
HAL Id: hal-00830349
https://hal.science/hal-00830349v1

Submitted on 4 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Snowballs, quantum solvation and coordination: lead
ions inside small helium droplets

P. Slavícek, Marius Lewerenz

To cite this version:
P. Slavícek, Marius Lewerenz. Snowballs, quantum solvation and coordination: lead ions inside small
helium droplets. Physical Chemistry Chemical Physics, 2010, 12, pp.1152-1161. �10.1039/b918186e�.
�hal-00830349�

https://hal.science/hal-00830349v1
https://hal.archives-ouvertes.fr


Snowballs, quantum solvation and coordination: lead ions inside
small helium droplets
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Ab initio calculations are used to construct an analytical many-body potential for Pb2+Hen and

Pb+Hen clusters which accounts for non pairwise additive interactions. The potential surface

reproduces the global minima for cluster sizes ranging from n = 1 to n = 16 obtained from

explicit ab initio calculations and found in a previous search for ultrahigh coordination numbers.

Ground state energies and structures obtained by accurate diffusion quantum Monte Carlo

calculations are used to investigate if quantum effects qualitatively affect the formation of

coordination shells. For Pb2+ doped clusters a first solvation shell is closed at n = 12 and

gradually softened by additional helium atoms which start to form a distinct second shell only at

n = 16. Spin–orbit coupling profoundly influences the structure of Pb+Hen clusters and causes a

gradual structural evolution without pronounced solvation shells.

I. Introduction

The relation between neighboring spherical objects is

described with a wide variety of concepts depending on the

scientific field. The mathematical problem of packing of hard

spheres gives rise to the definition of the kissing or Newton

number.1 Related terms are contact, parking or caging

numbers. In chemistry the number of interacting neighbors

is usually described by the coordination number. In coordination

chemistry this number is always found to be between 1 and

12,2 the extreme values being rather rare.

The search for the highest possible coordination numbers in

chemically bound systems has recently inspired Hermann et al.

to perform electronic structure calculations on the Pb2+Hen
systems3 in extension of related earlier work on yttrium

complexes.4,5 This study identified (PbHe15)
2+ as a stable

structure in which all 15 helium atoms form a single shell

around the central ion. Helium is clearly an unusual ligand of

extremely low reactivity and additionally exhibits significant

quantum effects such that ground-state-averaged structures

can qualitatively deviate from electronic equilibrium structures.

Precisely because of these quantum effects liquid helium

droplets have, however, recently attracted considerable attention

as a weakly perturbing solvent for spectroscopy and reaction

dynamics.6–10 The possibility of strong bonds with cations and

the existence of thermodynamically stable helium compounds

has already been discussed more than 20 years ago11 and the

available information on small ionic helium complexes has

been reviewed recently.12

The common case of hydrated metal ions in aqueous

solutions leads to the natural question of the distinction

between coordination and solvation. This distinction is usually

based on interaction strength and nearest neighbor distances.

The interaction should be strong enough to prevent exchange

such that the coordination complex is a clearly identifiable

object. The presence of quantum exchange in a solvent like

helium makes the distinction between coordinated atoms and

solvent atoms obviously very difficult. It has been known for a

long time13 from ion mobility studies in bulk liquid helium

that ions carry along a coating of strongly localized helium

atoms which is often referred to as a ‘‘snowball’’. This object

can be viewed as a coordination complex solvated in a solvent

composed of the same atoms. The snowball might, however,

well be a dynamical object with a well defined average mass

and number of nearest neighbor helium atoms but involved in

active particle exchange with its environment.

