymptotic Models for Internal Waves[END_REF].

Organization of the paper. The present paper is organized as follows. In Section 2, we introduce the non-dimensionalized full Euler equations describing the evolution of the two-fluid system with a rigid-lid we consider. We roughly describe in Theorem 2.2 its well-posedness result, obtained by Lannes in [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF] (for a flat topography). Section 3 is dedicated to the construction and justification (in the sense of consistency) of the Green-Naghdi models. This result, in dimension d = 2, and allowing non-flat topography, is new to our knowledge. Several lower order models, for which stronger results have been recently obtained, are shown to descend directly from our Green-Naghdi system, and are described in Section 4. More precisely:

• Section 4.1: The shallow water (Saint Venant) model, introduced in [START_REF] Bona | Asymptotic models for internal waves[END_REF] and studied in details in [START_REF] Guyenne | Well-posedness of the Cauchy problem for models of large amplitude internal waves[END_REF];

• Section 4.2: A very recent Green-Naghdi model in the Camassa-Holm regime, introduced and rigorously justified in [START_REF] Duchene | A new Green-Naghdi model in the Camassa-Holm regime and full justification of asymptotic models for the propagation of internal waves[END_REF];

• Section 4.3: Boussinesq models, whose study follows from results in [START_REF] Bona | Long wave approximations for water waves[END_REF][START_REF] Duchêne | Boussinesq/Boussinesq systems for internal waves with a free surface, and the KdV approximation[END_REF], and that we adapt to our case;

• Section 4.4: Unidirectional (scalar) models generalizing the classical Korteweg-de Vries equation, whose rigorous justification has been investigated in [START_REF] Duchêne | Decoupled and unidirectional asymptotic models for the propagation of internal waves[END_REF].

Notations. In the following, C 0 denotes any nonnegative constant whose exact expression is of no importance. The notation a b means that a ≤ C 0 b. We denote by C(λ 1 , λ 2 , . . . ) a nonnegative constant depending on the parameters λ 1 , λ 2 ,. . . and whose dependence on the λ j is always assumed to be nondecreasing. Let p be any constant with 1 ≤ p < ∞. We denote L p = L p (R d ) the space of all Lebesguemeasurable functions f with the standard norm

f L p = R d |f (X)| p dX 1/p < ∞.
The real inner product of any functions f 1 and f 2 in the Hilbert space L 2 (R d ) is denoted by

f 1 , f 2 = R d f 1 (X)f 2 (X)dX.
The space L ∞ = L ∞ (R d ) consists of all essentially bounded, Lebesgue-measurable functions f with the norm

f L ∞ = ess sup X∈R d |f (X)| < ∞ .
For any real constant s ≥ 0,

H s = H s (R d ) denotes the Sobolev space of all tempered distributions f with the norm |f | H s = |Λ s f | 2 < ∞, where Λ is the pseudo-differential operator Λ = (1 -∆) 1/2 .
For convenience, we will make use of the following notation for given h 0 , s, t 0 ≥ 0:

M (s) = C( 1 h 0 , ζ H max(s,t 0 +1) , b H max(s,t 0 +1) ) .
For a vector-valued function

F = (f 1 , . . . f n ) , we write F ∈ L p (R d ) n (resp. F ∈ H s (R d ) n ) if each of the components f i ∈ L p (R d ) (resp. f i ∈ H s (R d ))
. The function spaces are endowed with canonical norms:

F L p = n i=1 f i L p and F H s = n i=1 f i H s .
For any functions u = u(t, X) and v(t, X) defined on [0, T ) × R d with T > 0, we denote the inner product, the L p -norm and especially the L 2 -norm, as well as the Sobolev norm, with respect to the spatial variable X, by

u, v = u(t, •), v(t, •) , u L p = u(t, •) L p , and |u| H s = |u(t, •)| H s , respectively.
We denote L ∞ ([0, T ); H s ) the space of functions such that u(t, •) is controlled in H s , uniformly for t ∈ [0, T ):

u L ∞ ([0,T );H s ) = ess sup t∈[0,T ) |u(t, •)| H s < ∞.
Finally, C k (R d ) denote the space of k-times continuously differentiable functions.

We conclude this section by the nomenclature that we use to describe the different regimes that appear in the present work. A regime is defined through restrictions on the set of admissible dimensionless parameters of the system, which are precisely defined in (2.2), below. Definition 1.1 (Regimes). We designate by shallow water regime the set of parameters

P SW ≡ (µ, , δ, γ), 0 < µ ≤ µ max , 0 ≤ ≤ 1, δ min ≤ δ ≤ δ max , 0 ≤ γ < 1 ,
with fixed 0 < µ max , δ min , δ max < ∞. We designate by Camassa-Holm regime (see [START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[END_REF]) the set

P CH ≡ P SW ∩ (µ, , δ, γ), 0 ≤ ≤ M √ µ ,
and by long wave regime the set

P LW ≡ P SW ∩ (µ, , δ, γ), 0 ≤ ≤ M µ ,
with some fixed M ∈ (0, ∞). Additionally, unless otherwise indicated, it is assumed that Bo -1 ∈ [0, Bo -1 min ] and β ∈ [0, 1]. The dependency of the constants on Bo -1 min is not displayed (Bo -1 min ≤ 1 in any oceanographic application).

2 The full Euler system 2.1 Construction of the full Euler system

The system we study consists in two layers of immiscible, homogeneous, ideal, incompressible fluid under the only influence of gravity. The two layers are infinite in the horizontal dimension, and delimited above by a flat rigid lid and below by a non-necessarily flat bottom. The derivation of the governing equations of such a system is not new. We briefly recall it below, and refer to [START_REF] Bona | Asymptotic models for internal waves[END_REF][START_REF] Anh | Influence of surface tension and bottom topography on internal waves[END_REF][START_REF] Duchêne | Decoupled and unidirectional asymptotic models for the propagation of internal waves[END_REF] for more details. We assume that the interface and bottom are given as the graph of a function (resp. ζ(t, X) and b(X)) which expresses the deviation from their rest position (resp. (X, 0),(X, -d 2 )) at the spatial coordinate X ∈ R d (d = 1 or d = 2) and at time t. Therefore, at each time t ≥ 0, the domains of the upper and lower fluid (denoted, respectively, Ω t 1 and Ω t 2 ), are given by

Ω t 1 = { (X, z) ∈ R d × R, ζ(t, X) ≤ z ≤ d 1 }, Ω t 2 = { (X, z) ∈ R d × R, -d 2 + b(X) ≤ z ≤ ζ(t, X) }.
We assume that the two domains are strictly connected, that is there exists h > 0 such that

d 1 -ζ(t, X) ≥ h > 0, and d 2 + ζ(t, X) -b(X) ≥ h > 0.
We denote by (ρ 1 , v 1 ) and (ρ 2 , v 2 ) the mass density and velocity fields of, respectively, the upper and the lower fluid. The two fluids are assumed to be homogeneous and incompressible, so that the mass densities ρ 1 , ρ 2 are constant, and the velocity fields v 1 , v 2 are divergence free.

Here and thereafter, we use the notation ∇ X,z to designate the gradient operator with respect to the variable (X, z), while the ∇ and ∆ simply denote the gradient and the Laplacian operators with respect to the variable X.

As we assume the flows to be irrotational, one can express the velocity field as gradients of a potential: v i = ∇ X,z φ i (i = 1, 2) , and the velocity potentials satisfy Laplace's equation

∆φ i + ∂ 2 z φ i = 0 (i = 1, 2).
The fluids being ideal, they satisfy the Euler equations. Integrating the momentum equations yields Bernoulli equations, written in terms of the velocity potentials:

∂ t φ i + 1 2 |∇ X,z φ i | 2 = - P ρ i -gz in Ω t i (i = 1, 2),
where P denotes the pressure inside the fluid.

From the assumption that no fluid particle crosses the surface, the bottom or the interface, one deduces kinematic boundary conditions, and the set of equations is closed by the continuity of the stress tensor at the interface, which reads

P (t, X) ≡ lim ε→0 P (t, X, ζ(t, X) + ε) -P (t, X, ζ(t, X) -ε) = -σk ζ(t, X) ,
where

k(ζ) = -∇ • 1 √ 1+|∇ζ| 2 ∇ζ
denotes the mean curvature of the interface, and σ is the surface tension coefficient.

Altogether, the governing equations of our problem are given by the following

               ∆φ i + ∂ 2 z φ i = 0 in Ω t i , i = 1, 2, ∂ t φ i + 1 2 |∇ X,z φ i | 2 = -P ρi -gz in Ω t i , i = 1, 2, ∂ z φ 1 = 0 on Γ top ≡ {(X, z), z = d 1 )}, ∂ t ζ = 1 + |∇ζ| 2 ∂ n φ 1 = 1 + |∇ζ| 2 ∂ n φ 2 on Γ ≡ {(X, z), z = ζ(t, X)}, ∂ n φ 2 = 0 on Γ bot ≡ {(X, z), z = -d 2 + b(X)}, P (t, X) = -σk(ζ) on Γ, (2.1) 
where n denotes the unit upward normal vector at the surface at stake.

The next step consists in nondimensionalizing the system. Thanks to an appropriate scaling, the two-layer full Euler system (2.1) can be written in dimensionless form. The study of the linearized system (see [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF] for example), which can be solved explicitly, leads to a well-adapted rescaling.

Let a (resp. a b ) be the maximum amplitude of the deformation of the interface. We denote by λ a characteristic horizontal length (that we assume to be identical in any of the directions if d = 2; see [START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF] for a treatment of the anisotropic case when d = 2), say the wavelength of the interface. Then the typical velocity of small propagating internal waves (or wave celerity) is given by

c 0 = g (ρ 2 -ρ 1 )d 1 d 2 ρ 2 d 1 + ρ 1 d 2 .
Consequently, we introduce the dimensionless variables

1 z ≡ z d 1 , X ≡ X λ , t ≡ c 0 λ t, the dimensionless unknowns ζ( t, X) ≡ ζ(t, X) a , b( X) ≡ b(X) a b , φ i ( t, X, z) ≡ d 1 aλc 0 φ i (t, X, z) (i = 1, 2),
as well as the following dimensionless parameters

γ = ρ 1 ρ 2 , ≡ a d 1 , β ≡ a b d 1 , µ ≡ d 2 1 λ 2 , δ ≡ d 1 d 2 , Bo = g(ρ 2 -ρ 1 )λ 2 σ . (2.2)
We conclude by remarking that the system can be reduced into two evolution equations coupling Zakharov's canonical variables [START_REF] Zakharov | Stability of periodic waves of finite amplitude on the surface of a deep fluid[END_REF][START_REF] Craig | Numerical simulation of gravity waves[END_REF], namely (withdrawing the tildes for the sake of readability) the deformation of the free interface from its rest position, ζ, and the trace of the dimensionless upper potential at the interface, ψ, defined as follows:

ψ ≡ φ 1 (t, X, ζ(t, X)).
1 We choose d 1 as the reference vertical length. This choice is harmless as we assume in the following that the two layers of fluid have comparable depth: the depth ratio δ does not approach zero or infinity.

