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Vincent Duchêne∗, Samer Israwi†, Raafat Talhouk‡

June 4, 2013

Abstract

We are interested in asymptotic models for the propagation of internal waves at the interface
between two shallow layers of immiscible fluid, under the rigid-lid assumption. We review
and complete existing works in the literature, in order to offer a unified and comprehensive
exposition. Anterior models such as the shallow water and Boussinesq systems, as well as
unidirectional models of Camassa-Holm type, are shown to descend from a broad Green-Naghdi
model, that we introduce and justify in the sense of consistency. Contrarily to earlier works,
our Green-Naghdi model allows a non-flat topography, and horizontal dimension d = 2. Its
derivation follows directly from classical results concerning the one-layer case, and we believe
such strategy may be used to construct interesting models in different regimes than the shallow-
water/shallow-water studied in the present work.

1 Introduction

The study of gravity waves at the surface of a homogeneous layer of fluid has attracted a lot of
interests in a broad range of scientific communities. We let the reader refer to [37] for a comprehen-
sive survey of the state of the art concerning this problem, and its many interesting aspects, and
we quickly discuss here some known results and methods, relevant to the present work.

While the equations governing the motion of a homogeneous layer of ideal, incompressible, ir-
rotationnal fluid under the only influence of gravity, that we name full Euler system, are relatively
easy to derive, their theoretical study is extremely challenging. This explains why the rigorous,
mathematical analysis of the governing equations is quite recent, and still enjoys present-day im-
provements from an active community. In particular, the well-posedness of the Cauchy problem
outside of the analytical framework has been discussed among others by Nalimov [39], Yosihara [47],
Craig [16], Wu [43, 44] and Lannes [35]. Such results are regularly improved (time of existence,
regularity of the initial data, etc.); see [45, 46, 24, 1, 28, 2] and references therein.

Nevertheless, the solutions of these equations are very difficult to describe, and the relevant
hydrodynamic processes are not easily visible in these equations. At this point, a classical method
is to select an asymptotic regime (described by dimensionless parameters of the domain and of the
flow), in which we look for approximate models and hence for approximate solutions.

Many such asymptotic models have been derived, going back to the late 19th century. For ex-
ample, Saint-Venant [19] derived the classical shallow-water equation, by assuming that the depth
of the layer of fluid is small, so that the horizontal velocity across the layer may be averaged as a
constant; while Boussinesq [9, 10] derived the model which bears his name, describing the propaga-
tion of small-amplitude, long wavelength, gravity waves. Later on, Serre [42] and Green,Naghdi [25]
introduced a higher order model, which has since been widely used in coastal oceanography, as it
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takes into account the dispersive effects neglected by the shallow-water (Saint-Venant) model and
allows waves of greater amplitude (the stronger nonlinearities) than the Boussinesq model.

However, the previously mentioned works are restricted to the formal level, and the rigorous,
mathematical justification of asymptotic models received a satisfactory answer only recently. We
say that a model is fully justified (using the terminology of [37]) if the Cauchy problem for both the
full Euler system and the asymptotic model is well-posed for a given class of initial data, and over
the relevant time scale; and if the solutions with corresponding initial data remain close. The full
justification of a system (S) follows from:

• (Consistency) One proves that families of solutions to the asymptotic model, existing and
controlled over the relevant time scale satisfies the full Euler system up to a small residual.

• (Existence) One proves that solutions of the full Euler system and solutions of the the
model (S) with corresponding initial data do exist.

• (Convergence) One proves that the solutions of the full Euler system, and the ones of the
asymptotic model, with corresponding initial data, remain close over the relevant time scale.

A result of Alvarez-Samaniego and Lannes [3] provides the existence and uniqueness of a solution
to the full Euler system over the relevant time scale, uniformly with respect to the dimensionless
parameters at stake, as well as a stability result with respect to perturbation of the equations. As
a consequence, any consistent and well-posed asymptotic model is automatically justified in the
sense described above. This strategy may be applied to the (quasilinear, hyperbolic) shallow-water
model, to various Boussinesq models [33, 5, 6, 11, 40] and to Green-Naghdi models [3, 29, 31]. We
let the reader refer to [37, Appendix C] for a reader’s digest of the numerous known results on this
aspect.

All the aforementioned models coincide at the lower order of precision as a simple wave equation,
which in dimension d = 1 predicts that any initial perturbation of the free surface will split up into
two counter-propagating waves. An important family of models is dedicated to the precise study
of the evolution of one of the two waves when higher order terms are included. The most famous
example of such model is the Korteweg-de Vries[34] equation, but various extensions and general-
izations have been proposed; see [32, 15, 30] and references therein. Again, the full justification of
such models is recent: see [33, 41, 7, 12, 15, 30].

All the aforementioned works are concerned with the case of a single layer of homogeneous fluid.
Such assumption of may seem too crude for applications to oceanographic problems, as variations of
salinity induce variation of density. In the present work, we are interested in the simplest setting that
models such a variation of density: we consider a system of two layers of homogeneous, immiscible
fluid, and we are interested in the evolution of the interface between the two layers. A considerable
amount of interests has been given to such bi-fluidic systems; see [27] for a comprehensive review
of the ins and outs on this topic.

The governing equations of the bi-fluidic systems share many aspects and properties of the afore-
mentioned water-wave system, and its study has often been carried out in parallel. In particular,
one can derive asymptotic models in analogy with the ones presented above. It is out of the scope of
this introduction to present an exhaustive review of all the different models, as many settings are of
interests. Here, and in the present work, we restrict to the case of a surface delimited by a flat, rigid
lid (as deformation of the surface is in practice small compared to the deformation of the interface),
and to the so-called shallow water/shallow water regime. In this regime, the two layers are assumed
to be of comparable depth, and both small when compared to the typical horizontal wavelength
of the flow. In that case, the models corresponding to the shallow water and Boussinesq systems
have been derived in [13, 17], and justified in the sense of consistency in [8] (where, incidentally,
a much larger range of scaling regimes are studied). Green-Naghdi type models where obtained in
the one-dimensional case in [38], and in the two-dimensional in [14]. An extensive study of scalar
models has been provided by one of the authors in [22]. Let us note that all the aforementioned
works are restricted to the case of a flat bottom, contrarily to the present work.

As attested earlier, bi-fluidic models have a similar structure as the ones in the one-layer case.
As a matter of fact, one recovers the latter from the former when we assume that the mass density
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of the top layer is zero. Yet a few remarkable differences arise, that originate interesting questions
and mathematical challenges. Among them, we would like to emphasize

1. The role of surface tension. Contrarily to the water wave case, the Cauchy problem for the
full Euler system is ill-posed in Sobolev spaces in the absence of surface tension. However,
surface tension is very small in practical cases, so that its effect is systematically negligible in
all present asymptotic models. In [36], Lannes shows that a small amount of surface tension
is sufficient to guarantee the well-posedness over times consistent with observations, provided
that a stability estimate holds; see the somewhat more precise description in Section 2.2.

2. Absence of stability result. An equivalent result as the stability result (with respect to per-
turbations of the equation) for the full Euler system as described above is not known in the
bi-fluidic case, partly due to the difficulties described in the previous item. In order to deal
with this, a strategy consists in proving such stability result on the model itself. Thus the full
justification of the model is a consequence of its well-posedness, and the full Euler system’s
consistency with the asymptotic model (and not the other way around). This strategy has
been applied by the authors in [23], and we recall these results in Section 4.2.

3. A non-local operator. As noticed in [8], shallow water models for internal waves with a rigid
lid contain a non-local operator, which involves in particular the projection into the space of
gradient functions; see Definition 3.11 in Section 3.3. This operator appears only in the case
d = 2, and under the rigid-lid configuration (see [20] for shallow water/shallow water models
with a free surface). The precise effect and meaning of this non-local term is yet to be fully
understood.

4. A critical-ratio. There exists a critical ratio for the depth of the two layers for which the
first order (quadratic) nonlinearities vanish; δ2 = γ in, e.g., (4.11). This phenomenon does
not occur in the one-layer case, and occurs only for one of the two modes in the bi-fluidic
case with a free surface (see [21]). This motivates a precise study of unidirectional asymptotic
models with stronger nonlinearities than in the classical long wave regime, and especially in
the Camassa-Holm regime, for which first order dispersion and nonlinearities are formally of
same magnitude in the critical case. This study has been carried out in [22], completed in [23],
and the results are presented in Section 4.4.

In the present work, we report and complete known results concerning the bi-fluidic system
under the rigid lid assumption; from the well-posedness of the full Euler system to the justification
of various models in the shallow-water/shallow-water regime. Our aim is to provide a unified
and comprehensive exposition of the existing theory. The above concerns and remarks appear
spontaneously in the course of the study.

Organization of the paper. The present paper is organized as follows. In Section 2, we intro-
duce the non-dimensionalized full Euler equations describing the evolution of the two-fluid system
with a rigid-lid we consider. We roughly describe in Theorem 2.2 its well-posedness result, obtained
by Lannes in [36] (for a flat topography). Section 3 is dedicated to the construction and justifi-
cation (in the sense of consistency) of the Green-Naghdi models. This result, in dimension d = 2,
and allowing non-flat topography, is new to our knowledge. Several lower order models, for which
stronger results have been recently obtained, are shown to descend directly from our Green-Naghdi
system, and are described in Section 4. More precisely:

• Section 4.1: The shallow water (Saint Venant) model, introduced in [8] and studied in details
in [26];

• Section 4.2: A very recent Green-Naghdi model in the Camassa-Holm regime, introduced and
rigorously justified in [23];

• Section 4.3: Boussinesq models, whose study follows from results in [7, 21], and that we adapt
to our case;

• Section 4.4: Unidirectional (scalar) models generalizing the classical Korteweg-de Vries equa-
tion, whose rigorous justification has been investigated in [22].
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Notations. In the following, C0 denotes any nonnegative constant whose exact expression is of
no importance. The notation a . b means that a ≤ C0b.
We denote by C(λ1, λ2, . . . ) a nonnegative constant depending on the parameters λ1, λ2,. . . and
whose dependence on the λj is always assumed to be nondecreasing.
Let p be any constant with 1 ≤ p < ∞. We denote Lp = Lp(Rd) the space of all Lebesgue-
measurable functions f with the standard norm∣∣f ∣∣

Lp
=
(∫

Rd
|f(X)|pdX

)1/p

<∞.

The real inner product of any functions f1 and f2 in the Hilbert space L2(Rd) is denoted by(
f1 , f2

)
=

∫
Rd
f1(X)f2(X)dX.

The space L∞ = L∞(Rd) consists of all essentially bounded, Lebesgue-measurable functions f with
the norm ∣∣f ∣∣

L∞
= ess sup

X∈Rd
|f(X)| < ∞ .

For any real constant s ≥ 0, Hs = Hs(Rd) denotes the Sobolev space of all tempered distributions
f with the norm |f |Hs = |Λsf |2 <∞, where Λ is the pseudo-differential operator Λ = (1−∆)1/2.
For convenience, we will make use of the following notation for given h0, s, t0 ≥ 0:

M(s) = C(
1

h0
,
∣∣ζ∣∣

Hmax(s,t0+1) ,
∣∣b∣∣

Hmax(s,t0+1)) .

For a vector-valued function F = (f1, . . . fn)>, we write F ∈ Lp(Rd)n (resp. F ∈ Hs(Rd)n) if
each of the components fi ∈ Lp(Rd) (resp. fi ∈ Hs(Rd)). The function spaces are endowed with
canonical norms (abusing notation):

∣∣F ∣∣
Lp

=

n∑
i=1

∣∣fi∣∣Lp and
∣∣F ∣∣

Hs
=

n∑
i=1

∣∣fi∣∣Hs .
For any functions u = u(t,X) and v(t,X) defined on [0, T ) × Rd with T > 0, we denote the inner
product, the Lp-norm and especially the L2-norm, as well as the Sobolev norm, with respect to
the spatial variable X, by

(
u, v
)

=
(
u(t, ·), v(t, ·)

)
,
∣∣u∣∣

Lp
=
∣∣u(t, ·)

∣∣
Lp

, and |u|Hs = |u(t, ·)|Hs ,
respectively.
We denote L∞([0, T );Hs) the space of functions such that u(t, ·) is controlled in Hs, uniformly for
t ∈ [0, T ): ∥∥u∥∥

L∞([0,T );Hs)
= ess sup

t∈[0,T )

|u(t, ·)|Hs < ∞.

Finally, Ck(Rd) denote the space of k-times continuously differentiable functions.