The goal of this article is to shed some light on the structure

of highly coordinated systems in the presence of pronounced

quantum effects. Lead ions interacting with helium are ideal

test systems because high coordination numbers have been

predicted in electronic structure calculations which do not take

into account vibrational quantum effects.3 Experimental

evidence for the relative stabilities of mixed lead/helium ionic

complexes comes from recent ionization experiments on lead

atoms implanted into large neutral helium clusters.10,14 These

observations indicate the existence of particularly stable

(‘‘magic’’) (PbHe12)
2+ and (PbHe17)

+ ions and do not hint

at any special stability for (PbHe15)
2+. Very recent mass

spectrometric experiments provide valuable additional infor-

mation on the stability and possible structure of a variety of

other positively or negatively charged ionic helium complexes.15

The overwhelming zero point energy in neutral pure and

doped helium clusters leads to extreme delocalization of the

helium atoms such that conventional notions of geometrical

structures or solvation shells become largely invalid. The

stronger interactions in charged clusters are known to lead

to a higher degree of particle localization16–19 but the

structures resulting from quantum averaging over the

nuclear motion ground state wave function can be significantly
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different from ‘classical’ structures.20–22 Under these

circumstances the existence of a high coordination global

minimum structure for (PbHe15)
2+ on the electronic ground

state surface does not guarantee the existence of such a

structure in the true quantum ground state including all

degrees of freedom. In order to verify if the structures

identified by Hermann et al.3 are robust with respect to zero

point effects we undertook the construction of a global

analytical potential surface for (PbHen)
2+ beyond the pairwise

additive approximation and based on advanced ab initio

calculations which reproduces the known minimum energy

structures.

The observation of ion abundances which are indicative of

shell closure effects for Pb+ in helium14 motivated us to extend

our study to this system which poses additional challenges due

to its open shell electronic structure and the presence of strong

spin–orbit coupling. Spin–orbit coupling is expected to have a

significant effect on the cluster structures due to the strong

mixing between the deep zero order 2
P interaction and the

very shallow 2
S
+ potential of Pb+He which markedly reduces

the anisotropy of the interaction potential.

After a description of our electronic structure approach and

a summary of some relevant details of our diffusion Monte

Carlo (DMC) methodology we discuss the construction of

our many body potential models. Optimum and quantum

averaged structures and the corresponding energies are then

discussed for the two distinct cases of strong coordination

(Pb2+Hen) and weak coordination (Pb+Hen). We conclude

with a brief analysis of the concept of solvation shells in a

quantum context.

II. Computational details

A Electronic structure calculations

The pair interaction potential between the Pb2+ ion and

helium atoms has been calculated at the CCSD(T) level using

a supramolecular approach. The standard counterpoise

correction of the basis set superposition error was applied.23

The interaction energy converges relatively slowly with the

basis set size due to the important contribution of the dispersion

interaction to the binding. We have therefore applied rather

large aug-cc-pV5Z basis sets both for lead and helium.24,25 The

small-core relativistic effective core potential of the Stuttgart

group24 was used to describe the 60 inner electrons of the lead

atom. To accelerate the convergence of the binding energy we

have also placed a small set of bond functions in the midbond

region. In particular, three s and three p functions with

exponents of 0.9, 0.3 and 0.1 were added.

The many-body contribution to the intermolecular potential

converges much faster with the basis set size due to its

dominantly electrostatic character. The three-body interaction

is essentially converged at the CCSD(T)/aug-cc-pVTZ level,

which has therefore been used to construct this contribution to

the total interaction. These CCSD(T) based two- and three

body terms were used to define our analytical many body

model. Structural predictions for larger clusters based on this

model (see section III A) were checked by direct electronic

structure calculations at the DFT level. These calculations

used the PBE0 functional26 in combination with much smaller

basis sets of triple zeta and double zeta quality for lead and

helium. Despite the known deficiencies of DFT for the

description of dispersion interactions this combination leads

to a reasonable description of the energetics of both

Pb2+� � �He and He� � �He dimers while it still allows calcula-

tions on larger clusters. Note that the purpose of the DFT

calculation is only to check if our many body models exhibit

any major deficiencies.

The nature of the interaction was analyzed using symmetry-

adapted perturbation theory (SAPT)27 as implemented in

MOLPRO.28 SAPT was specifically used to extract the

induction terms from the overall interaction energy.