Indeed, φ 1 and φ 2 are uniquely deduced from (ζ, ψ) as solutions of the following Laplace's problems:

   µ∆ + ∂ 2 z φ 1 = 0 in Ω 1 ≡ {(X, z) ∈ R d+1 , ζ(X) < z < 1}, ∂ n φ 1 = 0 on Γ top ≡ {(X, z) ∈ R d+1 , z = 1}, φ 1 = ψ on Γ ≡ {(X, z) ∈ R d+1 , z = ζ}, (2.3) 
   µ∆ + ∂ 2 z φ 2 = 0 in Ω 2 ≡ {(X, z) ∈ R d+1 , -1 δ + βb(X) < z < ζ(X)}, ∂ n φ 2 = ∂ n φ 1 on Γ, ∂ n φ 2 = 0 on Γ bot ≡ {(X, z) ∈ R d+1 , z = -1 δ + βb(X)}.
(2.4)

More precisely, we define the so-called Dirichlet-Neumann operators.

Definition 2.1 (Dirichlet-Neumann operators). Let ζ, b ∈ H t0+1 (R d ), t 0 > d/2, such that there exists h 0 > 0 with h 1 ≡ 1 -ζ ≥ h 0 > 0 and h 2 ≡ 1 δ + ζ -βb ≥ h 0 > 0, and let ψ ∈ L 2 loc (R d ), ∇ψ ∈ H 1/2 (R d ).
Then we define

G µ ψ ≡ G µ [ ζ]ψ ≡ 1 + µ| ∇ζ| 2 ∂ n φ 1 | z= ζ = -µ (∇ζ) • (∇φ 1 ) | z= ζ + (∂ z φ 1 ) | z= ζ , H µ,δ ψ ≡ H µ,δ [ ζ, βb]ψ ≡ φ 2 | z= ζ = φ 2 (t, X, ζ(t, X)),
where φ 1 and φ 2 are uniquely defined (up to a constant for φ 2 ) as the solutions in

H 2 (R d ) of the Laplace's problems (2.3)-(2.4).
The existence and uniqueness of a solution to (2.3)-(2.4), and therefore the well-posedness of the Dirichlet-Neumann operators follow from classical arguments detailed, for example, in [START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF].

Using the above definition, and after straightforward computations, one can rewrite the nondimensionalized version of (2.1) as a simple system of two coupled evolution equations, namely

                 ∂ t ζ - 1 µ G µ ψ = 0, ∂ t ∇H µ,δ ψ -γ∇ψ + (γ + δ)∇ζ + 2 ∇ |∇H µ,δ ψ| 2 -γ|∇ψ| 2 = µ ∇N µ,δ - γ + δ Bo ∇ k( √ µζ) √ µ , (2.5) 
where we denote

N µ,δ ≡ 1 µ G µ ψ + (∇ζ) • (∇H µ,δ ψ) 2 -γ 1 µ G µ ψ + (∇ζ) • (∇ψ) 2 2(1 + µ| ∇ζ| 2
) .

We will refer to (2.5) as the full Euler system, and solutions of this system will be exact solutions of our problem.

A well-posedness theorem on the full Euler system

We mention here that Lannes [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF] recently ensured that the Cauchy problem for (2.5) (with a flat bottom: β = 0) is locally well-posed in Sobolev spaces, with an existence time consistent with observations. Earlier results showed that the problem was ill-posed in the absence of surface tension, outside of the analytic framework. It was subsequently proved that taking into account the surface tension restores the local well-posedness of the equations, but with a very small existence time of the solution when the surface tension is small, which is the case in the oceanographic setting. It has to be noted that none of the asymptotic models presented in the following sections (and as a matter of fact, no asymptotic model known to us) share the same property, and that the surface tension term could be withdrawn from the equations (by setting Bo -1 = 0) without hurting their well-posedness. The reason for this apparent paradox is that the positive role of surface tension is to regularize Kelvin-Helmholtz instabilities that appear at high frequencies, while the main part of the wave, which is captured by the asymptotic models, is located at low frequencies and is thus unaffected by surface tension.

In [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF], Lannes introduces a stability criterion, whose role is to ensure that the aforementioned frequency threshold is high enough, and shows that, under this condition, the combined effect of surface tension and gravity is sufficient to control the regularity of the flow.

Somewhat more precisely, one has the following result; see [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF]Theorems 5 and 6] for the precise statements.

Theorem 2.2. Let p ∈ P SW and the initial data U 0 ≡ (ζ 0 , ψ 0 ) satisfy the following:

1. U 0 belongs to an energy space of sufficiently smooth, bounded functions (in particular, the following is required:

(ζ 0 , ∇ψ 0 ) ∈ H 9/2 (R d ) d+1 );
2. ζ 0 satisfies the non-vanishing depth condition:

∃h 0 > 0 : min{1 -ζ 0 , δ -1 + ζ 0 } ≥ h 0 ;
3. A stability criterion is satisfied, which can be roughly expressed by

Υ ≡ -2 ρ1ga 4 d 2 1 1 4σ (γ+δ) 2 (1+γ) 6 is sufficiently small ( ∈ [0, 1], fixed).
Then there exists a unique solution to (2.5) (with flat bottom: β = 0) with initial data U | t=0 ≡ U 0 , bounded in the same energy space (no loss of derivatives). The flow is continuous with respect to time, and defined for t ∈ [0, -T ], where T > 0 depends only on the quantities defined through the three above conditions, and in particular can be chosen independent of the parameters p ∈ P SW .

The Green-Naghdi/Green-Naghdi model

In the following, we construct Green-Naghdi type models for the system (2.5), that is asymptotic models with precision O(µ 2 ), in the sense of consistency. As we shall see, and contrarily to earlier works, our construction relies only on asymptotic expansions which can be straightforwardly deduced from known results on the one-layer case. Thus we start by recalling below these results, which can be found in particular in [START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF]. We then deduce equivalent asymptotic expansions in the bi-fluidic setting in Section 3.2, and finally use these expansions to construct our asymptotic models in Section 3.3.

Asymptotic expansions in the water-wave case

The proof of the following statements may be found in [START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF] (with depth D = 1, but the general case is obtained by straightforward change of variables). For simplicity, and without lack of generality, we set = β = 1 in this section.

Definition 3.1 (Dirichlet-Neumann operator). Let ζ, b ∈ H t0+1 (R d ), t 0 > d/2, such that there exists h 0 > 0 with h ≡ D + ζ -b ≥ h 0 > 0, and let ψ ∈ L 2 loc (R d ), ∇ψ ∈ H 1/2 (R d ) d . Then we define G µ,D [ζ, b]ψ ≡ 1 + µ|∇ζ| 2 ∂ n φ | z=ζ = -µ(∇ζ) • (∇φ) | z=ζ + (∂ z φ) | z=ζ , where φ ≡ φ µ,D [ζ, b]ψ ∈ H 2 is the unique solution to    µ∆ + ∂ 2 z φ = 0 in Ω ≡ {(X, z) ∈ R d+1 , -D + b(X) < z < ζ(X)}, ∂ n φ = 0 on Γ bot ≡ {(X, z) ∈ R d+1 , z = -D + b(X)}, φ = ψ on Γ ≡ {(X, z) ∈ R d+1 , z = ζ}, (3.1) 
Let us now recall that the Dirichlet-Neumann operator may be equivalently defined through the vertically averaged mean velocity, thanks to the following Proposition. 

V(X) ≡ 1 h(X) ζ(X) -D+b(X) ∇φ(X, z) dz where φ ≡ φ µ,D [ζ, b]ψ ∈ H 2 is the unique solution to (3.1).
Then one has the identity

G µ,D [ζ, b]ψ = -µ∇ • ( h V ). (3.2)
Proof. This striking result is a consequence of a simple calculation, that we recall. Let ϕ ∈ C ∞ c (R d ) be a test function. Then one has

R d ϕG µ,D [ζ, b]ψ dX = Γ ϕ(∂ n φ) dΓ = Ω ( √ µ∇φ) • ( √ µ∇ϕ) dΩ = µ R d dX ∇ϕ • ζ -D+b dz∇φ = -µ R d ϕ(X)∇(h V) dX,
where we used Green's identity, and the Laplace's equation satisfied by φ. Since this result is valid for any test function

ϕ ∈ C ∞ c (R d ), and as G µ,D [ζ, b]ψ ∈ H 1/2 (R d
), the identity (3.2) holds in the strong sense.

Let us conclude with the asymptotic expansion of the quantities defined above. Here and in the following, we denote, for convenience,2 

M (s) = C(h -1 0 , ζ H max(s,t 0 +1) , b H max(s,t 0 +1) ) . Proposition 3.3. Let ζ, b ∈ H t0+2 ∩ H s+4 (R d ), t 0 > d/2, s ≥ 0, such that there exists h 0 > 0 with h ≡ D + ζ -b ≥ h 0 > 0, and let ψ ∈ L 2 loc (R d ), ∇ψ ∈ H s+4 (R d ) d . Then V -∇ψ H s ≤ µ M (s + 2) ∇ψ H s+2 , (3.3) 
V -∇ψ + µT [h, b]∇ψ H s ≤ µ 2 M (s + 4) ∇ψ H s+4 , (3.4) 
with

T [h, b]V ≡ -1 3h ∇(h 3 ∇ • V ) + 1 2h ∇(h 2 ∇b • V ) -h 2 ∇b∇ • V + ∇b∇b • V . (3.5)
It follows straightforwardly from

(3.2) that if (ζ, b, ∇ψ) ∈ H s+5 (R d ) d+2 , then 1 µ G µ [ζ, b]ψ + ∇ • (h∇ψ) H s ≤ µM (s + 3) ∇ψ H s+3 , (3.6) 
1 µ G µ [ζ, b]ψ + ∇ • (h∇ψ) -µ∇ • (hT [h, b]∇ψ) H s ≤ µ 2 M (s + 5) ∇ψ H s+5 . (3.7)

Asymptotic expansions in the bi-fluidic case

Our specific operators may be deduced from the classical Dirichlet-Neumann operator used in the water-wave problem, and Defined in Definition 3.1. Thus the following results are easily deduced from the ones of the previous section. Let us first define u 1 (resp. u 2 ) the vertically averaged mean velocity of the upper layer (resp. lower layer):

Definition 3.4. Let ζ, b ∈ H t0+1 (R d ), t 0 > d/2, such that there exists h 0 > 0 with h 1 ≡ 1 -ζ ≥ h 0 > 0 and h 2 ≡ 1 δ + ζ -βb ≥ h 0 > 0, and let ψ ∈ L 2 loc (R d ), ∇ψ ∈ H 1/2 (R d ) d . Then we define u 1 (t, X) = 1 1 -ζ(X) 1 ζ(X) ∇φ 1 (X, z) dz, u 2 (t, X) = 1 1 δ + ζ(X) -βb(X) ζ(X) -1 δ +βb(X) ∇φ 2 (X, z) dz.
where φ 1 and φ 2 are uniquely defined (up to a constant for φ 2 ) as the solutions in H 2 (R d ) of the Laplace's problems (2.3)-(2.4). 