We conclude this section by the nomenclature that we use to describe the different regimes
that appear in the present work. A regime is defined through restrictions on the set of admissible
dimensionless parameters of the system, which are precisely defined in (2.2), below.

Definition 1.1 (Regimes). We designate by shallow water regime the set of parameters

PSW ≡
{

(µ, ε, δ, γ), 0 < µ ≤ µmax, 0 ≤ ε ≤ 1, δmin ≤ δ ≤ δmax, 0 ≤ γ < 1
}
,

with fixed 0 < µmax, δmin, δmax <∞. We designate by Camassa-Holm regime (see [15]) the set

PCH ≡ PSW ∩
{

(µ, ε, δ, γ), 0 ≤ ε ≤ M
√
µ
}
,

and by long wave regime the set

PLW ≡ PSW ∩
{

(µ, ε, δ, γ), 0 ≤ ε ≤ Mµ
}
,

with some fixed M ∈ (0,∞).
Additionally, unless otherwise indicated, it is assumed that Bo−1 ∈ [0,Bo−1

min] and β ∈ [0, 1]. The
dependency of the constants on Bo−1

min is not displayed (Bo−1
min ≤ 1 in any oceanographic application).
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2 The full Euler system

2.1 Construction of the full Euler system

The system we study consists in two layers of immiscible, homogeneous, ideal, incompressible fluid
under the only influence of gravity. The two layers are infinite in the horizontal dimension, and
delimited above by a flat rigid lid and below by a non-necessarily flat bottom. The derivation of the
governing equations of such a system is not new. We briefly recall it below, and refer to [8, 4, 22]
for more details.

Figure 1: Sketch of the domain and governing equations

We assume that the interface and bottom are given as the graph of a function (resp. ζ(t,X) and
b(X)) which expresses the deviation from their rest position (resp. (X, 0),(X,−d2)) at the spatial
coordinate X ∈ Rd (d = 1 or d = 2) and at time t. Therefore, at each time t ≥ 0, the domains of
the upper and lower fluid (denoted, respectively, Ωt1 and Ωt2), are given by

Ωt1 = { (X, z) ∈ Rd × R, ζ(t,X) ≤ z ≤ d1 },
Ωt2 = { (X, z) ∈ Rd × R, −d2 + b(X) ≤ z ≤ ζ(t,X) }.

We assume that the two domains are strictly connected, that is there exists h > 0 such that

d1 − ζ(t,X) ≥ h > 0, and d2 + ζ(t,X)− b(X) ≥ h > 0.

We denote by (ρ1,v1) and (ρ2,v2) the mass density and velocity fields of, respectively, the upper
and the lower fluid. The two fluids are assumed to be homogeneous and incompressible, so that
the mass densities ρ1, ρ2 are constant, and the velocity fields v1, v2 are divergence free. As we
assume the flows to be irrotational, one can express the velocity field as gradients of a potential:
vi = ∇X,zφi (i = 1, 2), and the velocity potentials satisfy Laplace’s equation

∆φi + ∂2
zφi = 0 (i = 1, 2).

The fluids being ideal, they satisfy the Euler equations. Integrating the momentum equations
yields Bernoulli equations, written in terms of the velocity potentials:

∂tφi +
1

2
|∇X,zφi|2 = −P

ρi
− gz in Ωti (i = 1, 2),

where P denotes the pressure inside the fluid.
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From the assumption that no fluid particle crosses the surface, the bottom or the interface, one
deduces kinematic boundary conditions, and the set of equations is closed by the continuity of the
stress tensor at the interface, which reads

JP (t,X)K ≡ lim
ε→0

(
P (t,X, ζ(t,X) + ε) − P (t,X, ζ(t,X)− ε)

)
= σk

(
ζ(t,X)

)
,

where k(ζ) = −∇·
(

1√
1+|∇ζ|2

∇ζ
)

denotes the mean curvature of the interface, and σ is the surface

tension coefficient.
Altogether, the governing equations of our problem are given by the following

∆φi + ∂2
zφi = 0 in Ωti, i = 1, 2,

∂tφi + 1
2 |∇X,zφi|

2 = − P
ρi
− gz in Ωti, i = 1, 2,

∂zφ1 = 0 on Γt ≡ {(X, z), z = d1)},
∂tζ =

√
1 + |∇ζ|2∂nφ1 =

√
1 + |∇ζ|2∂nφ2 on Γ ≡ {(X, z), z = ζ(t,X)},

∂nφ2 = 0 on Γb ≡ {(X, z), z = −d2 + b(X)},
JP (t,X)K = σk(ζ) on Γ,

(2.1)

where n denotes the unit upward normal vector at the surface at stake.

The next step consists in nondimensionalizing the system. Thanks to an appropriate scaling, the
two-layer full Euler system (2.1) can be written in dimensionless form. The study of the linearized
system (see [36] for example), which can be solved explicitly, leads to a well-adapted rescaling.

Let a (resp. ab) be the maximum amplitude of the deformation of the interface. We denote by
λ a characteristic horizontal length (that we assume to be identical in any of the directions if d = 2;
see [37] for a treatment of the anisotropic case when d = 2), say the wavelength of the interface.
Then the typical velocity of small propagating internal waves (or wave celerity) is given by

c0 =

√
g

(ρ2 − ρ1)d1d2

ρ2d1 + ρ1d2
.

Consequently, we introduce the dimensionless variables1

z̃ ≡ z

d1
, X̃ ≡ X

λ
, t̃ ≡ c0

λ
t,

the dimensionless unknowns

ζ̃(t̃, X̃) ≡ ζ(t,X)

a
, b̃(X̃) ≡ b(X)

ab
, φ̃i(t̃, X̃, z̃) ≡

d1

aλc0
φi(t,X, z) (i = 1, 2),

as well as the following dimensionless parameters

γ =
ρ1

ρ2
, ε ≡ a

d1
, β ≡ ab

d1
, µ ≡ d2

1

λ2
, δ ≡ d1

d2
, Bo =

g(ρ2 − ρ1)λ2

σ
. (2.2)

We conclude by remarking that the system can be reduced into two evolution equations coupling
Zakharov’s canonical variables [48, 18], namely (withdrawing the tildes for the sake of readability)
the deformation of the free interface from its rest position, ζ, and the trace of the dimensionless
upper potential at the interface, ψ, defined as follows:

ψ ≡ φ1(t,X, ζ(t,X)).

1We choose d1 as the reference vertical length. This choice is harmless as we assume in the following that the two
layers of fluid have comparable depth: the depth ratio δ do not approach zero or infinity.
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Indeed, φ1 and φ2 are uniquely deduced from (ζ, ψ) as solutions of the following Laplace’s problems:
(
µ∆ + ∂2

z

)
φ1 = 0 in Ω1 ≡ {(X, z) ∈ Rd+1, εζ(X) < z < 1},

∂nφ1 = 0 on Γt ≡ {(X, z) ∈ Rd+1, z = 1},
φ1 = ψ on Γ ≡ {(X, z) ∈ Rd+1, z = εζ},

(2.3)


(
µ∆ + ∂2

z

)
φ2 = 0 in Ω2 ≡ {(X, z) ∈ Rd+1, − 1

δ + βb(X) < z < εζ(X)},
∂nφ2 = ∂nφ1 on Γ,
∂nφ2 = 0 on Γb ≡ {(X, z) ∈ Rd+1, z = − 1

δ + βb(X)}.
(2.4)

More precisely, we define the so-called Dirichlet-Neumann operators.

Definition 2.1 (Dirichlet-Neumann operators). Let ζ, b ∈ Ht0+1(Rd), t0 > d/2, such that there
exists h0 > 0 with h1 ≡ 1 − εζ ≥ h0 > 0 and h2 ≡ 1

δ + εζ − βb ≥ h0 > 0, and let ψ ∈
L2

loc(Rd),∇ψ ∈ H1/2(Rd). Then we define

Gµψ ≡ Gµ[εζ]ψ ≡
√

1 + µ|ε∇ζ|2
(
∂nφ1

)
|z=εζ = −µε(∇ζ) · (∇φ1) |z=εζ + (∂zφ1) |z=εζ ,

Hµ,δψ ≡ Hµ,δ[εζ, βb]ψ ≡
(
φ2

)
|z=εζ = φ2(t,X, ζ(t,X)),

where φ1 and φ2 are uniquely defined (up to a constant for φ2) as the solutions in H2(Rd) of the
Laplace’s problems (2.3)–(2.4).

The existence and uniqueness of a solution to (2.3)–(2.4), and therefore the well-posedness of
the Dirichlet-Neumann operators follow from classical arguments detailed, for example, in [37].

Using the above definition, and after straightforward computations, one can rewrite the nondi-
mensionalized version of (2.1) as a simple system of two coupled evolution equations, namely

∂tζ −
1

µ
Gµψ = 0,

∂t

(
∇Hµ,δψ − γ∇ψ

)
+ (γ + δ)∇ζ +

ε

2
∇
(
|∇Hµ,δψ|2 − γ|∇ψ|2

)
= µε∇N µ,δ +

γ + δ

Bo

∇
(
k(ε
√
µζ)
)

ε
√
µ

,

(2.5)

where we denote

N µ,δ ≡
(

1
µG

µψ + ε(∇ζ) · (∇Hµ,δψ)
)2 − γ

(
1
µG

µψ + ε(∇ζ) · (∇ψ)
)2

2(1 + µ|ε∇ζ|2)
.

We will refer to (2.5) as the full Euler system, and solutions of this system will be exact solutions
of our problem.

2.2 A well-posedness theorem on the full Euler system

We mention here that Lannes [36] recently ensured that the Cauchy problem for (2.5) (with a
flat bottom: β = 0) is locally well-posed in Sobolev spaces, with an existence time consistent with
observations. Earlier results showed that the problem was ill-posed in the absence of surface tension,
outside of the analytic framework. It was subsequently proved that taking into account the surface
tension restores the local well-posedness of the equations, but with a very small existence time of
the solution when the surface tension is small, which is the case in the oceanographic setting.

It has to be noted that none of the asymptotic models presented in the following sections (and
as a matter of fact, no asymptotic model in any regime, as far as we know) share the same property,
and that the surface tension term could be withdrawn from the equations (by setting Bo−1 = 0)
without hurting their well-posedness. The reason for this apparent paradox is that the positive role
of surface tension is to regularize Kelvin-Helmholtz instabilities that appear at high frequencies,
while the main part of the wave, which is captured by the asymptotic models, is located at low
frequencies and is thus unaffected by surface tension.
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In [36], Lannes introduces a stability criterion, whose role is to ensure that the aforementioned
frequency threshold is high enough, and shows that, under this condition, the combined effect of
surface tension and gravity is sufficient to control the regularity of the flow.

Somewhat more precisely, one has the following result; see [36, Theorems 5 and 6] for the precise
statements.

Theorem 2.2. Let p ∈ PSW and the initial data U0 ≡ (ζ0, ψ0)> satisfy the following:

1. U0 belongs to an energy space of sufficiently smooth, bounded functions (in particular, the
following is required: (ζ0,∇ψ0)> ∈ H9/2(Rd)d+1);

2. ζ0 satisfies the non-vanishing depth condition: ∃h0 > 0 : min{1− εζ0, δ−1 + εζ0} ≥ h0;

3. A stability criterion is satisfied, which can be roughly expressed by Υ ≡ ε−2% ρ1ga
4

d21

1
4σ

(γ+δ)2

(1+γ)6 is

sufficiently small (% ∈ [0, 1], fixed).

Then there exists a unique solution to (2.5) (with flat bottom: β = 0) with initial data U |t=0 ≡ U0,
bounded in the same energy space (no loss of derivatives). The flow is continuous with respect to
time, and defined for t ∈ [0, ε−%T ], where T > 0 depends only on the quantities defined through the
three above conditions, and in particular can be chosen independent of the parameters p ∈ PSW .

3 The Green-Naghdi/Green-Naghdi model

In the following, we construct Green-Naghdi type models for the system (2.5), that is asymptotic
models with precision O(µ2), in the sense of consistency. As we shall see, and contrarily to ear-
lier works, our construction relies only on asymptotic expansions which can be straightforwardly
deduced from known results on the one-layer case. Thus we start by recalling below these results,
which can be found in particular in [37]. We then deduce equivalent asymptotic expansions in the
bi-fluidic setting in Section 3.2, and finally use these expansions to construct our asymptotic models
in Section 3.3.