The interaction between ground state Pb+ ions and helium

is more complicated since this ion has an unpaired electron

occupying a p orbital. The three lowest asymptotically

degenerate states (2S+ and a degenerate pair of 2
P states)

separate at finite distances. Pair interaction potentials for all

three states were calculated using the unrestricted CCSD(T)

method with a aug-cc-pV5Z basis set, using the above

mentioned set of midbond functions. Note that the

UCCSD(T) method is based on the RHF wavefunction

(RHF-UCCSD method). The spin contamination of the

resulting wavefunction was small for all the calculations.

The symmetry of the wavefunctions was used in the calcula-

tions. The interaction between the Pb+ ion and helium is

strongly affected by spin–orbit interaction which leads to

almost complete mixing of the 2
S
+ state and the O = 1

2

component of the 2
P state. As a check for our many body

model we have also optimized structures of larger clusters,

using again the DFT method with the PBE0 functional. To

show the structure-forming role of the spin–orbit effect, we

have performed these optimizations both with and without

inclusion of the spin–orbit interaction.

The CCSD(T) and UCCSD(T) electronic structure calcula-

tions have been carried out with the Molpro suite of

programs28 and the DFT optimizations with and without

spin–orbit interaction were performed with the NWCHEM

code.29

B Diffusion Monte Carlo calculations

The DMC method exploits an isomorphism between the time

dependent Schrödinger equation and a multi dimensional

diffusion equation and a random walk technique to solve the

diffusion problem which corresponds to a given quantum

problem. The general principles and important technical

details of the method are discussed in several classical

publications.30–33 The statistical accuracy of the method can

be significantly enhanced by the use of a trial wave function

CT which resembles the exact but unknown eigenfunction C.

In the unrealistic but formally interesting limit CT = C all

statistical errors vanish. Our specific implementation uses

continuous weights and fixed random walker ensemble sizes

with stochastic population control as described in more detail

in earlier publications.22,34,35 We will restrict the present

discussion to some special aspects which are of relevance

for the current application which tries to resolve structural

questions related to expectation values.
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DMC is essentially a projection method which projects an

eigenfunctionC, usually the ground state wave function unless

special constraints are applied, from an initial wave function

by propagation in imaginary time t. Formally the exact

solution is reached as t-N. While DMC is an exact method

in the sense that all errors vanish if certain technical para-

meters tend to limiting values, any actual calculation requires

careful monitoring of statistical and various systematic errors

in calculated energies and even more so for expectation values.

Aside from the problem of defining the asymptotic regime

t E N where C(t) E C and an arbitrary amount of

information can be collected by simply continuing the projection

process (the main part on any DMC calculation) errors arise

from two aspects of the projection process. In the absence of

knowledge of the exact projector (Green’s function)

C(x, t) =
R

G(x, x0, t)C(x0, 0) dx0 (1)

the projection time is divided into steps Dt over which a short

time approximation of the projector can be applied.

C(x, t + Dt) =
R

G(x, x0, Dt)C(x0, t) dx0 (2)

This practical necessity leads to a time step error which is

discussed in the published literature32 and imposes either the

use of sufficiently small time steps to make this error smaller

than the statistical sampling errors of the method or an

extrapolation of results obtained at several values of Dt to

the limit Dt = 0.

A second error which is much less well documented in the

published literature but which turns out to be often more

important is related to the actual projection process. Within

DMC the product CCT is represented by an ensemble of

random walkers of size N. The computation of the projection

integral in eqn (2) is replaced by sampling from G(x, x0, Dt).
This procedure is exact if configuration space is covered by an

infinite number of random walkers. For any finite size N of the

random walker ensemble the result of the projection over a

step Dt deviates from the exact result C
N

by a random

fluctuation d with zero mean.