G µ [ ζ]ψ = µ∇ • ( h 1 u 1 ) = -µ∇ • ( h 2 u 2 ). (3.8)
The proof of these identities is identical as the one of Proposition 3.2 (when considering the upper and lower potential respectively, and using that

∂ n φ 1 = ∂ n φ 2 = (1 + µ| ∇ζ| 2 ) -1/2 G µ [ ζ]ψ).
Thus we omit the proof, and continue with the asymptotic expansions of the above quantities.

Proposition 3.6. Let ζ, b ∈ H t0+2 (R d ) ∩ H s+4 (R d ), t 0 > d/2, s ≥ 0, such that there exists h 0 > 0 with min{h 1 , h 2 } ≥ h 0 > 0, and let ψ ∈ L 2 loc (R d ), ∇ψ ∈ H s+4 (R d ) d . Then u 1 -∇ψ H s ≤ µM (s + 2) ∇ψ H s+2 , (3.9 
)

u 1 -∇ψ + µT [h 1 , 0]∇ψ H s ≤ µ 2 M (s + 4) ∇ψ H s+4 , (3.10) ∇ψ -u 1 -µT [h 1 , 0]u 1 H s ≤ µ 2 M (s + 4) ∇ψ H s+4 . (3.11)
Proof. Expansions (3.9),(3.10), simply follow from Proposition 3.3 once we remark that φ(X, z) ≡ φ 1 (X, -z) satisfies

     µ∆ + ∂ 2 z φ = 0 in {(X, z) ∈ R d+1 , -1 < z < -ζ(X)}, ∂ z φ = 0 on {(X, z) ∈ R d+1 , z = -1}, φ = ψ on {(X, z) ∈ R d+1 , z = -ζ}.
It follows that one has the identity

φ 1 (X, -z) ≡ φ µ,1 [-ζ, 0]ψ, the unique solution of (3.1). Con- sequently, G µ [ ζ] = -G µ,1 [-ζ, 0]
, and the expansions (3.9),(3.10) follow. Expansion (3.11) is a straightforward consequence of (3.9),(3.10), and

T [h 1 , 0](∇ψ -u 1 ) H s ≤ C(h -1 0 , ζ H s+1 ) ∇ψ -u 1 H s+2 . The Proposition is proved. Proposition 3.7. Let ζ, b ∈ H t0+2 (R d ) ∩ H s+11/2 (R d ), t 0 > d/2, s ≥ 0, such that there exists h 0 > 0 with min{h 1 , h 2 } ≥ h 0 > 0, and let ψ ∈ L 2 loc (R d ), ∇ψ ∈ H s+5 (R d ) d . Then one has u 2 -∇H µ,δ ψ H s ≤ µM (s + 7/2) ∇ψ H s+3 , (3.12 
)

∇H µ,δ ψ -u 2 -µT [h 2 , βb]u 2 H s ≤ µ 2 M (s + 11/2) ∇ψ H s+5 . (3.13) 
Proof. As above, the expansions can be deduced from Proposition 3.3, once we remark that by definition, φ 2 (X, z) satisfies

   µ∆ + ∂ 2 z φ 2 = 0 in {(X, z) ∈ R d+1 , -1 δ + βb(X) < z < ζ(X)}, ∂ n φ 2 = 0 on {(X, z) ∈ R d+1 , z = -1 δ + βb(X)}, φ 2 = H µ,δ [ ζ, βb]ψ on {(X, z) ∈ R d+1 , z = ζ}.
In other words, one has the identity φ 2 (X, z) ≡ φ µ,δ -1 [ ζ, βb]H µ,δ ψ, where φ µ,δ -1 is defined as the solution of (3.1). 3Thus one deduces from Proposition 3.3 the following estimates:

u 2 -∇H µ,δ ψ H s ≤ µM (s + 2) ∇H µ,δ ψ H s+2 , (3.14) 
u 2 -∇H µ,δ ψ + µT [h 2 , βb]∇H µ,δ ψ H s ≤ µ 2 M (s + 4) ∇H µ,δ ψ H s+4 . (3.15)
Furthermore, one has from [8, Proposition 3] that

∇H µ,δ ψ H s ≤ C(h -1 0 , δ, δ -1 , |ζ| H s+3/2 )|∇ψ| H s+1 , (3.16) 
so that estimate (3.12) is now straightforward. Finally, estimate (3.13) is easily deduced from the previous estimates.

G µ,δ -1 [ ζ, βb]H µ,δ ψ = 1 + µ| ∇ζ| 2 (∂nφ 2 ) z= ζ = G µ [ ζ]ψ .
In other words, and as remarked in [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF], one has the identity

H µ,δ = G µ,δ -1 [ ζ, βb] -1 G µ [ ζ] = -G µ,δ -1 [ ζ, βb] -1 G µ,1 [-ζ, 0] .
In particular, the bound (3.16) is not optimal; see [36, Proposition 1 and Remark 6].

Construction of the Green-Naghdi/Green-Naghdi model

Let us recall the full Euler system (2.5):

                 ∂ t ζ - 1 µ G µ ψ = 0, ∂ t ∇H µ,δ ψ -γ∇ψ + (γ + δ)∇ζ + 2 ∇ |∇H µ,δ ψ| 2 -γ|∇ψ| 2 = µ ∇N µ,δ - γ + δ Bo ∇ k( √ µζ) √ µ , (3.17) 
where we denote N µ,δ ≡

1 µ G µ ψ + (∇ζ) • (∇H µ,δ ψ) 2 -γ 1 µ G µ ψ + (∇ζ) • (∇ψ) 2 2(1 + µ| ∇ζ| 2 )
.

By Proposition 3.5, the first equation of (3.17) yields

∂ t ζ = ∇ • (h 1 u 1 ) = -∇ • (h 2 u 2 ). (3.18)
When we plug the expansions of Propositions 3.6 and 3.7 into the second equation of (3.17), and withdrawing O(µ 2 ) terms, one obtains

∂ t u 2 -γu 1 + µT [h 2 , βb]u 2 -µγT [h 1 , 0]u 1 + (γ + δ)∇ζ + 2 ∇ |u 2 + µT [h 2 , βb]u 2 | 2 -γ|u 1 + µT [h 1 , 0]u 1 | 2 = µ ∇N µ,δ 0 - γ + δ Bo ∇ k( √ µζ) √ µ + O(µ 2 ) , (3.19) 
with

N µ,δ 0 ≡ -∇ • (h 2 u 2 ) + (∇ζ) • (u 2 ) 2 -γ ∇ • (h 1 u 1 ) + (∇ζ) • (u 1 ) 2 2 ≡ -h 2 ∇u 2 + β(∇b) • (u 2 ) 2 -γ h 1 ∇ • u 1 2 2 
Remark 3.8. Equations (3.18) and (3.19) are very similar to the system obtained in [START_REF] Choi | Fully nonlinear internal waves in a two-fluid system[END_REF]. It may also be recovered from system (60) in [START_REF] Duchêne | Asymptotic shallow water models for internal waves in a two-fluid system with a free surface[END_REF] when setting α = 0 (notation therein), and after straightforward adjustments (in particular, we use a different scaling in the non-dimensionalizing step).

Proposition 3.9 (Consistency). Let U p ≡ (ζ p , ψ p ) be a family of solutions to the full Euler system (2.5) such that there exists T > 0, s ≥ 0 for which

(ζ p , ∇ψ p ) is bounded in L ∞ ([0, T ); H s+N ) d+1
(N sufficiently large), uniformly with respect to (µ, , δ, γ) ≡ p ∈ P SW ; see Definition 1.1. Moreover, assume that b ∈ H s+N and

∃h 0 > 0 such that h 1 ≡ 1 -ζ p ≥ h 0 > 0, h 2 ≡ 1 δ + ζ p -βb ≥ h 0 > 0.
Define u p 1 , u p 2 as in Definition 3.4. Then (ζ p , u p 1 , u p 2 ) satisfy (3.18), (3.19), the latter up to a remainder term, R, bounded by Subtracting (3.19) to the last equation in (2.5) yields (withdrawing the explicit reference to p ∈ P SW for the sake of readability)

R L ∞ ([0,T );H s ) d ≤ µ 2 C , with C = C(h -1 0 , µ max , δ -1 min , δ max , b H s+N , ζ p L ∞ ([0,T );H s+N ) , ∇ψ p L ∞ ([0,T );H s+N ) d ,
R = ∂ t ∇H µ,δ ψ -γ∇ψ -u 2 -γu 1 + µT [h 2 , βb]u 2 -µγT [h 1 , 0]u 1 + 2 ∇ |∇H µ,δ ψ| 2 -γ|∇ψ| 2 -|u 2 + µT [h 2 , βb]u 2 | 2 -γ|u 1 + µT [h 1 , 0]u 1 | 2 -µ ∇ N µ,δ -N µ,δ 0 ≡ R I + R II + R III . (3.20) 
We now show how to estimate each of these terms.

Recall (3.13) in Proposition 3.7. It follows from tame product estimates in H s (see [23, Appendix A] for example)

|∇H µ,δ ψ| 2 -|u 2 + µT [h 2 , βb]u 2 | 2 H s ≤ C 2 ∇H µ,δ ψ -u 2 -µT [h 2 , βb]u 2 H s ≤ µ 2 C 2 M (s + 11/2) ∇ψ H s+5 with C 2 ∇H µ,δ ψ + u 2 + µT [h 2 , βb]u 2 H max{t 0 ,s} .
Here and below, we denote t 0 > d/2. Identically, using (3.11) in Proposition 3.6, one obtains

|∇ψ| 2 -|u 1 + µT [h 1 , 0]u 1 | 2 H s ≤ C 1 ∇ψ -u 1 -µT [h 1 , 0]u 1 H s ≤ µ 2 C 1 M (s + 4) ∇ψ H s+4 with C 1 ∇ψ + u 1 + µT [h 1 , 0]u 1 H max{t 0 ,s} .
It is now clear that one can choose N sufficiently large so that the following holds:

R II L ∞ ([0,T );H s ) d ≤ µ 2 C , (3.21) 
with C as in the Proposition (note that one can deduce a control in H s of u 1 from a control in H s+2 of ∇ψ, thanks to (3.9) -being non optimal).

The estimate on R III is obtained similarly. Using identity (3.8) as well as first order expansions (3.9), (3.14), one obtains

1 µ G µ ψ + (∇ζ) • (∇H µ,δ ψ) 2 --∇ • (h 2 u 2 ) + (∇ζ) • (u 2 ) 2 H s ≤ µ C 2 M (s + 7/2) ∇ψ H s+3 , with C 2 2 µ G µ ψ + (∇ζ) • (∇H µ,δ ψ + u 2 ) H max{t 0 ,s} , and 1 µ G µ ψ + (∇ζ) • (∇ψ) 2 -∇ • (h 1 u 1 ) + (∇ζ) • (u 1 ) 2 
H s ≤ µ C 1 M (s + 2) ∇ψ H s+2 , with C 1 2 µ G µ ψ + (∇ζ) • (∇ψ + u 1 ) H max{t 0 ,s} . Finally, for any f ∈ H s (R d ), one has f 2(1 + µ| ∇ζ| 2 ) - f 2 H s f H s µ| ∇ζ| 2 H max{t 0 ,s} ,
so that one deduces from the above estimates that

R III L ∞ ([0,T );H s ) d ≤ µ 2 C , (3.22) 
with C as in the Proposition, and for N sufficiently large.