3.1 Asymptotic expansions in the water-wave case

The proof of the following statements may be found in [37] (with depth D = 1, but the general case
is obtained by straightforward change of variables). For simplicity, and without lack of generality,
we set ε = β = 1 in this section.

Definition 3.1 (Dirichlet-Neumann operator). Let ζ, b ∈ Ht0+1(Rd), t0 > d/2, such that there
exists h0 > 0 with h ≡ D+ ζ − b ≥ h0 > 0, and let ψ ∈ L2

loc(Rd),∇ψ ∈ H1/2(Rd)d. Then we define

Gµ,D[ζ, b]ψ ≡
√

1 + µ|∇ζ|2
(
∂nφ

)
|z=ζ = −µ(∇ζ) · (∇φ) |z=ζ + (∂zφ) |z=ζ ,

where φ ≡ φµ,D[ζ, b]ψ ∈ H2 is the unique solution to
(
µ∆ + ∂2

z

)
φ = 0 in Ω ≡ {(X, z) ∈ Rd+1, −D + b(X) < z < ζ(X)},

∂nφ = 0 on Γb ≡ {(X, z) ∈ Rd+1, z = −D + b(X)},
φ = ψ on Γ ≡ {(X, z) ∈ Rd+1, z = ζ},

(3.1)

Let us now recall that the Dirichlet-Neumann operator may be equivalently defined through the
vertically averaged mean velocity, thanks to the following Proposition.

Proposition 3.2. Let ζ, b, ψ satisfy the assumptions of Definition 3.1. Define

V(X) ≡ 1

h(X)

∫ ζ(X)

−D+b(X)

∇φ(X, z) dz

where φ ≡ φµ,D[ζ, b]ψ ∈ H2 is the unique solution to (3.1).
Then one has the identity

Gµ,D[ζ, b]ψ = −µ∇ · ( h V ). (3.2)
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Proof. This striking result is a consequence of a simple calculation, that we recall. Let ϕ ∈ C∞c (Rd)
be a test function. Then one has∫

Rd
ϕGµ,D[ζ, b]ψ dX =

∫
Γ

ϕ(∂nφ) dΓ =

∫
Ω

(
√
µ∇φ) · (√µ∇ϕ) dΩ

= µ

∫
Rd
dX ∇ϕ ·

∫ ζ

−D+b

dz∇φ

= −µ
∫
Rd
ϕ(X)∇(h V) dX,

where we used Green’s identity, and the Laplace’s equation satisfied by φ. Since this result is valid
for any test function ϕ ∈ C∞c (Rd), and as Gµ,D[ζ, b]ψ ∈ H1/2(Rd), the identity (3.2) holds in the
strong sense.

Let us conclude with the asymptotic expansion of the quantities defined above. Here and in the
following, we denote, for convenience,2

M(s) = C(h−1
0 ,
∣∣ζ∣∣

Hmax(s,t0+1) ,
∣∣b∣∣

Hmax(s,t0+1)) .

Proposition 3.3. Let ζ, b ∈ Ht0+2 ∩Hs+4(Rd), t0 > d/2, s ≥ 0, such that there exists h0 > 0 with
h ≡ D + ζ − b ≥ h0 > 0, and let ψ ∈ L2

loc(Rd),∇ψ ∈ Hs+4(Rd)d. Then∣∣V − ∇ψ∣∣
Hs
≤ µ M(s+ 2)

∣∣∇ψ∣∣
Hs+2 , (3.3)∣∣V − ∇ψ + µT [h, b]∇ψ

∣∣
Hs
≤ µ2 M(s+ 4)

∣∣∇ψ∣∣
Hs+4 , (3.4)

with

T [h, b]V ≡ −1

3h
∇(h3∇ · V ) +

1

2h

[
∇(h2∇b · V )− h2∇b∇ · V

]
+∇b∇b · V . (3.5)

It follows straightforwardly from (3.2) that if (ζ, b,∇ψ)> ∈ Hs+5(Rd)d+2, then∣∣ 1
µ
Gµ[ζ, b]ψ + ∇ · (h∇ψ)

∣∣
Hs
≤ µM(s+ 3)

∣∣∇ψ∣∣
Hs+3 , (3.6)∣∣ 1

µ
Gµ[ζ, b]ψ + ∇ · (h∇ψ) − µ∇ · (hT [h, b]∇ψ)

∣∣
Hs
≤ µ2M(s+ 5)

∣∣∇ψ∣∣
Hs+5 . (3.7)

3.2 Asymptotic expansions in the bi-fluidic case

Our specific operators may be deduced from the classical Dirichlet-Neumann operator used in the
water-wave problem, and Defined in Definition 3.1. Thus the following results are easily deduced
from the ones of the previous section.

Let us first define u1 (resp. u2) the vertically averaged mean velocity of the upper layer (resp.
lower layer):

Definition 3.4. Let ζ, b ∈ Ht0+1(Rd), t0 > d/2, such that there exists h0 > 0 with h1 ≡ 1− εζ ≥
h0 > 0 and h2 ≡ 1

δ + εζ − βb ≥ h0 > 0, and let ψ ∈ L2
loc(Rd),∇ψ ∈ H1/2(Rd)d. Then we define

u1(t,X) =
1

1− εζ(X)

∫ 1

εζ(X)

∇φ1(X, z) dz,

u2(t,X) =
1

1
δ + εζ(X)− βb(X)

∫ εζ(X)

− 1
δ+βb(X)

∇φ2(X, z) dz.

where φ1 and φ2 are uniquely defined (up to a constant for φ2) as the solutions in H2(Rd) of the
Laplace’s problems (2.3)–(2.4).

2In order to be completely rigorous, one should take into account the dependence with respect to the parameter
D here, and δ in the subsequent sections. However, this dependence is harmless as we assume that δ do not approach
zero or infinity: δ ∈ [δmin, δmax]; see [36] for example.
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Proposition 3.5. Let ζ, b, ψ satisfy the hypothesis of Definition 3.4. Then one has the identity

Gµ[εζ]ψ = µ∇ · ( h1 u1 ) = −µ∇ · ( h2 u2 ). (3.8)

The proof of these identities is identical as the one of Proposition 3.2 (when considering the
upper and lower potential respectively, and using that ∂nφ1 = ∂nφ2 = (1 + µ|ε∇ζ|2)−1/2Gµ[εζ]ψ).
Thus we omit the proof, and continue with the asymptotic expansions of the above quantities.

Proposition 3.6. Let ζ, b ∈ Ht0+2(Rd) ∩Hs+4(Rd), t0 > d/2, s ≥ 0, such that there exists h0 > 0
with min{h1, h2} ≥ h0 > 0, and let ψ ∈ L2

loc(Rd),∇ψ ∈ Hs+4(Rd)d. Then∣∣u1 − ∇ψ
∣∣
Hs
≤ µM(s+ 2)

∣∣∇ψ∣∣
Hs+2 , (3.9)∣∣u1 − ∇ψ + µT [h1, 0]∇ψ

∣∣
Hs
≤ µ2M(s+ 4)

∣∣∇ψ∣∣
Hs+4 , (3.10)∣∣∇ψ − u1 − µT [h1, 0]u1

∣∣
Hs
≤ µ2M(s+ 4)

∣∣∇ψ∣∣
Hs+4 . (3.11)

Proof. Expansions (3.9),(3.10), simply follow from Proposition 3.3 once we remark that φ̃(X, z) ≡
φ1(X,−z) satisfies

(
µ∆ + ∂2

z

)
φ̃ = 0 in {(X, z) ∈ Rd+1, −1 < z < −εζ(X)},

∂zφ̃ = 0 on {(X, z) ∈ Rd+1, z = −1},
φ̃ = ψ on {(X, z) ∈ Rd+1, z = −εζ}.

It follows that one has the identity φ1(X,−z) ≡ φµ,1[−εζ, 0]ψ, the unique solution of (3.1). Con-
sequently, Gµ[εζ] = −Gµ,1[−εζ, 0], and the expansions (3.9),(3.10) follow. Expansion (3.11) is a
straightforward consequence of (3.9),(3.10), and∣∣T [h1, 0](∇ψ − u1)

∣∣
Hs
≤ C(h−1

0 , ε
∣∣ζ∣∣

Hs+1)
∣∣∇ψ − u1

∣∣
Hs+2 .

The Proposition is proved.

Proposition 3.7. Let ζ, b ∈ Ht0+2(Rd) ∩ Hs+11/2(Rd), t0 > d/2, s ≥ 0, such that there exists
h0 > 0 with min{h1, h2} ≥ h0 > 0, and let ψ ∈ L2

loc(Rd),∇ψ ∈ Hs+5(Rd)d. Then one has∣∣u2 − ∇Hµ,δψ
∣∣
Hs
≤ µM(s+ 7/2)

∣∣∇ψ∣∣
Hs+3 , (3.12)∣∣∇Hµ,δψ − u2 − µT [h2, βb]u2

∣∣
Hs
≤ µ2M(s+ 11/2)

∣∣∇ψ∣∣
Hs+5 . (3.13)

Proof. As above, the expansions can be deduced from Proposition 3.3, once we remark that by
definition, φ2(X, z) satisfies

(
µ∆ + ∂2

z

)
φ2 = 0 in {(X, z) ∈ Rd+1, − 1

δ + βb(X) < z < εζ(X)},
∂nφ2 = 0 on {(X, z) ∈ Rd+1, z = − 1

δ + βb(X)},
φ2 = Hµ,δ[εζ, βb]ψ on {(X, z) ∈ Rd+1, z = εζ}.

In other words, one has the identity φ2(X, z) ≡ φµ,δ−1

[εζ, βb]Hµ,δψ, where φµ,δ
−1

is defined as the
solution of (3.1). 3

Thus one deduces from Proposition 3.3 the following estimates:∣∣u2 − ∇Hµ,δψ
∣∣
Hs
≤ µM(s+ 2)

∣∣∇Hµ,δψ
∣∣
Hs+2 , (3.14)∣∣u2 − ∇Hµ,δψ + µT [h2, βb]∇Hµ,δψ

∣∣
Hs
≤ µ2M(s+ 4)

∣∣∇Hµ,δψ
∣∣
Hs+4 . (3.15)

Furthermore, one has from [8, Proposition 3] that∣∣∇Hµ,δψ
∣∣
Hs
≤ C(h−1

0 , δ, δ−1, |ζ|Hs+3/2)|∇ψ|Hs+1 , (3.16)

so that estimate (3.12) is now straightforward.
Finally, estimate (3.13) is easily deduced from the previous estimates.

3Note that by definition of the Dirichlet-Neumann operators Gµ and Gµ,δ−1
, this identity yields

Gµ,δ
−1

[εζ, βb]Hµ,δψ =
√

1 + µ|ε∇ζ|2(∂nφ2)z=εζ = Gµ[εζ]ψ .

In other words, and as remarked in [36], one has the identity

Hµ,δ =
{
Gµ,δ

−1
[εζ, βb]

}−1
Gµ[εζ] = −

{
Gµ,δ

−1
[εζ, βb]

}−1Gµ,1[−εζ, 0] .

In particular, the bound (3.16) is not optimal; see [36, Proposition 1 and Remark 6].



June 4, 2013 Vincent Duchêne, Samer Israwi, Raafat Talhouk 11

3.3 Construction of the Green-Naghdi/Green-Naghdi model

Let us recall the full Euler system (2.5):

∂tζ −
1

µ
Gµψ = 0,

∂t

(
∇Hµ,δψ − γ∇ψ

)
+ (γ + δ)∇ζ +

ε

2
∇
(
|∇Hµ,δψ|2 − γ|∇ψ|2

)
= µε∇N µ,δ +

γ + δ

Bo

∇
(
k(ε
√
µζ)
)

ε
√
µ

,

(3.17)

where we denote N µ,δ ≡
(

1
µG

µψ + ε(∇ζ) · (∇Hµ,δψ)
)2 − γ

(
1
µG

µψ + ε(∇ζ) · (∇ψ)
)2

2(1 + µ|ε∇ζ|2)
.