The estimate on R I requires a control of the time derivatives. One can obtain equivalent results as in Propositions 3.6 an 3.7, and in particular

∂ t ∇ψ -u 1 -µT [h 1 , 0]u 1 H s ≤ µ 2 N (s + 4) ∂ t ∇ψ H s+4 ∂ t ∇H µ,δ ψ -u 2 -µT [h 2 , βb]u 2 H s ≤ µ 2 N (s + 11/2) ∂ t ∇ψ H s+5 , with N (s) ≡ C( 1 h0 , ζ H s , b H s , ∇ψ H s , ∂ t ζ H s )
for s ≥ t 0 + 1; following the same method, but after differentiating the equations (with respect to the time variable, t). We do not detail the proof, and refer to [START_REF] Duchêne | Asymptotic shallow water models for internal waves in a two-fluid system with a free surface[END_REF][START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF] for examples of applications of this strategy.

Finally, note that one can control ∂ t ∇ψ and ∂ t ζ using only a control on ∇ψ and ζ, using that (ζ, ψ) satisfies the full Euler system (2.5); allowing for a loss of derivatives. At the end of the day, one sees that if N is sufficiently large, then one has

R I L ∞ ([0,T );H s ) d ≤ µ 2 C , (3.23) 
with C as in the Proposition.

Altogether, estimates (3.21), (3.22) and (3.23) yield Proposition 3.9.

Our aim is now to approximate (3.18),(3.19) as a system of coupled evolution equations (thus directly comparable with (3.17)). In order to do so, we introduce a new velocity variable, v, which shall satisfy

∇ • ( h 1 h 2 h 1 + γh 2 v) = ∇ • (h 2 u 2 ) = -∇ • (h 1 u 1 ), (3.24) 
so that

∂ t ζ + ∇ • ( h 1 h 2 h 1 + γh 2 v) = 0 . (3.25) 
In dimension d = 1, identity (3.24) (assuming that v → 0 as |x| → ∞) uniquely defines v as the shear mean velocity:

∂ x ( h 1 h 2 h 1 + γh 2 v) = ∂ x (h 2 u 2 ) = -∂ x (h 1 u 1 ) if and only if v = u 2 -γu 1 . (3.26) 
However, such an explicit expression is not available in dimension d = 2. In that case, we make use of the following operator, defined in [START_REF] Bona | Asymptotic models for internal waves[END_REF].

Lemma 3.10. Assume that ξ ∈ L ∞ (R d ) be such that |ξ| L ∞ < 1. Then for any W ∈ L 2 (R d ) d , there exists a unique V ∈ L 2 (R d ) d such that ∇ • (1 + ξ)V = ∇ • W .
and ΠV = V , where Π = ∇∇ |D| 2 is the orthogonal projector onto the gradient vector fields of

L 2 (R d ) d . Moreover, one has V = Q[ξ]W , where Q[ξ] : L 2 (R d ) d → L 2 (R d ) d is defined by Q[ξ] : U → ∞ n=0 (-1) n Π(ξΠ•) n (ΠU ). Furthermore, if ξ ∈ H s (R d ) and W ∈ H s (R d ) d with s ≥ t 0 +1, t 0 > d/2, then Q[ξ]W ∈ H s (R d ) d and Q[ξ]W H s ≤ C |ξ| H s , 1 1 -|ξ| L ∞ W H s .
This allows to define v as the unique gradient solution to (3.24).

Definition 3.11. Let ζ ∈ L ∞ (R d ) be such that |ζ| L ∞ < 1 and | ζ -βb| L ∞ < δ -1 , so that h 1 h 2 h 1 + γh 2 = 1 γ + δ (1 + ξ), with |ξ| L ∞ < 1.
Then we define v as the unique gradient solution to (3.24); or, in other words,

v = -(γ + δ)Q[ξ](h 1 u 1 ) = (γ + δ)Q[ξ](h 2 u 2 ) .
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Note that the condition |ξ| L ∞ < 1 is ensured by the following:

ξ = (γ + δ) h 1 h 2 h 1 + γh 2 -1 = h 1 (δh 2 -1) + γh 2 (h 1 -1) h 1 + γh 2 = 1 - h 1 (2 -δh 2 ) + γh 2 (2 -h 1 ) h 1 + γh 2 ,
and

|ζ| L ∞ < 1 yields 0 ≤ h 1 ≤ 2 whereas | ζ -βb| L ∞ < δ -1 yields 0 ≤ h 2 ≤ 2δ -1 .
Remark 3.12. In the one dimensional space (d = 1), one has Π = Id, and one can check that the operator Q simply reduces to

Q[ξ]W = 1 1+ξ W , so that one recovers v = u 2 -γu 1 and u 1 = -h 2 v h 1 + γh 2 , u 2 = h 1 v h 1 + γh 2 .
Note also that in that case, conditions |ζ| L ∞ < 1 and | ζ -βb| L ∞ < δ -1 may be replaced by the slightly less stringent non-vanishing depth condition:

h 1 = 1 -ζ > 0, h 2 = δ -1 + ζ -βb > 0.
Let us emphasize again that in the case d = 2, there is no reason to think that v = u 2 -γu 1 holds, even with precision O(µ); and in particular that u 2 -γu 1 is a gradient vector fields. In the same way, one would like to write, seeing (3.24),

u 2 = δQ[ δζ] h1h2 h1+γh2 v and u 1 = -Q[-ζ] h1h2
h1+γh2 v ; but unfortunately, it is not clear that u 1 , u 2 are gradient vector fields (as a matter of fact, their second order expansion tends to show that it is not true). However, one has the following expansion:

Proposition 3.13. Let s ≥ t 0 +1, t 0 > d/2, ψ ∈ L 2 loc (R d ), ∇ψ ∈ H s+11/2 (R d ) d and ζ, b ∈ H s+5 (R d ) be such that ∃h 0 > 0 such that 1 -ζ L ∞ ≥ h 0 > 0, 1 δ -βb -ζ L ∞ ≥ h 0 > 0.
Then one has

∇ψ -u 1 H s + u 1 -u 1 H s ≤ µM (s + 2) ∇ψ H s+2 , (3.27) 
∇H µ,δ ψ -u 2 H s + u 2 -u 2 H s ≤ µM (s + 7/2) ∇ψ H s+3 , (3.28 
)

∇ψ -u 1 -µQ[-ζ](h 1 T [h 1 , 0] u 1 ) H s ≤ µ 2 M (s + 4) ∇ψ H s+4 , (3.29) 
∇H µ,δ ψ -u 2 -µδQ[δ ζ](h 2 T [h 2 , βb] u 2 ) H s ≤ µ 2 M (s + 11/2) ∇ψ H s+5 , (3.30) 
where we denote

u 1 ≡ -Q[-ζ] h1h2 h1+γh2 v , u 2 ≡ δQ[δ ζ] h1h2 h1+γh2 v . Proof. The first estimate follows from ∇ • (h 1 ∇ψ) = ∇ • (h 1 u 1 ) + ∇ • h 1 (∇ψ -u 1 ) = -∇ • h 1 h 2 h 1 + γh 2 v + ∇ • h 1 (∇ψ -u 1 ) ,
where we used identity (3.24). Consequently, Lemma 3.10 yields

∇ψ = -Q[-ζ] h 1 h 2 h 1 + γh 2 v -h 1 (∇ψ -u 1 ) .
The control of ∇ψ -u 1 H s as in estimate (3.27) is now a consequence of Proposition 3.6, and the continuity of the operator Q expressed in Lemma 3.10. The control of ∇ψ -u 1 H s is then deduced, using once again Proposition 3.6 and triangular inequality. Estimate (3.27) is proved. Estimate (3.28) is obtained in the same way, but using the control of u 2 -∇H µ,δ ψ H s displayed in Proposition 3.7.

Following the same strategy, one order further, yields

∇ • (h 1 ∇ψ) = ∇ • (h 1 u 1 ) + µ∇ • h 1 T [h 1 , 0]u 1 + ∇ • h 1 (∇ψ -u 1 -µT [h 1 , 0]u 1 ) = -∇ • h 1 h 2 h 1 + γh 2 v -µ∇ • h 1 T [h 1 , 0]Q[-ζ] h 1 h 2 h 1 + γh 2 v + ∇ • h 1 (∇ψ -u 1 -µT [h 1 , 0]u 1 ) + µh 1 T [h 1 , 0] u 1 + Q[-ζ] h 1 h 2 h 1 + γh 2 v .
The last term in the identity above is estimated in part thanks to Proposition 3. 

∂ t u 2 -γ u 1 + µ δQ[δ ζ](h 2 T [h 2 , βb] u 2 ) -γQ[-ζ](h 1 T [h 1 , 0] u 1 ) + (γ + δ)∇ζ + 2 ∇ | I + µδQ[δ ζ]h 2 T [h 2 , βb] u 2 | 2 -γ| I + µQ[-ζ]h 1 T [h 1 , 0] u 1 | 2 = µ ∇ N µ,δ 0 - γ + δ Bo ∇ k( √ µζ) √ µ + O(µ 2 ) , (3.31) 
where we denote

u 1 ≡ -Q[-ζ] h1h2 h1+γh2 v , u 2 ≡ δQ[ δζ] h1h2 h1+γh2 v , and 
N µ,δ 0 ≡ -h 2 ∇ • u 2 + β(∇b) • ( u 2 ) 2 -γ h 1 ∇ • u 1 2 2 .
Proposition 3.14 (Consistency). Let U p ≡ (ζ p , ψ p ) be a family of solutions to the full Euler system (2.5) such that there exists T > 0, s ≥ 0 for which

(ζ p , ∇ψ p ) is bounded in L ∞ ([0, T ); H s+N ) d+1
(N sufficiently large), uniformly with respect to (µ, , δ, γ) ≡ p ∈ P SW ; see Definition 1.1. Moreover, assume that b ∈ H s+N and

∃h 0 > 0 such that 1 -ζ L ∞ ≥ h 0 > 0, 1 δ -βb -ζ L ∞ ≥ h 0 > 0.
Define v p through Definitions 3.4 and 3.11. Then (ζ p , v p ) satisfy (3.25) and (3.31), the latter up to a remainder term, R, bounded by

R L ∞ ([0,T );H s ) d ≤ µ 2 C , with C = C(h -1 0 , µ max , δ -1 min , δ max , b H s+n , ζ p L ∞ ([0,T );H s+N ) , ∇ψ p L ∞ ([0,T );H s+N ) d ),
uniform with respect to (µ, , δ, γ) ∈ P SW .

The Proposition is obtained as in the proof of Proposition 3.9, but using the asymptotic expansions of Proposition 3.13; we omit its proof.

Unidimensional case (d = 1). Recall that in the one dimensional space, one has simply

(γ + δ)Q[ξ]V ≡ 1 h 1 + γh 2 V , Q[-ζ]V ≡ 1 h 1 V and δQ[δ ζ]V ≡ 1 h 2 V ,
for any V ∈ L 2 (R), and denoting

h 1 ≡ 1 -ζ and h 2 ≡ δ -1 + ζ.
In particular, one can check that

u 1 = u 1 = -h2 v h1+γh2 and u 2 = u 2 = h1 v h1+γh2 .
The system (3.25),(3.31) thus becomes

               ∂ t ζ + ∂ x ( h 1 h 2 v h 1 + γh 2 ) = 0 , ∂ t v + µT [h 2 , βb] h1 v h1+γh2 -µγT [h 1 , 0] -h2 v h1+γh2 + (γ + δ)∂ x ζ + 2 ∂ x (h1) 2 -γ(h2) 2 (h1+γh2) 2 v 2 = µ ∂ x R µ,δ 0 -γ+δ Bo ∂x k( √ µζ) √ µ + O(µ 2 ) , (3.32) 
where we denote

R µ,δ 0 ≡ 1 2 -h 2 ∂ x h 1 v h 1 + γh 2 + β(∂ x b) h 1 v h 1 + γh 2 2 - γ 2 h 1 ∂ x -h 2 v h 1 + γh 2 2 - h 1 v h 1 + γh 2 T [h 2 , βb] h 1 v h 1 + γh 2 + γ -h 2 v h 1 + γh 2 T [h 1 , 0] -h 2 v h 1 + γh 2 .
If, additionally, one assumes the bottom is flat (by setting β = 0), then one recovers the following system, as already introduced in [START_REF] Duchêne | Decoupled and unidirectional asymptotic models for the propagation of internal waves[END_REF]:

                 ∂ t ζ + ∂ x h 1 h 2 h 1 + γh 2 v = 0, ∂ t v + µQ[h 1 , h 2 ]v + (γ + δ)∂ x ζ + 2 ∂ x h 2 1 -γh 2 2 (h 1 + γh 2 ) 2 |v| 2 = µ ∂ x R[h 1 , h 2 ]v -γ+δ Bo ∂x k( √ µζ) √ µ , (3.33) 
where we define:

Q[h 1 , h 2 ]V ≡ -1 3h 1 h 2 h 1 ∂ x h 3 2 ∂ x h 1 V h 1 + γh 2 + γh 2 ∂ x h 3 1 ∂ x h 2 V h 1 + γh 2 , R[h 1 , h 2 ]V ≡ 1 2 h 2 ∂ x h 1 V h 1 + γh 2 2 -γ h 1 ∂ x h 2 V h 1 + γh 2 2 + 1 3 V h 1 + γh 2 h 1 h 2 ∂ x h 3 2 ∂ x h 1 V h 1 + γh 2 -γ h 2 h 1 ∂ x h 3 1 ∂ x h 2 V h 1 + γh 2 .
Proposition 3.14 thus generalizes the consistency result obtained in [START_REF] Duchêne | Decoupled and unidirectional asymptotic models for the propagation of internal waves[END_REF][START_REF] Duchene | A new Green-Naghdi model in the Camassa-Holm regime and full justification of asymptotic models for the propagation of internal waves[END_REF] to the case d = 2, and to non-flat topography.

Lower order models

The system of equations (3.25), (3.31) is very broad, in the sense that it has been obtained with minimal assumptions: allowing d = 1 and d = 2, non-flat topography, and in the shallow water regime of Definition 1.1. It is justified by a consistency result (Proposition 3.14). As argued in the introduction, the consistency result alone is not sufficient to fully justify a model. In particular, its well-posedness should be confirmed. As a matter of fact, contrarily to the water-wave case [START_REF] Alvarez-Samaniego | Large time existence for 3D water-waves and asymptotics[END_REF], the well-posedness of the Green-Naghi model in the bi-fluidic case is not clear, and similar systems have been proved to be ill-posed; see [START_REF] Liska | Nonhydrostatic two-layer models of incompressible flow[END_REF] and discussion in [START_REF] Cotter | The square root depth wave equations[END_REF]. In the following subsections, we show that existing models in the literature directly descend from our Green-Naghdi model (3.25), (3.31), after additional assumptions (typically, restricting to d = 1, flat bottom, and/or more stringent regimes), or with a lower precision. Their justification in the sense of consistency is therefore a direct application of Proposition 3.14, and stronger results (well-posedness, convergence) are stated when available.

The Shallow water (Saint Venant) model

In this section, we consider only the first order terms in equation (3.31) (equivalently, we set µ = 0; this corresponds to the assumption that the horizontal velocity is constant across the vertical layers). The system (3.25), (3.31), withdrawing O(µ) terms, is now simply

     ∂ t ζ + ∇ • h 1 h 2 v h 1 + γh 2 = 0, ∂ t ( u 2 -γ u 1 ) + (γ + δ)∇ζ + 2 ∇ | u 2 | 2 -γ| u 1 | 2 = γ+δ Bo ∇∆ζ, (4.1) 
where we recall that

h 1 ≡ 1-ζ, h 2 ≡ δ -1 + ζ, u 1 ≡ -Q[-ζ] h1h2 h1+γh2 v and u 2 ≡ δQ[ δζ] h1h2 h1+γh2 v
, where the operator Q is defined in Definition 3.10.

A similar system is obtained when using a different velocity variable, such as the shear velocity at the interface V ≡ ∇H µ,δ ψ -γ∇ψ. In that case, one obtains the following [START_REF] Bona | Asymptotic models for internal waves[END_REF]:

∂ t ζ + ∇ • (h 1 R[ ζ]V ) = 0, ∂ t V + (γ + δ)∇ζ + 2 ∇ |V -γR[ ζ]V | 2 -γ|R[ ζ]V | 2 = γ+δ Bo ∇∆ζ, (4.2)
where R is defined similarly as Q: R[ ζ]W is the only gradient solution to

∇ • (h 1 + γh 2 )R[ ζ]W = ∇ • (h 2 W ) .
System (4.1) and system (4.2) are equivalent up to order O(µ). In fact from proposition 3.13, one has V = u 2 -γ u 1 + O(µ), and

-∇ • (h 1 + γh 2 ) u 1 = -∇ • (h 1 u 1 ) -γ∇ • (h 2 u 1 ) = ∇ • h 2 ( u 2 -γ u 1 ) = ∇ • (h 2 V ) + O(µ).
Using the fact that u 1 is a gradient vector and the definition of operator R[ ζ], we deduce that

-u 1 = R[ ζ]V +O(µ) and thus -∇•(h 1 u 1 ) = ∇•(h 1 R[ ζ]V )+O(µ)
. The definition of u 1 implies now the equivalence between (4.1) 1 and (4.2) 1 . In the same way to obtain the equivalence of (4.1) 2 and (4.2) 2 up to order O(µ): we just use the two fact

u 1 = -R[ ζ]V +O(µ) and u 2 = V -γR[ ζ]V +O(µ).
In one dimension (i.e. d = 1), both (4.1) and (4.2) read

     ∂ t ζ + ∂ x h 1 h 2 v h 1 + γh 2 = 0, ∂ t v + (γ + δ)∂ x ζ + 2 ∂ x h 2 1 -γh 2 2 (h1+γh2) 2 |v| 2 = γ+δ Bo ∂ 3 x ζ. (4.3)
System (4.2) has been derived and justified in the sense of consistency in [START_REF] Bona | Asymptotic models for internal waves[END_REF], in the case of a flat bottom, and without surface tension. An equivalent consistency result clearly holds for (4.1) (as a consequence of Proposition 3.14 in particular). More precisely, one has Proposition 4.1 (Consistency). Let s ≥ 0 and U p ≡ (ζ p , ψ p ) be a family of solutions of the full Euler system (2.5) for which (ζ p , ∇ψ p ) is bounded in L ∞ ([0, T ); H s+N ) d+1 with sufficiently large N ; and such that there exists h 0 > 0 with

h 1 ≡ 1 -ζ p ≥ h 0 > 0, h 2 ≡ 1 δ + ζ p ≥ h 0 > 0.
Define v as in definition 3.11, and V ≡ ∇H µ,δ ψ -γ∇ψ.

Then (ζ, v) satisfies (4.1), up to a remainder (0, R 1 ) ; and (ζ, V ) satisfies (4.2), up to a remainder (0, R 2 ) ; with

R 1 L ∞ ([0,T );H s ) d + R 2 L ∞ ([0,T );H s ) d ≤ C µ, with C = C(h -1 0 , µ max , δ -1 min , δ max , ζ p L ∞ ([0,T );H s+N ) , ∇ψ p L ∞ ([0,T );H s+N ) d )
, uniform with respect to the parameters p ∈ P SW .

Let us now mention that the well-posedness of the Cauchy problem for (4.2) (without surface tension and bottom topography) has been studied in [START_REF] Guyenne | Well-posedness of the Cauchy problem for models of large amplitude internal waves[END_REF], and we reproduce below their result (see [START_REF] Guyenne | Well-posedness of the Cauchy problem for models of large amplitude internal waves[END_REF]Theorem 2]).

Proposition 4.2 (Well-posedness). Let d = 2 and Bo

-1 = β = 0. Let s ≥ t 0 + 1, t 0 > 1, and U 0 = (ζ 0 , V 0 ) ∈ H s (R 2 ) 3 be such that there exists h 0 > 0 with min 1 -ζ 0 L ∞ , 1 δ -ζ 0 L ∞ , γ + δ -γ 2 |V + (1 -γ)R[ ζ]V | 2 1 -ζ 0 L ∞ + γ(δ -1 + ζ 0 L ∞ ) ≥ h 0 > 0, (4.4) 
and curl V 0 = 0. Then, there exists T max > 0 and a unique maximal solution

U = (ζ, V ) ∈ C([0, T max / ); H s (R 2 ) 3 ) to (4.2) with initial condition U 0 .
Remark 4.3. In the case d = 1, the conditions (4.4) can be replaced by

h 1 ≡ 1 -ζ ≥ h 0 > 0, h 2 ≡ 1 δ + ζ ≥ h 0 > 0, γ + δ -γ 2 (h 1 + h 2 ) 2 (h 1 + γh 2 ) 3 |v| 2 ≥ h 0 > 0,
which is sufficient to write (4.3) as a symmetrizable quasilinear equation; thus classical techniques apply. See [26, Theorem 1] for the precise result.

A Green-Naghdi type model in the Camassa-Holm regime

The present section is limited to the so-called Camassa-Holm regime (that is using additional assumptions = O( √ µ); see Definition 1.1), flat bottom case (β = 0) and one dimensional space d = 1. Moreover, we neglect the surface tension component in our model. All the estimates are now understood uniformly with respect to (µ, , δ, γ) ∈ P CH .