By Proposition 3.5, the first equation of (3.17) yields

∂tζ = ∇ · (h1u1) = −∇ · (h2u2). (3.18)

When we plug the expansions of Propositions 3.6 and 3.7 into the second equation of (3.17), and
withdrawing O(µ2) terms, one obtains

∂t

(
u2 − γu1 + µT [h2, βb]u2 − µγT [h1, 0]u1

)
+ (γ + δ)∇ζ +

ε

2
∇
(
|u2 + µT [h2, βb]u2|2 − γ|u1 + µT [h1, 0]u1|2

)
= µε∇N µ,δ

0 +
γ + δ

Bo

∇
(
k(ε
√
µζ)
)

ε
√
µ

+ O(µ2) , (3.19)

with

N µ,δ
0 ≡

(
−∇ · (h2u2) + ε(∇ζ) · (u2)

)2 − γ
(
∇ · (h1u1) + ε(∇ζ) · (u1)

)2
2

≡
(
− h2∇u2 + β(∇b) · (u2)

)2 − γ
(
h1∇ · u1

)2
2

Remark 3.8. Equations (3.18) and (3.19) are very similar to the system obtained in [14]. It
may also be recovered from system (60) in [20] when setting α = 0 (notation therein), and after
straightforward adjustments (in particular, we use a different scaling in the non-dimensionalizing
step).

Proposition 3.9 (Consistency). Let Up ≡ (ζp, ψp)> be a family of solutions to the full Euler sys-
tem (2.5) such that there exists T > 0, s ≥ 0 for which (ζp,∇ψp)> is bounded in L∞([0, T );Hs+N )d+1

(N sufficiently large), uniformly with respect to (µ, ε, δ, γ) ≡ p ∈ PSW ; see Definition 1.1. Moreover,
assume that b ∈ Hs+N and

∃h0 > 0 such that h1 ≡ 1− εζp ≥ h0 > 0, h2 ≡
1

δ
+ εζp − βb ≥ h0 > 0.

Define up1, u
p
2 as in Definition 3.4. Then (ζp, up1, u

p
2) satisfy (3.18),(3.19), the latter up to a remain-

der term, R, bounded by ∥∥R∥∥
L∞([0,T );Hs)d

≤ µ2 C ,

with C = C(h−1
0 , µmax, δ

−1
min, δmax,

∣∣b∣∣
Hs+N

,
∥∥ζp∥∥

L∞([0,T );Hs+N )
,
∥∥∇ψp

∥∥
L∞([0,T );Hs+N )d

, uniform with

respect to (µ, ε, δ, γ) ∈ PSW .

Proof. The fact that (ζp, up1, u
p
2) satisfy (3.18) has been expressed earlier in Proposition 3.5. The fact

that (3.19) approximately holds is a consequence of the asymptotic expansions of Propositions 3.6
and 3.7. Let us detail briefly the argument.
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Subtracting (3.19) to the last equation in (2.5) yields (withdrawing the explicit reference to
p ∈ PSW for the sake of readability)

R = ∂t

(
∇Hµ,δψ − γ∇ψ −

{
u2 − γu1 + µT [h2, βb]u2 − µγT [h1, 0]u1

})
+

ε

2
∇
(
|∇Hµ,δψ|2 − γ|∇ψ|2 −

{
|u2 + µT [h2, βb]u2|2 − γ|u1 + µT [h1, 0]u1|2

})
− µε∇

(
N µ,δ −Nµ,δ

0

)
≡ RI + RII + RIII . (3.20)

We now show how to estimate each of these terms.

Recall (3.13) in Proposition 3.7. It follows from tame product estimates in Hs (see [23, Ap-
pendix A] for example)∣∣|∇Hµ,δψ|2 − |u2 + µT [h2, βb]u2|2

∣∣
Hs
≤ C2

∣∣∇Hµ,δψ − u2 − µT [h2, βb]u2

∣∣
Hs

≤ µ2C2 M(s+ 11/2)
∣∣∇ψ∣∣

Hs+5

with C2 .
∣∣∇Hµ,δψ + u2 + µT [h2, βb]u2

∣∣
Hmax{t0,s} . Here and below, we denote t0 > d/2.

Identically, using (3.11) in Proposition 3.6, one obtains∣∣|∇ψ|2 − |u1 + µT [h1, 0]u1|2
∣∣
Hs
≤ C1

∣∣∇ψ − u1 − µT [h1, 0]u1

∣∣
Hs

≤ µ2C1 M(s+ 4)
∣∣∇ψ∣∣

Hs+4

with C1 .
∣∣∇ψ + u1 + µT [h1, 0]u1

∣∣
Hmax{t0,s} .

It is now clear that one can choose N sufficiently large so that the following holds:∥∥RII∥∥L∞([0,T );Hs)d
≤ µ2C , (3.21)

with C as in the Proposition (note that one can deduce a control in Hs of u1 from a control in
Hs+2 of ∇ψ, thanks to (3.9) —being non optimal).

The estimate on RIII is obtained similarly. Using identity (3.8) as well as first order expan-
sions (3.9),(3.14), one obtains∣∣( 1

µ
Gµψ + ε(∇ζ) · (∇Hµ,δψ)

)2 − (−∇ · (h2u2) + ε(∇ζ) · (u2)
)2∣∣

Hs
≤ µ C ′2 M(s+ 7/2)

∣∣∇ψ∣∣
Hs+3 ,

with C ′2 .
∣∣ 2
µG

µψ + ε(∇ζ) · (∇Hµ,δψ + u2)
∣∣
Hmax{t0,s} , and

∣∣( 1

µ
Gµψ + ε(∇ζ) · (∇ψ)

)2 − (∇ · (h1u1) + ε(∇ζ) · (u1)
)2∣∣

Hs
≤ µ C ′1 M(s+ 2)

∣∣∇ψ∣∣
Hs+2 ,

with C ′1 .
∣∣ 2
µG

µψ + ε(∇ζ) · (∇ψ + u1)
∣∣
Hmax{t0,s} .

Finally, for any f ∈ Hs(Rd), one has∣∣ f

2(1 + µ|ε∇ζ|2)
− f

2

∣∣
Hs

.
∣∣f ∣∣

Hs

∣∣µ|ε∇ζ|2∣∣
Hmax{t0,s} ,

so that one deduces from the above estimates that∥∥RIII∥∥L∞([0,T );Hs)d
≤ µ2C , (3.22)

with C as in the Proposition, and for N sufficiently large.

The estimate on RI requires a control of the time derivatives. One can obtain equivalent results
as in Propositions 3.6 an 3.7, and in particular∣∣∂t(∇ψ − u1 − µT [h1, 0]u1

)∣∣
Hs
≤ µ2N(s+ 4)

∣∣∂t∇ψ∣∣Hs+4∣∣∂t(∇Hµ,δψ − u2 − µT [h2, βb]u2

)∣∣
Hs
≤ µ2N(s+ 11/2)

∣∣∂t∇ψ∣∣Hs+5 ,
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with N(s) ≡ C( 1
h0
,
∣∣ζ∣∣

Hs
,
∣∣b∣∣

Hs
,
∣∣∇ψ∣∣

Hs
,
∣∣∂tζ∣∣Hs) for s ≥ t0 + 1; following the same method, but

after differentiating the equations (with respect to the time variable, t). We do not detail the proof,
and refer to [20, 37] for examples of applications of this strategy.

Finally, note that one can control ∂t∇ψ and ∂tζ using only a control on ∇ψ and ζ, using that
(ζ, ψ)> satisfies the full Euler system (2.5); allowing for a loss of derivatives. At the end of the day,
one sees that if N is sufficiently large, then one has∥∥RI∥∥L∞([0,T );Hs)d

≤ µ2C , (3.23)

with C as in the Proposition.

Altogether, estimates (3.21), (3.22) and (3.23) yield Proposition 3.9.

Our aim is now to approximate (3.18),(3.19) as a system of coupled evolution equations (thus
directly comparable with (3.17)). In order to do so, we introduce a new velocity variable, v, which
shall satisfy

∇ · ( h1h2

h1 + γh2
v) = ∇ · (h2u2) = −∇ · (h1u1), (3.24)

so that

∂tζ + ∇ · ( h1h2

h1 + γh2
v) = 0 . (3.25)

In dimension d = 1, identity (3.24) (assuming that v → 0 as |x| → ∞) uniquely defines v as the
shear mean velocity:

∂x(
h1h2

h1 + γh2
v) = ∂x(h2u2) = −∂x(h1u1) if and only if v = u2 − γu1 . (3.26)

However, such an explicit expression is not available in dimension d = 2. In that case, we make
use of the following operator, defined in [8].

Lemma 3.10. Assume that ξ ∈ L∞(Rd) be such that |ξ|L∞ < 1. Then for any W ∈ L2(Rd)d, there
exists a unique V ∈ L2(Rd)d such that

∇ ·
(
(1 + ξ)V

)
= ∇ ·W .

and ΠV = V , where Π = ∇∇>
|D|2 is the orthogonal projector onto the gradient vector fields of L2(Rd)d.

Moreover, one has V = Q[ξ]W , where Q[ξ] : L2(Rd)d → L2(Rd)d is defined by

Q[ξ] : U 7→
∞∑
n=0

(−1)n
(
Π(ξΠ·)

)n
(ΠU).

Furthermore, if ξ ∈ Hs(Rd) and W ∈ Hs(Rd)d with s ≥ t0 +1, t0 > d/2, then Q[ξ]W ∈ Hs(Rd)d
and ∣∣Q[ξ]W

∣∣
Hs
≤ C

(
|ξ|Hs ,

1

1− |ξ|L∞

)∣∣W ∣∣
Hs
.

This allows to define v as the unique gradient solution to (3.24).

Definition 3.11. Let ζ ∈ L∞(Rd) be such that ε|ζ|L∞ < 1 and |εζ − βb|L∞ < δ−1, so that

h1h2

h1 + γh2
=

1

γ + δ
(1 + ξ), with |ξ|L∞ < 1.

Then we define v as the unique gradient solution to (3.24); or, in other words,

v = −(γ + δ)Q[ξ](h1u1) = (γ + δ)Q[ξ](h2u2) .
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Note that the condition |ξ|L∞ < 1 is ensured by the following:

ξ = (γ + δ)
h1h2

h1 + γh2
− 1 =

h1(δh2 − 1) + γh2(h1 − 1)

h1 + γh2
= 1− h1(2− δh2) + γh2(2− h1)

h1 + γh2
,

and ε|ζ|L∞ < 1 yields 0 ≤ h1 ≤ 2 whereas |εζ − βb|L∞ < δ−1 yields 0 ≤ h2 ≤ 2δ−1.

Remark 3.12. In the one dimensional space (d = 1), one has Π = Id, and one can check that the
operator Q simply reduces to Q[ξ]W = 1

1+ξW , so that one recovers

v = u2 − γu1 and u1 =
−h2v

h1 + γh2
, u2 =

h1v

h1 + γh2
.

Note also that in that case, conditions ε|ζ|L∞ < 1 and |εζ − βb|L∞ < δ−1 may be replaced by the
slightly less stringent non-vanishing depth condition: h1 = 1− εζ > 0, h2 = δ−1 + εζ − βb > 0.

Let us emphasize again that in the case d = 2, there is no reason to think that v = u2−γu1 holds,
even with precision O(µ); and in particular that u2 − γu1 is a gradient vector fields. In the same
way, one would like to write, seeing (3.24), u2 = δQ[εδζ]

(
h1h2

h1+γh2
v
)

and u1 = −Q[−εζ]
(

h1h2

h1+γh2
v
)
;

but unfortunately, it is not clear that u1, u2 are gradient vector fields (as a matter of fact, their
second order expansion tends to show that it is not true). However, one has the following expansion:

Proposition 3.13. Let s ≥ t0+1, t0 > d/2, ψ ∈ L2
loc(Rd),∇ψ ∈ Hs+11/2(Rd)d and ζ, b ∈ Hs+5(Rd)

be such that

∃h0 > 0 such that 1− ε
∣∣ζ∣∣

L∞
≥ h0 > 0,

1

δ
−
∣∣βb− εζ∣∣

L∞
≥ h0 > 0.

Then one has ∣∣∇ψ − ũ1

∣∣
Hs

+
∣∣u1 − ũ1

∣∣
Hs
≤ µM(s+ 2)

∣∣∇ψ∣∣
Hs+2 , (3.27)∣∣∇Hµ,δψ − ũ2

∣∣
Hs

+
∣∣u2 − ũ2

∣∣
Hs
≤ µM(s+ 7/2)

∣∣∇ψ∣∣
Hs+3 , (3.28)∣∣∇ψ − ũ1 − µQ[−εζ](h1T [h1, 0]ũ1)

∣∣
Hs
≤ µ2M(s+ 4)

∣∣∇ψ∣∣
Hs+4 , (3.29)∣∣∇Hµ,δψ − ũ2 − µδQ[δεζ](h2T [h2, βb]ũ2)

∣∣
Hs
≤ µ2M(s+ 11/2)

∣∣∇ψ∣∣
Hs+5 , (3.30)

where we denote ũ1 ≡ −Q[−εζ]
(

h1h2

h1+γh2
v
)
, ũ2 ≡ δQ[δεζ]

(
h1h2

h1+γh2
v
)
.