In that case, one can easily check that the following approximations hold for Q, R defined in section 3.3

Q[h 1 , h 2 ]V = -ν∂ 2 x V - γ + δ 3 (β -α)V ∂ 2 x ζ + (α + 2β)∂ x (ζ∂ x V ) -βζ∂ 2 x V + O(µ), R[h 1 , h 2 ]V = α 1 2 (∂ x V ) 2 + 1 3 V ∂ 2 x V + O( √ µ) with ν = 1 + γδ 3δ(γ + δ) , α = 1 -γ (γ + δ) 2 and β = (1 + γδ)(δ 2 -γ) δ(γ + δ) 3 . (4.5) 
Plugging these expansions into system (3.33) yields a simplified model, precise with the same order of magnitude as the original model (that is O(µ 2 )) in the Camassa-Holm regime. Furthermore, after several additional transformations, ones may produce an equivalent model (again, in the sense of consistency) which possesses a structure similar to symmetrizable quasilinear systems, thus allowing its full justification. The following system of equations has been introduced and justified by the authors in [START_REF] Duchene | A new Green-Naghdi model in the Camassa-Holm regime and full justification of asymptotic models for the propagation of internal waves[END_REF].

             ∂ t ζ + ∂ x h 1 h 2 h 1 + γh 2 v = 0, T[ ζ] (∂ t v + ςv∂ x v) + (γ + δ)q 1 ( ζ)∂ x ζ + 2 q 1 ( ζ)∂ x h 2 1 -γh 2 2 (h1+γh2) 2 |v| 2 -ς|v| 2 = -µ 2 3 α∂ x (∂ x v) 2 , (4.6) 
where

T[ ζ]V = q 1 ( ζ)V -µν∂ x q 2 ( ζ)∂ x V , (4.7) 
with q i (X) ≡ 1 + κ i X (i = 1, 2) and κ 1 , κ 2 , ς are defined by :

κ 1 = γ + δ 3ν (2β -α) = 2 δ 2 -γ γ + δ -δ 1 -γ 1 + γδ , κ 2 = (γ + δ)β ν = 3 δ 2 -γ γ + δ , (4.8) 
ς = 2α -β 3ν = 2δ 1 -γ (γ + δ)(1 + γδ) - δ 2 -γ (γ + δ) 2 . (4.9) 
We recall that the shear mean velocity is uniquely defined in the case of one dimension, d = 1 (see (3.26) and (3.8)) by

1 µ G µ,δ [ ζ]ψ = -∂ x h 1 h 2 h 1 + γh 2 v . (4.10) 
System (4.6) is fully justified as an asymptotic model by the following results (see [START_REF] Duchene | A new Green-Naghdi model in the Camassa-Holm regime and full justification of asymptotic models for the propagation of internal waves[END_REF] for a more precise statement): Proposition 4.4 (Consistency). Let U p ≡ (ζ p , ψ p ) be a family of solutions of the full Euler system (2.5) for which (ζ p , ∂ x ψ p ) is bounded in L ∞ ([0, T ); H s+N ) 2 with s ≥ 0 and sufficiently large N , and uniformly with respect to (µ, , δ, γ) ≡ p ∈ P CH ; see Definition 1.1. Moreover, assume

∃h 01 > 0 such that h 1 ≡ 1 -ζ p ≥ h 01 > 0, h 2 ≡ 1 δ + ζ p ≥ h 01 > 0. ( H1 
)
Define v p as in (4.10). Then (ζ p , v p ) satisfies (4.6), up to a remainder (0, R) , bounded by

R L ∞ ([0,T );H s ) ≤ (µ 2 + Bo -1 ) C, with C = C(h -1 01 , M, µ max , 1 δmin , δ max , (ζ p , ∂ x ψ p ) L ∞ ([0,T );H s+N ) 2 )
), uniform with respect to the parameters p ∈ P CH . System (4.6) is well-posed (in the sense of Hadamard) in the energy space X s = H s (R)×H s+1 (R), endowed with the norm

∀ U = (ζ, v) ∈ X s , |U | 2 X s ≡ |ζ| 2 H s + |v| 2 H s + µ|∂ x v| 2 H s ,
provided that the following ellipticity condition (for the operator T) holds:

∃h 02 > 0 such that inf x∈R (1 + κ 2 ζ) ≥ h 02 > 0 ; inf x∈R (1 + κ 1 ζ) ≥ h 02 > 0. ( H2 
)
Theorem 4.5 (Existence and uniqueness). Let s 0 > 1/2, s ≥ s 0 + 1, and let U 0 = (ζ 0 , v 0 ) ∈ X s satisfy (H1),(H2). Then there exists a maximal time T max > 0, uniformly bounded from below with respect to p ∈ P CH , such that the system of equations (4.6) admits a unique solution

U = (ζ, v) ∈ C 0 ([0, T max / ); X s ) ∩ C 1 ([0, T max / ); X s-1 ) with the initial value (ζ, v) | t=0 = (ζ 0 , v 0 )
and preserving the conditions (H1),(H2) (with different lower bounds) for any t ∈ [0, T max / ). Moreover, for any 0 ≤ T < T max , there exists

C 0 , λ T = C(h -1 01 , h -1 02 , δ max , δ -1 min , M, T, U 0 X s ), independent of p ∈ P CH , such that one has the energy estimate ∀ 0 ≤ t ≤ T , U (t, •) X s + ∂ t U (t, •) X s-1 ≤ C 0 e λ T t . If T max < ∞, one has |U (t, •)| X s -→ ∞ as t -→ T max ,
or one of the two conditions (H1),(H2) ceases to be true as t -→ T max / .

Proposition 4.6 (Stability). Let s ≥ s 0 + 1 with s 0 > 1/2, and let U 0,1 = (ζ 0,1 , v 0,1 ) ∈ X s and U 0,2 = (ζ 0,2 , v 0,2 ) ∈ X s+1 . Under the assumptions of Theorem 4.5, let U j be the solution of system (4.6) with U j | t=0 = U 0,j .Then there exists T, λ,

C 0 = C(h -1 01 , h -1 02 , δ max , δ -1 min , M, U 0,1 X s , |U 0,2 | X s+1 ) > 0 such that ∀t ∈ [0, T ], (U 1 -U 2 )(t, •) X s ≤ C 0 e λ T t U 1,0 -U 2,0 X s .
Finally, the following "convergence result" states that the solutions of our system approach the solutions of the full Euler system, with as good a precision as µ (and Bo -1 ) is small. Theorem 4.7 (Convergence). Let p ∈ P CH and U 0 ≡ (ζ 0 , ψ 0 ) ∈ H s+N , N sufficiently large, satisfy the hypotheses of Theorem 5 in [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF] (see Theorem 2.2), as well as (H1),(H2). Then there exists C, T > 0, independent of p, such that • There exists a unique solution U ≡ (ζ, ψ) to the full Euler system (2.5), defined on [0, T ] and with initial data (ζ 0 , ψ 0 ) (provided by Theorem 5 in [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF]);

• There exists a unique solution U a ≡ (ζ a , v a ) to our new model (4.6), defined on [0, T ] and with initial data (ζ 0 , v 0 ) , with v 0 ≡ v[ζ 0 , ψ 0 ] defined as in (4.10) (provided by Theorem 4.5);

• With v ≡ v[ζ, ψ], defined as in (4.10),one has

(ζ, v) -(ζ a , v a ) L ∞ ([0,T ];X s ) ≤ C(µ 2 + Bo -1 )t.
The above results hold on time interval t ∈ [0, T / ] with T bounded by below, independently of p ∈ P CH , provided that a stronger criterion is satisfied by the initial data. This corresponds to setting = 1 in Theorem 2.2; see criterion (5.5) and Theorem 6 in [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF] for the precise statement.

Remark 4.8. The new model allows to fully justify any well-posed system, consistent with our model (4.6), thanks to an a priori estimate between two approximate solutions of our system, established in [START_REF] Duchene | A new Green-Naghdi model in the Camassa-Holm regime and full justification of asymptotic models for the propagation of internal waves[END_REF] (see Proposition 7.1 and Theorem 7.5 therein). This is used in particular to obtain the convergence results of the unidirectional and decoupled approximations stated in Section 4.4.

Remark 4.9 (The model with surface tension). The previous results concerning (4.6), where the surface tension effects are neglected, still hold when surface tension is taken into account; see (2.5). These results will be precisely stated in a forthcoming paper.

Boussinesq models

In this section, we restrict ourselves to the case of flat bottom (β = 0), and unidimensional case (d = 1). Moreover, we restrict the regime under study to the so-called long wave regime, where = O(µ); see Definition 1.1. We also assume that the surface tension term is at most of size Bo -1 = O(µ), with the following:

Bo -1 = µ bo -1 with bo ≡ g(ρ 2 -ρ 1 )d 2 1 σ ∈ [bo min , ∞).
In that case, when withdrawing O(µ 2 ) terms, one can easily check (see the proof of Proposition 4.10, below for detailed calculations) that the system (3.33) becomes a simple quasilinear system, with additional linear dispersive terms:

∂ t U -µA 1 ∂ 2 x ∂ t U + A 0 ∂ x U + A[U ]∂ x U + µA 2 ∂ 3 x U = 0, (4.11) 
with

A 0 = 0 1 γ+δ γ + δ 0 , A ζ v = δ 2 -γ (γ + δ) 2 v ζ 0 v , A 1 = 0 0 0 1+γδ 3δ(γ+δ) , A 2 = 0 0 -γ+δ bo 0 .
The full Euler system is consistent with this model, with the same precision as the Green-Naghdi models, provided that the assumptions of the long wave regime, and in particular ≤ M µ, hold (in addition to the aforementioned β = 0, d = 1); see Proposition 4.10, below.

Boussinesq systems with improved frequency dispersion. Let us emphasize that system (4.11) is only one of a large family of Boussinesq-type models, that are consistent with precision O(µ 2 ). Briefly, one can make use of

• Near-identity change of variable. Define, for θ 1 , θ 2 ≥ 0, the following

v θ1,θ2 = (I -µθ 1 ∂ 2 x ) -1 (I -µθ 2 ∂ 2 x )v.
When rewriting (4.11) with respect to this new variable, v θ1,θ2 , and withdrawing O(µ 2 ) terms, one obtains

∂ t U θ1,θ2 -µ A 1 ∂ 2 x ∂ t U θ1,θ2 + A 0 ∂ x U θ1,θ2 + A[U θ1,θ2 ]∂ x U θ1,θ2 + µ A 2 ∂ 3 x U θ1,θ2 = 0, (4.12)
with U θ1,θ2 ≡ (ζ, v θ1,θ2 ) and

A 1 = θ 2 0 0 1+γδ 3δ(γ+δ) + θ 1 , A 2 = 0 -θ1 γ+δ -γ+δ bo -θ 2 (γ + δ) 0 .
• The Benjamin-Bona-Mahony trick. Using that ∂ t U θ1,θ2 + A 0 ∂ x U θ1,θ2 = O(µ), one has for any λ 1 , λ 2 ∈ R:

∂ t U θ1,θ2 = 1 -λ 1 0 0 1 -λ 2 ∂ t U θ1,θ2 - λ 1 0 0 λ 2 A 0 ∂ x U θ1,θ2 + O(µ 2 ).
Plugging this approximation into (4.12) yields, withdrawing again O(µ 2 ) terms,

∂ t U θ1,θ2 -µ Ȃ1 ∂ 2 x ∂ t U θ1,θ2 + A 0 ∂ x U θ1,θ2 + A[U θ1,θ2 ]∂ x U θ1,θ2 + µ Ȃ2 ∂ 3 x U θ1,θ2 = 0, (4.13) with Ȃ1 = (1 -λ 1 )θ 2 0 0 (1 -λ 2 ) 1+γδ 3δ(γ+δ) + θ 1 , Ȃ2 = 0 λ1θ2-θ1 γ+δ -γ+δ bo + (γ + δ) λ 2 1+γδ 3δ(γ+δ) + θ 1 -θ 2 0 .
The above transformations are useful, for example, with the aim of improving the frequency dispersion, that is choosing the coefficients so that the dispersion relation fits the one of the full Euler system with high precision, even for relatively large µ (using truncated Taylor series or Padé approximant). It may also be useful for mathematical purposes to generate such a large family of models, which are all equivalent in the sense of consistency, but may have very different properties (well-posedness, integrability, etc.). We let the reader refer to [START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF] for a more detailed account.

In [START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems[END_REF], Saut and Xu offer an in-depth study of the well-posedness of such Boussinesq systems in the water-wave setting (thus with different coefficients). It would be interesting, but out of the scope of the present work, to adapt the techniques developed therein to our bi-fluidic systems (4.13).

A fully justified symmetric Boussinesq model. Another strategy for constructing a model with improved properties, that has been used in [START_REF] Bona | Long wave approximations for water waves[END_REF][START_REF] Duchêne | Boussinesq/Boussinesq systems for internal waves with a free surface, and the KdV approximation[END_REF] and that we develop in the following, consists in symmetrizing the original model (4.11), up to precision O(µ 2 ). Define

S 0 ≡ γ + δ 0 0 1 γ+δ , S ζ v ≡ δ 2 -γ (γ + δ) 2 0 0 0 ζ , T ≡ (γ + δ)(1 + 1 bo ) 0 0 1 γ+δ .
Multiplying (4.11) with (S 0 + S[U ] -µT ∂ 2

x ) and withdrawing O(µ 2 ) terms yields

(S 0 + S[U ] -µS 1 ∂ 2 x )∂ t U + (Σ 0 + Σ[U ] -µΣ 1 ∂ 2 x )∂ x U = 0, (4.14) 
with the following symmetric matrices and operators:

Σ 0 ≡ S 0 A 0 = 0 1 1 0 , Σ ζ v ≡ S 0 A ζ v + S ζ v A 0 = δ 2 -γ γ + δ v ζ ζ v (γ+δ) 2 , S 1 ≡ S 0 A 1 + T = (γ + δ)(1 + 1 bo ) 0 0 1 γ+δ + 1+γδ 3δ(γ+δ) 2 , Σ 1 ≡ T A 0 -S 0 A 2 = 0 1 + 1 bo 1 + 1 bo 0 .
This new model is fully justified, in the sense described in the introduction. Let us detail the consistency, well-posedness and convergence results below. Proposition 4.10 (Consistency). Let U p ≡ (ζ p , ψ p ) be a family of solutions to the full Euler system (2.5) with β = 0 and d = 1, such that there exists T > 0, s ≥ 0 for which (ζ p , ∂ x ψ p ) is bounded in L ∞ ([0, T ); H s+N ) 2 (N sufficiently large), uniformly with respect to (µ, , δ, γ) ≡ p ∈ P LW ; see Definition 1.1, and bo -1 ≤ bo -1 min , bo min > 0. Moreover, assume that 

∃h 0 > 0 such that h 1 ≡ 1 -ζ p ≥ h 0 > 0, h 2 ≡ 1 δ + ζ p ≥ h 0 > 0. Define v p ≡ u 2 -
R B L ∞ ([0,T );H s ) 2 + R S L ∞ ([0,T );H s ) 2 ≤ µ 2 C , with C = C(h -1 0 , bo -1 min , µ max , M, δ -1 min , δ max , ζ p L ∞ ([0,T );H s+N ) , ∂ x ψ p L ∞ ([0,T );H s+N ) ), uniform with respect to (µ, , δ, γ) ∈ P LW .
Proof. Let us first recall that since we assume d = 1, then defining v p ≡ u 2 -γu 1 is equivalent as defining v p through Definition 3.11, but requires only the non-vanishing depth condition h 1 , h 2 ≥ h 0 > 0, instead of the more stringent condition of Definition 3.11. Let us also emphasize that system (3.25), (3.31) is exactly (that is, without any approximation) system (3.33), in the case β = 0 and d = 1. Thus, by Proposition 3.14, we know that (ζ p , v p ) satisfies (3.33) We first claim that the following holds, for any s ≥ 0 and with t 0 > 1/2:

h 1 h 2 h 1 + γh 2 - 1 γ + δ - δ 2 -γ (γ + δ) 2 ζ H s ≤ 2 C(h -1 0 , δ max , δ -1 min , ζ H max {t 0 ,s} ). ( 4.15) 
The formal expansion (as powers of ζ) is easily checked, so that the estimate in L ∞ norm is straightforward:

h 1 h 2 h 1 + γh 2 - 1 γ + δ - δ 2 -γ (γ + δ) 2 ζ L ∞ = (δ 2 -γ)(1 -γ) (γ + δ) 2 ( ζ) 2 h 1 + γh 2 L ∞ ≤ 2 C(h -1 0 , δ max , δ -1 min , ζ L ∞ ).
The control in H s is slightly more elaborate, as h 1 , h 2 are not bounded in H s , since they do not decrease at infinity. We let the reader refer to [START_REF] Duchene | A new Green-Naghdi model in the Camassa-Holm regime and full justification of asymptotic models for the propagation of internal waves[END_REF]Lemma 4.5] to see how this technical difficulty may be faced. It follows from (4.15) that

∂ x h 1 h 2 h 1 + γh 2 v = 1 γ + δ ∂ x v + δ 2 -γ (γ + δ) 2 ∂ x ζ v + 2 R 1 , with R 1 H s ≤ C(h -1 0 , δ max , δ -1 min , ζ H max {t 0 ,s}+1 , v H max {t 0 ,s}+1
). One obtains in the same way the following estimates:

∂ x h 2 1 -γh 2 2 (h 1 + γh 2 ) 2 v 2 = ∂ x δ 2 -γ (γ + δ) 2 v 2 + R 2 , with R 2 H s ≤ C(h -1 0 , δ max , δ -1 min , ζ H max {t 0 ,s}+1 , v H max {t 0 ,s}+1
), and

∂ t Q[h 1 , h 2 ]v = - 1 + γδ 3δ(γ + δ) ∂ 2 x ∂ t v + R 3 , ∂ x R[h 1 , h 2 ]v ≡ R 4 , with R 3 H s = C(h -1 0 , δ max , δ -1 min , ζ H max {t 0 ,s}+3 , ∂ t ζ H max {t 0 ,s}+2 , v H max {t 0 ,s}+3 , ∂ t v H max {t 0 ,s}+2 ) and R 4 H s = C(h -1 0 , δ max , δ -1 min , ζ H max {t 0 ,s}+3 , v H max {t 0 ,s}+3
). Let us recall that estimates on ∂ t ζ and ∂ t v may be deduced from estimates on ζ, v as they satisfy the full Euler system (2.5), allowing for a loss of derivatives.

Altogether, choosing N sufficiently large and since ≤ M µ when p ∈ P LW , it follows that (ζ, v) satisfy (4.11) up to a remainder term, denoted R B , and bounded by

R B L ∞ ([0,T );H s ) 2 ≤ R L ∞ ([0,T );H s ) 2 + 2 |R 1 | + |R 2 | + |R 3 | + |R 4 | L ∞ ([0,T );H s ) 2 ≤ µ 2 C.
One obtains similarly the estimate concerning the symmetric system (4.11), after controlling the extra error terms:

R S L ∞ ([0,T );H s ) 2 ≤ R B L ∞ ([0,T );H s ) 2 + S[U ] -µT ∂ 2 x -µA 1 ∂ 2 x ∂ t U + A[U ]∂ x U + µA 2 ∂ 3 x U L ∞ ([0,T );H s ) 2 .
This is easily checked if N is sufficiently large, and using again that ≤ M µ. Proposition 4.10 is proved.

Scalar models

In this section, we are interested in the justification of scalar asymptotic models for the propagation of internal waves (as opposed to all aforementioned models, which consist in a system of evolution equations). The derivation and study of such models have a very rich and ancient history, starting with the work of Boussinesq [START_REF] Boussinesq | Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire[END_REF] and Korteweg-de Vries [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF] which introduced the famous Korteweg-de Vries equation ∂ t u + c∂ x u + αu∂ x u + ν∂ 3 x u = 0, as a models for the propagation of surface gravity waves, in the long wave regime. However, the complete rigorous justification of such model is much more recent [START_REF] Kano | A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves[END_REF][START_REF] Schneider | The long-wave limit for the water wave problem. I. The case of zero surface tension[END_REF][START_REF] Bona | Long wave approximations for water waves[END_REF] (see [START_REF] Duchêne | Boussinesq/Boussinesq systems for internal waves with a free surface, and the KdV approximation[END_REF] for the bi-fluidic case).

One obvious discrepancy between scalar models such as the KdV equation and coupled models, is that the former selects a direction of propagation (right or left, depending on the sign of c). On the contrary, the first order approximation of coupled models is a linear wave equation, which predicts that any initial perturbation of the flow will split into two counter-propagating waves. This yields two very different possible justifications of scalar models:

• Unidirectional approximation. One proves that if the initial perturbation (that is the deformation of the interface as well as shear layer-mean velocity) is carefully chosen, then the flow can be approximated as a solution of a scalar equation. Physically speaking, this means that we focus our attention on only one of the two counter-propagating waves after they have split.

• Decouled approximation. For a generic initial perturbation of the flow, we approximate the flow as the superposition of two (uncoupled) waves, each one driven by a scalar equation. This justification is of course more general as for the admissible initial data, but its precision is often much worse, as controlling the coupling effects between the two counter-propagating waves (and in particular their secular growth), which are neglected in the decoupled approximation, is arduous.