Proof. The first estimate follows from

∇ · (h1∇ψ) = ∇ · (h1u1) +∇ ·
(
h1(∇ψ − u1)

)
= −∇ ·

( h1h2

h1 + γh2
v
)

+∇ ·
(
h1(∇ψ − u1)

)
,

where we used identity (3.24). Consequently, Lemma 3.10 yields

∇ψ = −Q[−εζ]
( h1h2

h1 + γh2
v − h1(∇ψ − u1)

)
.

The control of
∣∣∇ψ − ũ1

∣∣
Hs

as in estimate (3.27) is now a consequence of Proposition 3.6, and

the continuity of the operator Q expressed in Lemma 3.10. The control of
∣∣∇ψ − ũ1

∣∣
Hs

is then
deduced, using once again Proposition 3.6 and triangular inequality. Estimate (3.27) is proved.

Estimate (3.28) is obtained in the same way, but using the control of
∣∣u2−∇Hµ,δψ

∣∣
Hs

displayed
in Proposition 3.7.

Following the same strategy, one order further, yields

∇ · (h1∇ψ) = ∇ · (h1u1) + µ∇ · h1T [h1, 0]u1 +∇ ·
(
h1(∇ψ − u1 − µT [h1, 0]u1)

)
= −∇ ·

( h1h2

h1 + γh2
v
)
− µ∇ ·

(
h1T [h1, 0]Q[εζ]

( h1h2

h1 + γh2
v
))

+∇ ·
(
h1(∇ψ − u1 − µT [h1, 0]u1) + µh1T [h1, 0]

{
u1 + Q[εζ]

( h1h2

h1 + γh2
v
)})

.

The last term in the identity above is estimated in part thanks to Proposition 3.6, and in part
thanks to the first order estimate (3.27). Estimate (3.29) then follows as above from the definition
and continuity of the the operator Q; see Lemma 3.10.

Estimate (3.30) is obtained in the same way, and we omit the detailed calculations.
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One deduces from Proposition 3.13 the following approximate equation equivalent to (3.19)
(withdrawing again O(µ2) terms):

∂t

(
ũ2 − γũ1 + µ

(
δQ[δεζ](h2T [h2, βb]ũ2)− γQ[−εζ](h1T [h1, 0]ũ1)

))
+ (γ + δ)∇ζ

+
ε

2
∇
(
|
(
I + µδQ[δεζ]h2T [h2, βb]

)
ũ2|2 − γ|

(
I + µQ[−εζ]h1T [h1, 0]

)
ũ1|2

)
= µε∇Ñ µ,δ

0 +
γ + δ

Bo

∇
(
k(ε
√
µζ)
)

ε
√
µ

+ O(µ2) , (3.31)

where we denote ũ1 ≡ −Q[−εζ]
(

h1h2

h1+γh2
v
)
, ũ2 ≡ δQ[εδζ]

(
h1h2

h1+γh2
v
)
, and

Ñ µ,δ
0 ≡

(
− h2∇ · ũ2 + β(∇b) · (ũ2)

)2 − γ
(
h1∇ · ũ1

)2
2

.

Proposition 3.14 (Consistency). Let Up ≡ (ζp, ψp)> be a family of solutions to the full Euler sys-
tem (2.5) such that there exists T > 0, s ≥ 0 for which (ζp,∇ψp)> is bounded in L∞([0, T );Hs+N )d+1

(N sufficiently large), uniformly with respect to (µ, ε, δ, γ) ≡ p ∈ PSW ; see Definition 1.1. Moreover,
assume that b ∈ Hs+N and

∃h0 > 0 such that 1− ε
∣∣ζ∣∣

L∞
≥ h0 > 0,

1

δ
−
∣∣βb− εζ∣∣

L∞
≥ h0 > 0.

Define vp through Definitions 3.4 and 3.11. Then (ζp, vp)> satisfy (3.25) and (3.31), the latter up
to a remainder term, R, bounded by∥∥R∥∥

L∞([0,T );Hs)d
≤ µ2 C ,

with C = C(h−1
0 , µmax, δ

−1
min, δmax,

∣∣b∣∣
Hs+n

,
∥∥ζp∥∥

L∞([0,T );Hs+N )
,
∥∥∇ψp

∥∥
L∞([0,T );Hs+N )d

), uniform with

respect to (µ, ε, δ, γ) ∈ PSW .

The Proposition is obtained as in the proof of Proposition 3.9, but using the asymptotic expan-
sions of Proposition 3.13; we omit its proof.

Unidimensional case (d = 1). Recall that in the one dimensional space, one has simply

(γ + δ)Q[ξ]V ≡ 1

h1 + γh2
V , Q[−εζ]V ≡ 1

h1
V and δQ[δεζ]V ≡ 1

h2
V ,

for any V ∈ L2(R), and denoting h1 ≡ 1− εζ and h2 ≡ δ−1 + εζ. In particular, one can check that
ũ1 = u1 = −h2 v

h1+γh2
and ũ2 = u2 = h1 v

h1+γh2
. The system (3.25),(3.31) thus becomes

∂tζ + ∂x(
h1h2 v

h1 + γh2
) = 0 ,

∂t

(
v + µT [h2, βb]

(
h1 v

h1+γh2

)
− µγT [h1, 0]

( −h2 v
h1+γh2

))
+ (γ + δ)∂xζ

+ ε
2∂x

(
(h1)2−γ(h2)2

(h1+γh2)2 v2
)

= µε∂xRµ,δ0 + γ+δ
Bo

∂x

(
k(ε
√
µζ)
)

ε
√
µ + O(µ2) ,

(3.32)

where we denote

Rµ,δ0 ≡ 1

2

(
− h2∂x

( h1 v

h1 + γh2

)
+ β(∂xb)

( h1 v

h1 + γh2

))2 − γ

2

(
h1∂x

( −h2 v

h1 + γh2

))2
−
( h1 v

h1 + γh2

)
T [h2, βb]

( h1 v

h1 + γh2

)
+ γ
( −h2 v

h1 + γh2

)
T [h1, 0]

( −h2 v

h1 + γh2

)
.
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If, additionally, one assumes the bottom is flat (by setting β = 0), then one recovers the following
system, as introduced in [22]:

∂tζ + ∂x

( h1h2

h1 + γh2
v
)

= 0,

∂t

(
v + µQ[h1, h2]v

)
+ (γ + δ)∂xζ +

ε

2
∂x

( h2
1 − γh2

2

(h1 + γh2)2
|v|2
)

= µε∂x
(
R[h1, h2]v

)
− γ+δ

Bo ∂
3
xζ ,

(3.33)

where we define:

Q[h1, h2]V ≡ −1

3h1h2

(
h1∂x

(
h3

2∂x
( h1 V

h1 + γh2

))
+ γh2∂x

(
h3

1∂x
( h2 V

h1 + γh2

)))
,

R[h1, h2]V ≡ 1

2

((
h2∂x

( h1 V

h1 + γh2

))2

− γ
(
h1∂x

( h2 V

h1 + γh2

))2
)

+
1

3

V

h1 + γh2

(
h1

h2
∂x

(
h3

2∂x
( h1 V

h1 + γh2

))
− γ

h2

h1
∂x

(
h3

1∂x
( h2 V

h1 + γh2

)))
.

Proposition 3.14 thus generalizes the consistency result obtained in [22, 23] to the case d = 2,
and to non-flat topography.

4 Lower order models

The system of equations (3.25),(3.31) is very broad, in the sense that it has been obtained with
minimal assumptions: allowing d = 1 and d = 2, non-flat topography, and in the shallow water
regime of Definition 1.1. It is justified by a consistency result (Proposition 3.14). As argued in the
introduction, the consistency result alone is not sufficient to fully justify a model. In the following
subsections, we show that existing models in the literature directly descend from our Green-Naghdi
model (3.25),(3.31), after additional assumptions (typically, restricting to d = 1, flat bottom, and/or
more stringent regimes), or with a lower precision. Their justification in the sense of consistency is
therefore a direct application of Proposition 3.14, and stronger results (well-posedness, convergence)
are stated when available.

4.1 The Shallow water (Saint Venant) model

We restrict to the case of flat bottom (β = 0), and consider only the first order terms in equa-
tion (3.31) (equivalently, we set µ = 0; this corresponds to the assumption that the horizontal
velocity is constant across the vertical layers). The system (3.25),(3.31), withdrawing O(µ2) terms,
is now simply ∂tζ = ∇ ·

( h1h2 v

h1 + γh2

)
∂t(ũ2 − γũ1) + (γ + δ)∇ζ + ε

2∇
(
|ũ2|2 − γ|ũ1|2

)
= −γ+δ

Bo ∇∆ζ,
(4.1)

where we recall that h1 ≡ 1 − εζ, h2 ≡ δ−1 + εζ, ũ1 ≡ −Q[εζ]
(

h1h2

h1+γh2
v
)
, ũ2 ≡ δQ[εδζ]

(
h1h2

h1+γh2
v
)
,

where the operator Q is defined in Definition 3.10.
A similar system is obtained when using a different velocity variable, such as the shear velocity

at the interface V ≡ ∇Hµ,δψ − γ∇ψ. In that case, one obtains the following [8]:{
∂tζ = ∇ · (h1R[εζ]V )

∂tV + (γ + δ)∇ζ + ε
2∇
(
|V − γR[εζ]V |2 − γ|R[εζ]V |2

)
= −γ+δ

Bo ∇∆ζ,
(4.2)
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where R is defined similarly as Q: R[εζ]W is the only gradient solution of

∇ ·
(
(h1 + γh2)R[εζ]W

)
= ∇ · (h2W ) .

System (4.1) and system (4.2) are equivalent up to order O(µ). In fact from proposition 3.13, one
has V = ũ2 − γũ1 +O(µ), and

−∇ ·
(
(h1 + γh2)ũ1

)
= −∇ · (h1ũ1)− γ∇ · (h2ũ1)

= ∇ ·
(
h2(ũ2 − γũ1)

)
= ∇ · (h2V ) +O(µ).

Using the fact that ũ1 is a gradient vector and the definition of operator R[εζ], we deduce that
−ũ1 = R[εζ]V +O(µ) and thus −∇·(h1ũ1) = ∇·(h1R[εζ]V )+O(µ). The definition of ũ1 implies now
the equivalence between (4.1)1 and (4.2)1. In the same way to obtain the equivalence of (4.1)2 and
(4.2)2 up to order O(µ) we just use the two fact ũ1 = −R[εζ]V +O(µ) and ũ2 = V −γR[εζ]V +O(µ).

In one dimension (i.e. d = 1), both (4.1) and (4.2) read ∂tζ = ∂x
( h1h2 v

h1 + γh2

)
∂tv + (γ + δ)∂xζ + ε

2∂x

(
h2
1−γh

2
2

(h1+γh2)2 |v|
2
)

= −γ+δ
Bo ∂

3
xζ.

(4.3)

System (4.2) has been derived and justified in the sense of consistency in [8], in the case of a
flat bottom, and without surface tension. An equivalent consistency result clearly holds for (4.1)
(as a consequence of Proposition 3.14 in particular). More precisely, one has

Proposition 4.1 (Consistency). Let s ≥ 0 and Up ≡ (ζp, ψp) be a family of solutions of the full
Euler system (2.5) for which (ζp,∇ψp)> is bounded in L∞([0, T );Hs+N )d+1 with sufficiently large
N ; and such that there exists h0 > 0 with

h1 ≡ 1− εζp ≥ h0 > 0, h2 ≡
1

δ
+ εζp ≥ h0 > 0.

Define v as in definition 3.11, and V ≡ ∇Hµ,δψ − γ∇ψ.
Then (ζ, v)> satisfies (4.1), up to a remainder (0, R1)>; and (ζ, V )> satisfies (4.2), up to a

remainder (0, R2)>; with∥∥R1

∥∥
L∞([0,T );Hs)d

+
∥∥R2

∥∥
L∞([0,T );Hs)d

≤ C µ,

with C = C(h−1
0 , µmax, δ

−1
min, δmax,

∥∥ζp∥∥
L∞([0,T );Hs+N )

,
∥∥∇ψp

∥∥
L∞([0,T );Hs+N )d

), uniform with respect

to the parameters p ∈ PSW .

Let us now mention that the well-posedness of the Cauchy problem for (4.2) has been studied
in [26], and we reproduce below their result (see [26, Theorem 2])

Proposition 4.2 (Well-posedness). Let d = 2 and Bo−1 = 0. Let s ≥ t0 + 1, t0 > 1, and
U0 = (ζ0, V 0)> ∈ Hs(R2)3 be such that there exists h0 > 0 with

min
{

1− ε
∣∣ζ0
∣∣
L∞

,
1

δ
− ε
∣∣ζ0
∣∣
L∞

, γ + δ− γ |V + (1− γ)R[εζ]V |2

1− ε
∣∣ζ0
∣∣
L∞

+ γ(δ−1 + ε
∣∣ζ0
∣∣
L∞

)

}
≥ h0 > 0, (4.4)

and curlV 0 = 0. Then, there exists Tmax > 0 and a unique maximal solution U = (ζ, V )> ∈
C([0, Tmax/ε);H

s(R2)3) to (4.2) with initial condition U0.

Remark 4.3. In the case d = 1, the conditions (4.4) can be replaced by

h1 ≡ 1− εζ ≥ h0 > 0, h2 ≡
1

δ
+ εζ ≥ h0 > 0, γ + δ − γ (1 + δ−1)2

(h1 + γh2)3
|v|2 ≥ h0 > 0,

which is sufficient to write (4.3) as a symmetrizable quasilinear equation; thus classical techniques
apply. See [26, Theorem 1] for the precise result.
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4.2 A Green-Naghdi type model in the Camassa-Holm regime

The present section is limited to the so-called Camassa-Holm regime (that is using additional
assumptions ε = O(

√
µ); see Definition 1.1), flat bottom case (β = 0) and one dimensional space

d = 1. Moreover, we neglect the surface tension component in our model. All the estimates are
now understood uniformly with respect to (µ, ε, δ, γ) ∈ PCH .

In that case, one can easily check that the following approximations hold for Q, R defined in
section 3.3

Q[h1, h2]V = −ν∂2
xV − ε

γ + δ

3

(
(β − α)V ∂2

xζ + (α+ 2β)∂x(ζ∂xV )− βζ∂2
xV
)

+ O(µ),

R[h1, h2]V = α

(
1

2
(∂xV )2 +

1

3
V ∂2

xV

)
+ O(

√
µ)

with

ν =
1 + γδ

3δ(γ + δ)
, α =

1− γ
(γ + δ)2

and β =
(1 + γδ)(δ2 − γ)

δ(γ + δ)3
. (4.5)

Plugging these expansions into system (3.33) yields a simplified model, precise with the same
order of magnitude as the original model (that isO(µ2)) in the Camassa-Holm regime. Furthermore,
after several additional transformations, on may produce an equivalent model (again, in the sense of
consistency) which possess a structure similar to symmetrizable quasilinear systems, thus allowing
its full justification. The following system of equations has been introduced and justified by the
authors in [23].

∂tζ + ∂x

(
h1h2

h1 + γh2
v

)
= 0,

T[εζ] (∂tv + εςv∂xv) + (γ + δ)q1(εζ)∂xζ

+ ε
2q1(εζ)∂x

(
h2
1−γh

2
2

(h1+γh2)2 |v|
2 − ς|v|2

)
= −µε 2

3α∂x
(
(∂xv)2

)
,

(4.6)

where

T[εζ]V = q1(εζ)V − µν∂x

(
q2(εζ)∂xV

)
, (4.7)

with qi(X) ≡ 1 + κiX (i = 1, 2) and κ1, κ2, ς are defined by :

κ1 =
γ + δ

3ν
(2β − α) = 2

δ2 − γ
γ + δ

− δ 1− γ
1 + γδ

, κ2 =
(γ + δ)β

ν
= 3

δ2 − γ
γ + δ

, (4.8)

ς =
2α− β

3ν
= 2δ

1− γ
(γ + δ)(1 + γδ)

− δ2 − γ
(γ + δ)2

. (4.9)

We recall that the shear mean velocity is uniquely defined in the case of one dimension, d = 1 (see
(3.26) and (3.8)) by

1

µ
Gµ,δ[εζ]ψ = −∂x

( h1h2

h1 + γh2
v
)
. (4.10)

System (4.6) is fully justified as an asymptotic model by the following results (see [23] for a
more precise statement):

Proposition 4.4 (Consistency). Let Up ≡ (ζp, ψp) be a family of solutions of the full Euler sys-
tem (2.5) for which (ζp, ∂xψ

p)> is bounded in L∞([0, T );Hs+N )2 with s ≥ 0 and sufficiently large
N , and uniformly with respect to (µ, ε, δ, γ) ≡ p ∈ PCH ; see Definition 1.1. Moreover, assume

∃h01 > 0 such that h1 ≡ 1− εζp ≥ h01 > 0, h2 ≡
1

δ
+ εζp ≥ h01 > 0. (H1)
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Define vp as in (4.10). Then (ζp, vp)> satisfies (4.6), up to a remainder (0, R)>, bounded by∥∥R∥∥
L∞([0,T );Hs)

≤ (µ2 + Bo−1) C,

with C = C(h−1
01 ,M, µmax,

1
δmin

, δmax,
∥∥(ζp, ∂xψ

p)>
∥∥
L∞([0,T );Hs+N )2

)), uniform with respect to the

parameters p ∈ PCH .

System (4.6) is well-posed (in the sense of Hadamard) in the energy space Xs = Hs(R)×Hs+1(R),
endowed with the norm

∀ U = (ζ, v)> ∈ Xs, |U |2Xs ≡ |ζ|2Hs + |v|2Hs + µ|∂xv|2Hs ,

provided that the following ellipticity condition (for the operator T) holds:

∃h02 > 0 such that inf
x∈R

(1 + εκ2ζ) ≥ h02 > 0 ; inf
x∈R

(1 + εκ1ζ) ≥ h02 > 0. (H2)

Theorem 4.5 (Existence and uniqueness). Let s0 > 1/2, s ≥ s0 + 1, and let U0 = (ζ0, v0)> ∈ Xs

satisfy (H1),(H2). Then there exists a maximal time Tmax > 0, uniformly bounded from below
with respect to p ∈ PCH , such that the system of equations (4.6) admits a unique solution U =
(ζ, v)> ∈ C0([0, Tmax/ε);X

s)∩C1([0, Tmax/ε);X
s−1) with the initial value (ζ, v) |t=0 = (ζ0, v0) and

preserving the conditions (H1),(H2) (with different lower bounds) for any t ∈ [0, Tmax/ε).
Moreover, for any 0 ≤ T < Tmax, there exists C0, λT = C(h−1

01 , h
−1
02 , δmax, δ

−1
min,M, T,

∣∣U0

∣∣
Xs

),
independent of p ∈ PCH , such that one has the energy estimate

∀ 0 ≤ t ≤ T

ε
,

∣∣U(t, ·)
∣∣
Xs

+
∣∣∂tU(t, ·)

∣∣
Xs−1 ≤ C0e

ελT t .

If Tmax <∞, one has

|U(t, ·)|Xs −→∞ as t −→ Tmax

ε
,

or one of the two conditions (H1),(H2) ceases to be true as t −→ Tmax/ε.

Proposition 4.6 (Stability). Let s ≥ s0 + 1 with s0 > 1/2, and let U0,1 = (ζ0,1, v0,1)> ∈ Xs

and U0,2 = (ζ0,2, v0,2)> ∈ Xs+1. Under the assumptions of Theorem 4.5, let Uj be the solution of
system (4.6) with Uj |t=0 = U0,j.

Then there exists T, λ, C0 = C(h−1
01 , h

−1
02 , δmax, δ

−1
min,M,

∣∣U0,1

∣∣
Xs
, |U0,2|Xs+1) > 0 such that

∀t ∈ [0,
T

ε
],

∣∣(U1 − U2)(t, ·)
∣∣
Xs
≤ C0e

ελT t
∣∣U1,0 − U2,0

∣∣
Xs
.

Finally, the following “convergence result” states that the solutions of our system approach the
solutions of the full Euler system, with as good a precision as µ (and Bo−1) is small.

Theorem 4.7 (Convergence). Let p ∈ PCH and U0 ≡ (ζ0, ψ0)> ∈ Hs+N , N sufficiently large,
satisfy the hypotheses of Theorem 5 in [36] (see Theorem 2.2), as well as (H1),(H2). Then there
exists C, T > 0, independent of p, such that

• There exists a unique solution U ≡ (ζ, ψ)> to the full Euler system (2.5), defined on [0, T ]
and with initial data (ζ0, ψ0)> (provided by Theorem 5 in [36]);

• There exists a unique solution Ua ≡ (ζa, va)> to our new model (4.6), defined on [0, T ] and
with initial data (ζ0, v0)>, with v0 ≡ v[ζ0, ψ0] defined as in (4.10) (provided by Theorem 4.5);

• With v ≡ v[ζ, ψ], defined as in (4.10),one has∣∣(ζ, v)− (ζa, va)
∣∣
L∞([0,T ];Xs)

≤ C(µ2 + Bo−1)t.

The above results hold on time interval t ∈ [0, T/ε] with T bounded by below, independently of
p ∈ PCH , provided that a stronger criterion is satisfied by the initial data. This corresponds to
setting % = 1 in Theorem 2.2; see criterion (5.5) and Theorem 6 in [36] for the precise statement.
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Remark 4.8. The new model allows to fully justify any well-posed system, consistent with our
model (4.6), thanks to an a priori estimate between two approximate solutions of our system, es-
tablished in [23] (see Proposition 7.1 and Theorem 7.5 therein). This is used in particular to obtain
the convergence results of the unidirectional and decoupled approximations stated in Section 4.4.

Remark 4.9 (The model with surface tension). The previous results concerning (4.6), where the
surface tension effects are neglected, still hold when surface tension is taken into account; see (2.5).
These results will be precisely stated in a forthcoming paper.

4.3 Boussinesq models

In this section, we restrict ourselves to the case of flat bottom (β = 0), and unidimensional case
(d = 1). Moreover, we restrict the regime under study to the so-called long wave regime, where
ε = O(µ); see Definition 1.1. We also assume that the surface tension term is at most of size
Bo−1 = O(µ), with the following:

Bo−1 = µbo−1 with bo ≡ g(ρ2 − ρ1)d2
1

σ
∈ [bomin,∞).

In that case, when withdrawing O(µ2) terms, one can easily check (see the proof of Proposition 4.10,
below for detailed calculations) that the system (3.33) becomes a simple quasilinear system, with
additional linear dispersive terms:

∂tU − µA1∂
2
x∂tU + A0∂xU + εA[U ]∂xU + µA2∂

3
xU = 0, (4.11)

with

A0 =

(
0 1

γ+δ

γ + δ 0

)
, A

[
ζ
v

]
=

δ2 − γ
(γ + δ)2

(
v ζ
0 v

)
, A1 =

(
0 0

0 1+γδ
3δ(γ+δ)

)
, A2 =

(
0 0
γ+δ
bo 0

)
.

The full Euler system is consistent with this model, with the same precision as the Green-Naghdi
models, provided that the assumptions of the long wave regime, and in particular ε ≤Mµ, hold (in
addition to the aforementioned β = 0, d = 1); see Proposition 4.10, below.

Boussinesq systems with improved frequency dispersion. Let us emphasize that sys-
tem (4.11) is only one of a large family of Boussinesq-type models, that are consistent with precision
O(µ2). Briefly, one can make use of

• Near-identity change of variable. Define, for θ1, θ2 ≥ 0, the following

vθ1,θ2 = (I − µθ1∂
2
x)−1(I − µθ2∂

2
x)v.

When rewriting (4.11) with respect to this new variable, vθ1,θ2 , and withdrawing O(µ2) terms,
one obtains

∂tUθ1,θ2 − µÃ1∂
2
x∂tUθ1,θ2 + A0∂xUθ1,θ2 + εA[Uθ1,θ2 ]∂xUθ1,θ2 + µÃ2∂

3
xUθ1,θ2 = 0, (4.12)

with Uθ1,θ2 ≡ (ζ, vθ1,θ2)> and

Ã1 =

(
θ2 0

0 1+γδ
3δ(γ+δ) + θ1

)
, Ã2 =

(
0 −θ1

γ+δ
γ+δ
bo − θ2(γ + δ) 0

)
.