A major difference between the water-wave case and the bi-fluidic case is that in the latter, there exists a critical ratio (δ 2 = γ) for which the first order (quadratic) nonlinearity of our models vanishes; see the Boussinesq system (4.11) for example. This allows to consider a regime with greater nonlinearities than the long wave regime (and in particular the Camassa-Holm regime; see Definition 1.1), and thus motivates higher order models than the Korteweg-de Vries equations, in order to recover a O(µ 2 ) precision. Here, we focus on the so-called Constantin-Lannes equation:

(1 -µβ∂ 2 x )∂ t v + α 1 v∂ x v + 2 α 2 v 2 ∂ x v + 3 α 3 v 3 ∂ x v + µν∂ 3 x v + µ ∂ x κ 1 v∂ 2 x v + κ 2 (∂ x v) 2 = 0, (4.17) 
where β, α i (i = 1, 2, 3), ν, κ 1 , κ 2 , are fixed, given parameters . This equation has been studied and justified as a model for the propagation of unidirectional surface gravity waves in [START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[END_REF]. In particular, the well-posedness of the Cauchy problem for (4.17) in Sobolev spaces is proved, provided β > 0.

The justification of both the unidirectional and decoupled approximation in the bi-fluidic case, in the sense of consistency, have been worked out in [START_REF] Duchêne | Decoupled and unidirectional asymptotic models for the propagation of internal waves[END_REF]. In what follows, we restrict to the Camassa-Holm regime and to the Constantin-Lannes equations for the sake of simplicity, but more general results may be found therein. The full justification, and in particular the convergence results stated below is then a consequence of the properties of the Green-Naghdi type model introduced by the authors in [START_REF] Duchene | A new Green-Naghdi model in the Camassa-Holm regime and full justification of asymptotic models for the propagation of internal waves[END_REF], and recalled in section 4.2. We let the reader refer to the aforementioned references for more details, and disclose the statements below without further comments. Definition 4.13 (Unidirectional approximation). Let ζ 0 ∈ H s (R), s > 5/2, (θ, λ) ∈ R 2 , and set parameters p = ( , µ, γ, δ) ∈ P CH , as defined in Definition (1.1). Then the Constantin-Lannes unidirectional approximation, (ζ u , v u ), is defined as follows.

Let ζ u be the unique solution of It is assumed that θ, λ are chosen such that ν θ,λ t > 0, so that (4. where parameters α 1 , α 2 , α 3 are as above, and ν = ν 0,0 x , κ 1 = κ 0,0 1 , κ 2 = κ 0 2 . Theorem 4.14 (Convergence of the unidirectional approximation). Let p ∈ P CH and U 0 ≡ (ζ 0 , ψ 0 ) ∈ H s+N (R) 2 , with N sufficiently large, satisfy the hypotheses of [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF]Theorem 5] (see Theorem 2.2) as well as the ones of Theorem 4.5. Define v 0 ≡ u 0 2 -γu 0 1 , with u 0 1 , u 0 2 as in Definition 3.4, and assume that (ζ 0 , v 0 ) satisfies (4.19). Then there exists C, T > 0, independent of p, such that

∂ t ζ + ∂ x ζ + α 1 ζ∂ x ζ + 2 α 2 ζ 2 ∂ x ζ + 3 α 3 ζ 3 ∂ x ζ + µν θ,λ x ∂ 3 x ζ -µν θ,λ t ∂ 2 x ∂ t ζ + µ ∂ x κ θ,λ 1 ζ∂ 2 x ζ + κ θ 2 (∂ x ζ) 2 =
• There exists a unique solution U ≡ (ζ, ψ) to the full Euler system (2.5), with β = 0 and d = 1, defined on [0, T ] and with initial data (ζ 0 , ψ 0 ) (provided by Theorem 5 in [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF]); We denote v = u 2 -γu 1 the shear layer-mean velocity with u 1 , u 2 as in Definition 3.4.

• The Constantin-Lannes unidirectional approximation (ζ u , v u ) with initial data (ζ 0 , v 0 ) is uniquely defined for t ∈ [0, T ] as described above.

• The difference between the two solutions is controlled as

(ζ, v) -(ζ u , v u ) L ∞ ([0,T ];H s ) 2 ≤ C(µ 2 + Bo -1 )t.
If the initial data satisfies a stronger stability hypothesis (see [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF]Theorem 6]), then the result holds for large time t ∈ [0, T / ], with T independent of p.

Definition 4.15 (Decoupled approximation). Let (ζ 0 , v 0 ) ∈ H s (R) 2 , s > 5/2, and set parameters ( , µ, γ, δ) ∈ P CH , as defined in Definition 1.1, and (λ, θ) ∈ R 2 . The Constantin-Lannes decoupled approximation is then

U CL ≡ v + (t, x -t) + v -(t, x + t), (γ + δ) v + (t, x -t) -v -(t, x + t) ,
where As above, it is assumed that θ, λ are chosen such that ν θ,λ t > 0, thus (4.20) is well-posed. • There exists a unique solution U ≡ (ζ, ψ) to the full Euler system (2.5), with β = 0 and d = 1, defined on [0, T ] and with initial data (ζ 0 , ψ 0 ) (provided by Theorem 5 in [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF]). We denote v = u 2 -γu 1 the shear layer-mean velocity with u 1 , u 2 as in Definition 3.4;

v ± | t=0 = 1 2 (ζ 0 ± v 0 γ+δ ) | t=0 and v ± = (1 ± µλ∂ 2 x ) -1 v λ ± where v λ ± satisfies ∂ t v λ ± ± α 1 v λ ± ∂ x v λ ± ± 2 α 2 (v λ ± ) 2 ∂ x v λ ± ± 3 α θ,λ 3 (v λ ± ) 3 ∂ x v λ ± ± µν θ,λ x ∂ 3 x v λ ± -µν θ,λ t ∂ 2 x ∂ t v λ ± ± µ ∂ x κ θ,λ 1 v λ ± ∂ 2 x v λ ± + κ θ 2 (∂ x v λ ± ) 2 =
• The Constantin-Lannes decoupled approximation U CL ≡ (ζ d , v d ) with initial data (ζ 0 , v | t=0 ) is uniquely defined for t ∈ [0, T ] as described above.

• The difference between the two solutions is controlled as

(ζ, v) -(ζ d , v d ) L ∞ ([0,T ];H s ) 2 ≤ C ε 0 min(t, t 1/2 )(1 + ε 0 t) + Bo -1 t ,
with ε 0 = max{ (δ 2 -γ), µ}.

• Moreover, assume that the initial data is sufficiently localized in space, that is more precisely The first three items hold for large time t ∈ [0, T / ], with T independent of p, provided that a stronger criterion is satisfied by the initial data (see hypotheses in [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF]Theorem 6]). In that case, the last item is valid for time t ∈ [0, T / max{ , µ}].

(1 + | • | 2 )∂ k ζ 0 and (1 + | • | 2 )∂ k v | t=0 ∈ H s (
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 1 Figure 1: Sketch of the domain and governing equations
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  uniform with respect to (µ, , δ, γ) ∈ P SW . Proof. The fact that (ζ p , u p 1 , u p 2 ) satisfy (3.18) has been expressed earlier in Proposition 3.5. That (3.19) approximately holds is a consequence of the asymptotic expansions of Propositions 3.6 and 3.7. Let us detail briefly the argument.
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 416 Convergence of the decoupled approximation). Let p ∈ P CH , s ≥ 0 and letU 0 ≡ (ζ 0 , ψ 0 ) ∈ H s+N (R)2 , with N sufficiently large, satisfy the hypotheses of [36,Theorem 5] (see Theorem 2.2) as well as the ones of Theorem 4.5. Then there exists C, T > 0, independent of p, such that

  γu 1 ; see Definition 3.4. Then (ζ p , v p ) satisfy (4.11) (resp. (4.14)) up to a remainder term, R

B (resp. R S ), bounded by

  up to a remainder term, R, satisfying R L ∞ ([0,T );H s ) 2 ≤ µ 2 C, with C as in the Proposition 4.10. Thus one only needs to check that the neglected terms from (3.33) in (4.11) (resp. (4.14)), when using that ≤ M µ, are estimated in the same way. Let us detail briefly.

  18) is well-posed, and ζ(t, •) ∈ H s is uniquely defined over time scale O(1/ ); see [15, Proposition 4].Then define v u asv u = h1+γh2 h1h2 v[ζ u ], with v[ζ] = ζ + α 1 2 ζ 2 + 2 α 2 3 ζ 3 + 3 α 3 4 ζ 4 + µν∂ 2 x ζ + µ κ 1 ζ∂ 2 x ζ + κ 2 (∂ x ζ) 2 ,(4.19)

  R), k ∈ {0, . . . , 7}, then one has the improved estimate(ζ, v) -(ζ d , v d ) L ∞ ([0,T ];H s ) 2 ≤ C ε 0 min(t, 1)(1 + ε 0 t) + Bo -1 t .

In order to be completely rigorous, one should take into account the dependence with respect to the parameter D here, and δ in the subsequent sections. However, this dependence is harmless as we assume that δ does not approach zero or infinity: δ ∈ [δ min , δmax]; see[START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF] for example.

Note that by definition of the Dirichlet-Neumann operators G µ and G µ,δ -1 , this identity yields

In addition to its justification in the sense of consistency, one is able to fully justify the symmetric Boussinesq model (4.14), thanks to its following properties:

1. The matrices S 0 , Σ 0 , S 1 , Σ 1 are 2-by-2 symmetric matrices; These properties allow to control a natural energy of the system:

which is equivalent to the scaled Sobolev norm X s+1 µ :

provided that U is sufficiently small, (for the nonlinear terms to be controlled).

The following Propositions are a direct consequence from [21, Proposition 2.6 and 2.8] (where the author deal with the case of internal waves with a free surface, so that the system has four equations, but possess the exact same structure), and we do not detail the proof further on.

) -1 such that for any 0 ≤ ≤ 0 , there exists T > independent of , and a unique solution

Moreover, one has the following estimate for t ∈ [0, T / ]:

A stability result similar to Proposition 4.7 holds, so that the symmetric Boussinesq system is well-posed in the sense of Hadamard.

Theorem 4.12 (Convergence). Let p ∈ P LW and U 0 ≡ (ζ 0 , ψ 0 ) ∈ H s+N (R) 2 , with N sufficiently large, satisfy the hypotheses of Theorem 5 in [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF]; see Theorem 2.2. Then there exists C, T, 0 > 0, independent of p ∈ P LW and Bo -1 ≤ µ bo -1 min , such that for any 0 ≤ ≤ 0 ,

• There exists a unique solution U ≡ (ζ, ψ) to the full Euler system (2.5), with β = 0 and d = 1, defined on [0, T ] and with initial data (ζ 0 , ψ 0 ) (provided by Theorem 5 in [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF]);

• The non-vanishing depth condition is satisfied for ≤ 0 , so that one can define v ≡ u 2 -γu 1 , with u 1 , u 2 as in Definition 3. • The difference between the two solutions is controlled as

The above results hold on time interval t ∈ [0, T / ] with T bounded by below, independently of p ∈ P LW , provided that a stronger criterion is satisfied by the initial data. This corresponds to setting = 1 in Theorem 2.2; see criterion (5.5) and Theorem 6 in [START_REF] Lannes | A Stability Criterion for Two-Fluid Interfaces and Applications[END_REF] for the precise statement.