• The Benjamin-Bona-Mahony trick. Using that ∂tUθ1,θ2 + A0∂xUθ1,θ2 = O(µ), one has for
any λ1, λ2 ∈ R:

∂tUθ1,θ2 =

(
1− λ1 0

0 1− λ2

)
∂tUθ1,θ2 −

(
λ1 0
0 λ2

)
A0∂xUθ1,θ2 +O(µ2).
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Plugging this approximation into (4.12) yields, withdrawing again O(µ2) terms,

∂tUθ1,θ2 − µĂ1∂
2
x∂tUθ1,θ2 + A0∂xUθ1,θ2 + εA[Uθ1,θ2 ]∂xUθ1,θ2 + µĂ2∂

3
xUθ1,θ2 = 0, (4.13)

with

Ă1 =

(
(1− λ1)θ2 0

0 (1− λ2)
(

1+γδ
3δ(γ+δ) + θ1

)) ,
Ă2 =

(
0 λ1θ2−θ1

γ+δ
γ+δ
bo + (γ + δ)

[
λ2

(
1+γδ

3δ(γ+δ) + θ1

)
− θ2

]
0

)
.

The above transformations are useful, for example, with the aim of improving the frequency disper-
sion, that is choosing the coefficients so that the dispersion relation fits the one of the full Euler
system with high precision, even for relatively large µ (using truncated Taylor series or Padé ap-
proximant). It may also be useful for mathematical purposes to generate such a large family of
models, which are all equivalent in the sense of consistency, but may have very different properties
(well-posedness, integrability, etc.). We let the reader refer to [37] for a more detailed account.

In [40], Saut and Xu offer an in-depth study of the well-posedness of such Boussinesq systems
in the water-wave setting (thus with different coefficients). It would be interesting, but out of the
scope of the present work, to adapt the techniques developed therein to our bi-fluidic systems (4.13).

A fully justified symmetric Boussinesq model. Another strategy for constructing a model
with improved properties, that has been used in [7, 21] and that we develop in the following, consists
in symmetrizing the original model (3.33), up to precision O(µ2). Define

S0 ≡
(
γ + δ 0

0 1
γ+δ

)
, S

[
ζ
v

]
≡ δ2 − γ

(γ + δ)2

(
0 0
0 ζ

)
, T ≡

(
γ + δ 0

0 1
γ+δ (1 + 1

bo )

)
.

Multiplying (4.11) with (S0 + εS[U ]− µT∂2
x) and withdrawing O(µ2) terms yields

(S0 + εS[U ]− µS1∂
2
x)∂tU + (Σ0 + εΣ[U ]− µΣ1∂

2
x)∂xU = 0, (4.14)

with the following symmetric matrices and operators:

Σ0 ≡ S0A0 =

(
0 1
1 0

)
, Σ

[
ζ
v

]
≡ S0A

[
ζ
v

]
+ S

[
ζ
v

]
A0 =

δ2 − γ
γ + δ

(
v ζ
ζ v

(γ+δ)2

)
,

S1 ≡ S0A1 + T =

(
γ + δ 0

0 1+bo−1

γ+δ + 1+γδ
3δ(γ+δ)2

)
, Σ1 ≡ TA0 − S0A2 =

(
0 1
1 0

)
.

This new model is fully justified, in the sense described in the introduction. Let us detail the
consistency, well-posedness and convergence results below.

Proposition 4.10 (Consistency). Let Up ≡ (ζp, ψp)> be a family of solutions to the full Euler
system (2.5) with β = 0 and d = 1, such that there exists T > 0, s ≥ 0 for which (ζp, ∂xψ

p)>

is bounded in L∞([0, T );Hs+N )2 (N sufficiently large), uniformly with respect to (µ, ε, δ, γ) ≡ p ∈
PLW ; see Definition 1.1, and bo−1 ≤ bo−1

min, bomin > 0. Moreover, assume that

∃h0 > 0 such that h1 ≡ 1− εζp ≥ h0 > 0, h2 ≡
1

δ
+ εζp ≥ h0 > 0.

Define vp ≡ u2 − γu1; see Definition 3.4. Then (ζp, vp)> satisfy (4.11) (resp. (4.14)) up to a
remainder term, RB (resp. RS), bounded by∥∥RB∥∥L∞([0,T );Hs)2

+
∥∥RS∥∥L∞([0,T );Hs)2

≤ µ2 C ,

with C = C(h−1
0 ,bo−1

min, µmax,M, δ−1
min, δmax,

∥∥ζp∥∥
L∞([0,T );Hs+N )

,
∥∥∂xψp

∥∥
L∞([0,T );Hs+N )

), uniform with

respect to (µ, ε, δ, γ) ∈ PLW .
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Proof. Let us first recall that since we assume d = 1, then defining vp ≡ u2 − γu1 is equivalent as
defining vp through Definition 3.11, but requires only the non-vanishing depth condition h1, h2 ≥
h0 > 0, instead of the more stringent condition of Definition 3.11. Let us also emphasize that
system (3.25),(3.31) is exactly (that is, without any approximation) system (3.33), in the case β = 0
and d = 1. Thus, by Proposition 3.14, we know that (ζp, vp)> satisfies (3.33) up to a remainder
term, R, satisfying ∥∥R∥∥

L∞([0,T );Hs)2
≤ µ2 C,

with C as in the Proposition 4.10.
Thus one only needs to check that the neglected terms from (3.33) in (4.11) (resp. (4.14)), when

using that ε ≤Mµ, are estimated in the same way. Let us detail briefly.
We first claim that the following holds, for any s ≥ 0 and with t0 > 1/2:∣∣ h1h2

h1 + γh2
− 1

γ + δ
− δ2 − γ

(γ + δ)2
εζ
∣∣
Hs
≤ ε2C(h−1

0 , δmax, δ
−1
min,

∣∣ζ∣∣
Hmax {t0,s}). (4.15)

The formal expansion (as powers of εζ) is easily checked, so that the estimate in L∞ norm is
straightforward:∣∣ h1h2

h1 + γh2
− 1

γ + δ
− δ2 − γ

(γ + δ)2
εζ
∣∣
L∞

=
∣∣ (δ2 − γ)(1− γ)

(γ + δ)2

(εζ)2

h1 + γh2

∣∣
L∞

≤ ε2 C(h−1
0 , δmax, δ

−1
min,

∣∣ζ∣∣
L∞

).

The control in Hs is slightly more elaborate, as h1, h2 are not bounded in Hs, since they do not
decrease at infinity. We let the reader refer to [23, Lemma 4.5] to see how this technical difficulty
may be faced.

It follows from (4.15) that

∂x
( h1h2

h1 + γh2
v
)

=
1

γ + δ
∂xv + ε

δ2 − γ
(γ + δ)2

∂x
(
ζ v
)

+ ε2R1,

with
∣∣R1

∣∣
Hs
≤ C(h−1

0 , δmax, δ
−1
min,

∣∣ζ∣∣
Hmax {t0,s}+1 ,

∣∣v∣∣
Hmax {t0,s}+1).

One obtains in the same way the following estimates:

∂x

( h2
1 − γh2

2

(h1 + γh2)2
v2
)

= ∂x

( δ2 − γ
(γ + δ)2

v2
)

+ εR2,

with
∣∣R2

∣∣
Hs
≤ C(h−1

0 , δmax, δ
−1
min,

∣∣ζ∣∣
Hmax {t0,s}+1 ,

∣∣v∣∣
Hmax {t0,s}+1), and

∂t
(
Q[h1, h2]v

)
= − 1 + γδ

3δ(γ + δ)
∂2
x∂tv + εR3 , ∂x

(∣∣R[h1, h2]v
)
≡ R4,

with
∣∣R3

∣∣
Hs

= C(h−1
0 , δmax, δ

−1
min,

∣∣ζ∣∣
Hmax {t0,s}+3 ,

∣∣∂tζ∣∣Hmax {t0,s}+2 ,
∣∣v∣∣

Hmax {t0,s}+3 ,
∣∣∂tv∣∣Hmax {t0,s}+2)

and
∣∣R4

∣∣
Hs

= C(h−1
0 , δmax, δ

−1
min,

∣∣ζ∣∣
Hmax {t0,s}+3 ,

∣∣v∣∣
Hmax {t0,s}+3).

Let us recall that estimates on ∂tζ ∂tv may be deduced from estimates on ζ, v as they satisfy
the full Euler system (2.5), allowing for a loss of derivatives.

Altogether, choosing N sufficiently large and since ε ≤ Mµ when p ∈ PLW , it follows that
(ζ, v)> satisfy (4.11) up to a remainder term, denoted RB , and bounded by∥∥RB∥∥L∞([0,T );Hs)2

≤
∥∥R∥∥

L∞([0,T );Hs)2
+ ε2

∥∥|R1|+ |R2|+ |R3|+ |R4|
∥∥
L∞([0,T );Hs)2

≤ µ2 C.

One obtains similarly the estimate concerning the symmetric system (4.11), after controlling the
extra error terms:∥∥RS∥∥L∞([0,T );Hs)2

≤
∥∥RB∥∥L∞([0,T );Hs)2

+
∥∥(εS[U ]− µT∂2

x

)(
− µA1∂

2
x∂tU + εA[U ]∂xU + µA2∂

3
xU
)∥∥
L∞([0,T );Hs)2

.

This is easily checked if N is sufficiently large, and using again that ε ≤ Mµ. Proposition 4.10 is
proved.



June 4, 2013 Vincent Duchêne, Samer Israwi, Raafat Talhouk 23

In addition to its justification in the sense of consistency, one is able to fully justify the symmetric
Boussinesq model (4.14), thanks to its following properties:

1. The matrices S0, Σ0, S1, Σ1 are 2-by-2 symmetric matrices;

2. S[·] and Σ[·] are linear mappings with values into 2-by-2 symmetric matrices;

3. S0 and S2 are definite positive.

These properties allow to control a natural energy of the system:

Es(U) ≡
(
S0U , U

)
+ ε

(
S[U ]U , U

)
+ µ

(
S1∂xU , ∂xU

)
,

which is equivalent to the scaled Sobolev norm Xs+1
µ :∣∣ U ∣∣2

Xs+1
µ

=
∣∣ U ∣∣2

Hs×Hs + µ
∣∣ ∂xU ∣∣2Hs×Hs ,

provided that εU is sufficiently small, (for the nonlinear terms to be controlled).

The following Propositions are a direct consequence from [21, Proposition 2.6 and 2.8] (where
the author deal with the case of internal waves with a free surface, so that the system has four
equations, but possess the exact same structure), and we do not detail the proof further on.

Theorem 4.11 (Well-posedness). Let U0 ∈ Hs+1(R)2, with s > 3/2. Then there exists a constant
C0 = C(δ−1

min, δmax,M, bo−1
min) > 0 and ε0 = (C0

∣∣U0
∣∣
Xs+1
µ

)−1 such that for any 0 ≤ ε ≤ ε0, there

exists T > 0, independent of ε, and a unique solution U ∈ C0([0, T/ε);Xs+1
µ ) ∩ C1([0, T/ε);Xs

µ) of
the Cauchy problem (4.14) with U |t=0 = U0.

Moreover, one has the following estimate for t ∈ [0, T/ε]:

∣∣U ∣∣
L∞([0,t];Xs+1

µ )
+
∣∣∂tU ∣∣L∞([0,t];Xsµ)

≤ C0

∣∣U0
∣∣
Xs+1
µ

1− C0

∣∣U0
∣∣
Xs+1
µ

εt
. (4.16)

A stability result similar to Proposition 4.7 holds, so that the symmetric Boussinesq system is
well-posed in the sense of Hadamard.

Theorem 4.12 (Convergence). Let p ∈ PLW and U0 ≡ (ζ0, ψ0)> ∈ Hs+N (R)2, with N sufficiently
large, satisfy the hypotheses of Theorem 5 in [36]; see Theorem 2.2. Then there exists C, T, ε0 > 0,
independent of p ∈ PLW and Bo−1 ≤ µbo−1

min , such that for any 0 ≤ ε ≤ ε0,

• There exists a unique solution U ≡ (ζ, ψ)> to the full Euler system (2.5), with β = 0 and
d = 1, defined on [0, T ] and with initial data (ζ0, ψ0)> (provided by Theorem 5 in [36]);

• The non-vanishing depth condition is satisfied for ε ≤ ε0, so that one can define v ≡ u2−γu1,
with u1, u2 as in Definition 3.4;

• There exists a unique solution UB ≡ (ζB , vB)> to the symmetric Boussinesq model (4.14),
defined on [0, T ] and with initial data (ζ0, v |t=0 )> (provided by Theorem 4.11);

• The difference between the two solutions is controlled as∣∣(ζ, v)− (ζB , vB)
∣∣
L∞([0,T ];Xs+1

µ )
≤ Cµ2t.

The above results hold on time interval t ∈ [0, T/ε] with T bounded by below, independently of
p ∈ PLW , provided that a stronger criterion is satisfied by the initial data. This corresponds to
setting % = 1 in Theorem 2.2; see criterion (5.5) and Theorem 6 in [36] for the precise statement.
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4.4 Scalar models

In this section, we are interested in the justification of scalar asymptotic models for the propagation
of internal waves (as opposed to all aforementioned models, which consist in a system of evolution
equations). The derivation and study of such models have a very rich and ancient history, starting
with the work of Boussinesq[9] and Korteweg-de Vries[34] which introduced the famous Korteweg-de
Vries equation

∂tu + c∂xu + αu∂xu + ν∂3
xu = 0,

as a models for the propagation of surface gravity waves, in the long wave regime. However, the
complete rigorous justification of such model is much more recent [33, 41, 7] (see [21] for the bi-fluidic
case).

One obvious discrepancy between scalar models such as the KdV equation and coupled models,
is that the former selects a direction of propagation (right or left, depending on the sign of c).
On the contrary, the first order approximation of coupled models is a linear wave equation, which
predicts that any initial perturbation of the flow will split into two counter-propagating waves. This
yields two very different possible justifications of scalar models:

• Unidirectional approximation. One proves that if the initial perturbation (that is the defor-
mation of the interface as well as shear layer-mean velocity) is carefully chosen, then the flow
can be approximated as a solution of a scalar equation. Physically speaking, this means that
we focus our attention on only one of the two counter-propagating waves after they have split.

• Decouled approximation. For a generic initial perturbation of the flow, we approximate the
flow as the superposition of two (uncoupled) waves, each one driven by a scalar equation. This
justification is of course more general as for the admissible initial data, but its precision is often
much worse, as controlling the coupling effects between the two counter-propagating waves
(and in particular their secular growth), which are neglected in the decoupled approximation,
is arduous.

A major difference between the water-wave case and the bi-fluidic case is that in the latter,
there exists a critical ratio (δ2 = γ) for which the first order (quadratic) nonlinearity of our models
vanishes; see the Boussinesq system (4.11) for example. This allows to consider a regime with
greater nonlinearities than the long wave regime (and in particular the Camassa-Holm regime; see
Definition 1.1), and thus motivates higher order models than the Korteweg-de Vries equations, in
order to recover a O(µ2) precision. Here, we focus on the so-called Constantin-Lannes equation:

(1− µβ∂2
x)∂tv + εα1v∂xv + ε2α2v

2∂xv + ε3α3v
3∂xv

+ µν∂3
xv + µε∂x

(
κ1v∂

2
xv + κ2(∂xv)2

)
= 0, (4.17)

where β, αi (i = 1, 2, 3), ν, κ1, κ2, are fixed, given parameters . This equation has been studied and
justified as a model for the propagation of unidirectional surface gravity waves in [15]. In particular,
the well-posedness of the Cauchy problem for (4.17) in Sobolev spaces is proved, provided β > 0.

The justification of both the unidirectional and decoupled approximation in the bi-fluidic case, in
the sense of consistency, have been worked out in [22]. In what follows, we restrict to the Camassa-
Holm regime and to the Constantin-Lannes equations for the sake of simplicity, but more general
results may be found therein. The full justification, and in particular the convergence results stated
below is then a consequence of the properties of the Green-Naghdi type model introduced by the
authors in [23], and recalled in section 4.2. We let the reader refer to the aforementioned references
for more details, and disclose the statements below without further comments.

Definition 4.13 (Unidirectional approximation). Let ζ0 ∈ Hs(R), s > 5/2, (θ, λ) ∈ R2, and set
parameters p = (ε, µ, γ, δ) ∈ PCH , as defined in Definition (1.1). Then (ζu, vu) the Constantin-
Lannes unidirectional approximation, is defined as follows.

Let ζu be the unique solution of

∂tζ + ∂xζ + εα1ζ∂xζ + ε2α2ζ
2∂xζ + ε3α3ζ

3∂xζ + µνθ,λx ∂3
xζ − µν

θ,λ
t ∂2

x∂tζ

+ µε∂x

(
κθ,λ1 ζ∂2

xζ + κθ2(∂xζ)2
)

= 0 , (4.18)
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with ζu |t=0 = ζ0, and parameters

α1 = 3
2
δ2−γ
γ+δ , α2 = 21(δ2−γ)2

8(γ+δ)2 − 3 δ
3+γ
γ+δ , α3 = 71(δ2−γ)3

16(γ+δ)3 −
37(δ2−γ)(δ3+γ)

4(γ+δ)2 + 5(δ4−γ)
γ+δ ,

νθ,λx = (1− θ − λ) 1+γδ
6δ(γ+δ) , νθ,λt = (θ + λ) 1+γδ

6δ(γ+δ) ,

κθ,λ1 = (14−6(θ+λ))(δ2−γ)(1+γδ)
24δ(γ+δ)2 − 1−γ

6(γ+δ) , κθ2 = (17−12θ)(δ2−γ)(1+γδ)
48δ(γ+δ)2 − 1−γ

12(γ+δ) .

It is assumed that θ, λ are chosen such that νθ,λt > 0, so that (4.18) is well-posed, and ζ(t, ·) ∈ Hs

is uniquely defined over time scale O(1/ε); see [15, Proposition 4].
Then define vp as vp = h1+γh2

h1h2
v[ζu], with

v[ζ] = ζ + ε
α1

2
ζ2 + ε2

α2

3
ζ3 + ε3

α3

4
ζ4 + µν∂2

xζ + µε
(
κ1ζ∂

2
xζ + κ2(∂xζ)2

)
, (4.19)

where parameters α1, α2, α3 are as above, and ν = ν0,0
x , κ1 = κ0,0

1 , κ2 = κ0
2.

Theorem 4.14 (Convergence of the unidirectional approximation). Let p ∈ PCH and U0 ≡
(ζ0, ψ0)> ∈ Hs+N (R)2, with N sufficiently large, satisfy the hypotheses of [36, Theorem 5] (see
Theorem 2.2) as well as the ones of Theorem 4.5. Define v0 ≡ u0

2 − γu0
1, with u0

1, u
0
2 as in Defini-

tion 3.4, and assume that (ζ0, v0)> satisfies (4.19). Then there exists C, T > 0, independent of p,
such that

• There exists a unique solution U ≡ (ζ, ψ)> to the full Euler system (2.5), with β = 0 and
d = 1, defined on [0, T ] and with initial data (ζ0, ψ0)> (provided by Theorem 5 in [36]); We
denote v = u2 − γu1 the shear mean velocity defined in Definition 3.4.

• The Constantin-Lannes unidirectional approximation (ζu, vu)> with initial data (ζ0, v0)> is
uniquely defined for t ∈ [0, T ] as described above.

• The difference between the two solutions is controlled as∣∣(ζ, v)− (ζu, vu)
∣∣
L∞([0,T ];Hs)2

≤ C(µ2 + Bo−1)t.

If the initial data satisfies a stronger stability result (see hypotheses in [36, Theorem 6]), then the
result holds for large time t ∈ [0, T/ε], with T independent of p.

Definition 4.15 (Decoupled approximation). Let (ζ0, v0)> ∈ Hs(R)2, s > 5/2, and set parameters
(ε, µ, γ, δ) ∈ PCH , as defined in Definition (1.1), and (λ, θ) ∈ R2. The Constantin-Lannes decoupled
approximation is then

UCL ≡
(
v+(t, x− t) + v−(t, x+ t), (γ + δ)

(
v+(t, x− t)− v−(t, x+ t)

))
,

where v± |t=0 = 1
2 (ζ0 ± v0

γ+δ ) |t=0 and v± = (1± µλ∂2
x)−1vλ± where vλ± satisfies

∂tv
λ
± ± εα1v

λ
±∂xv

λ
± ± ε2α2(vλ±)2∂xv

λ
± ± ε3αθ,λ3 (vλ±)3∂xv

λ
±

± µνθ,λx ∂3
xv
λ
± − µνθ,λt ∂2

x∂tv
λ
± ± µε∂x

(
κθ,λ1 vλ±∂

2
xv
λ
± + κθ2(∂xv

λ
±)2
)

= 0, (4.20)

with parameters given by

α1 = 3
2
δ2−γ
γ+δ , α2 = −3γδ(δ+1)2

(γ+δ)2 , α3 = −5 δ
2(δ+1)2γ(1−γ)

(γ+δ)3 ,

νθ,λt ≡ θ
6

1+γδ
δ(δ+γ) + λ, νθ,λx ≡ 1−θ

6
1+γδ
δ(δ+γ) − λ,

κθ,λ1 ≡ (1+γδ)(δ2−γ)
3δ(γ+δ)2 (1 + 1−θ

4 )− (1−γ)
6(γ+δ) + λ 3

2
δ2−γ
γ+δ , κθ2 ≡

(1+γδ)(δ2−γ)
3δ(γ+δ)2 (1 + 1−θ

4 )− (1−γ)
12(γ+δ) .

As above, it is assumed that θ, λ are chosen such that νθ,λt > 0, thus (4.20) is well-posed.

Theorem 4.16 (Convergence of the decoupled approximation). Let p ∈ PCH , s ≥ 0 and let
U0 ≡ (ζ0, ψ0)> ∈ Hs+N (R)2, with N sufficiently large, satisfy the hypotheses of [36, Theorem 5]
(see Theorem 2.2) as well as the ones of Theorem 4.5. Then there exists C, T > 0, independent of
p, such that
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• There exists a unique solution U ≡ (ζ, ψ)> to the full Euler system (2.5), with β = 0 and
d = 1, defined on [0, T ] and with initial data (ζ0, ψ0)> (provided by Theorem 5 in [36]). We
denote v = u2 − γu1 the layer-mean shear velocity, with u1, u2 defined in Definition 3.4.

• The Constantin-Lannes decoupled approximation UCL ≡ (ζd, vd)> with initial data (ζ0, v |t=0 )>

is uniquely defined for t ∈ [0, T ] as described above.

• The difference between the two solutions is controlled as∣∣(ζ, v)− (ζd, vd)
∣∣
L∞([0,T ];Hs)2

≤ C
(
ε0 min(t, t1/2)(1 + ε0t) + Bo−1 t

)
,

with ε0 = max{ε(δ2 − γ), µ}.

• Moreover, assume that the initial data is sufficiently localized in space, that is more precisely
(1 + | · |2)∂kζ0 and (1 + | · |2)∂kv |t=0 ∈ Hs(R), k ∈ {0, . . . , 7}, then one has the improved
estimate ∣∣(ζ, v)− (ζd, vd)

∣∣
L∞([0,T ];Hs)2

≤ C
(
ε0 min(t, 1)(1 + ε0t) + Bo−1 t

)
.

The first three items of hold for large time t ∈ [0, T/ε], with T independent of p, provided that a
stronger criterion is satisfied by the initial data (see hypotheses in [36, Theorem 6]). In that case,
the last item is valid for time t ∈ [0, T/max{ε, µ}].
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June 4, 2013 Vincent Duchêne, Samer Israwi, Raafat Talhouk 27

[12] F. Chazel. On the Korteweg-de Vries approximation for uneven bottoms. Eur. J. Mech. B
Fluids, 28(2):234–252, 2009.

[13] W. Choi and R. Camassa. Weakly nonlinear internal waves in a two-fluid system. J. Fluid
Mech., 313:83–103, 1996.

[14] W. Choi and R. Camassa. Fully nonlinear internal waves in a two-fluid system. J. Fluid Mech.,
396:1–36, 1999.

[15] A. Constantin and D. Lannes. The hydrodynamical relevance of the Camassa-Holm and
Degasperis-Procesi equations. Arch. Ration. Mech. Anal., 192(1):165–186, 2009.

[16] W. Craig. An existence theory for water waves and the Boussinesq and Korteweg-de Vries
scaling limits. Comm. Partial Differential Equations, 10(8):787–1003, 1985.

[17] W. Craig, P. Guyenne, and H. Kalisch. Hamiltonian long-wave expansions for free surfaces
and interfaces. Comm. Pure Appl. Math., 58(12):1587–1641, 2005.

[18] W. Craig and C. Sulem. Numerical simulation of gravity waves. J. Comput. Phys., 108(1):73–
83, 1993.

[19] B. de Saint-Venant. Théorie du mouvement non-permanent des eaux, avec application aux
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