CN(x, t) = C
N
(x, t) + d(x, t) (3)

hd(x, t)it = 0 (4)

Even if the projection process had resulted in the exact wave

function at some sufficiently large t this situation would be

immediately destroyed by fluctuations! It is clear that the

amplitude of d tends to zero as N - N. For any finite N

the deviations d can be formally expanded into the full set of

eigenfunctions of the system. A simple analysis shows that the

energy expectation value EN of this mixed wave function is

systematically above the exact value and that we have

EN ¼ E1 þ c

N
ð5Þ

with an unknown coefficient c which depends on the noisiness

of the simulation and thereby mainly on the quality of the trial

wave function.

An efficient trial wave function is a very good approximation

to the exact ground state wave function and its construction

requires detailed structural information. In the present application

we want to generate (potentially unexpected) structural

information and we have to use functions which provide very

little structural information in order to avoid a systematic bias.

The only reliable information which can be safely exploited for

the construction of CT concerns the limiting behavior as two

particle get very close to each other or as a particle tries to

leave the cluster. The use of simple DMC without any trial

wave function, equivalent to posing CT = 1, is not only

fundamentally incorrect (any trial wave function has to satisfy

all usual conditions for a quantum mechanical wave function)

but leads to large statistical noise. Our trial wave functions of

deliberately modest quality place us relatively close to this

limit while being formally correct. In return we had to use

ensemble sizes of up to 16 000 random walkers to make the

energy bias from eqn (5) smaller than the statistical errors

and very long accumulation times for converged descendent

weights (see below).

The introduction of a trial wave function into the DMC

method leads to a convection term in the diffusion equation

which is solved in our implementation by the classical low

order integration scheme of ref. 31 resulting in a time step

error of the form

E(Dt) = E0 + c1Dt + O(Dt2) (6)

This scheme allows us to impose detailed balance on the

random walks by a Metropolis scheme such that the number

density of random walkers is guaranteed to be proportional to

C2
T at any Dt.31,32 Formally more accurate higher order

propagation schemes with leading time step errors DE p Dtk,

k 4 1 have been proposed by several authors36,37 but the

complexity of these algorithms prevents the enforcement of

detailed balance. The latter turns out to dramatically reduce

the absolute size of the time step error (the coefficient c1 in

eqn (6)) such that the advantage of these higher order schemes

remains unclear in practice even for energy computations.

Imposing a number density pC2
T is, however, essential for

the identification of the weights of the random walkers as an

unbiased estimator of the ratio C/CT which is a key require-

ment of all exact algorithms for C2 sampling. Unbiased

expectation values are essential for the structural features

which we want to study here. All expectation values for scalar

properties and distribution functions reported in this article

have been computed by the descendent weighting procedure.38,39

In the presence of both time step and ensemble size errors all

energies reported here were obtained by double extrapolations

towards zero time step and infinite ensemble size using the

known dependencies E(N, Dt). The DMC calculations were

carried out with random walker ensemble sizes between 500

and 16 000 and time steps ranging from 100 Eh
�1 to 10 Eh

�1.

After relaxation of initial distributions averages were typically

collected over 500 blocks of steps of length 5000 Eh
�1. Each

block of steps produces one value for the growth energy Egrow

and a local energy block average. These block averages and

the growth energy samples were analysed for serial correlation,

giving correlation lengths lcorr between 1.3 and 2.5. The 1s

error bars for individual results were corrected for this residual

serial correlation with the standard formula strue � sraw
ffiffiffiffiffiffiffiffi

lcorr
p

and used as weights in the extrapolation to infinite ensemble
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size and zero time step. Statistical errors for extrapolated

energies are computed by standard techniques of weighted

least squares fitting.40

III. Results and discussion

A Construction of the many body surfaces

1 Pb2+–He. The nature of the interaction between the

Pb2+ ion and neutral helium atoms is rather complicated and

needs to be modelled beyond a pair potential approximation.

The attractive part of the interaction is dominated by the

interaction between the charge of Pb2+ and the induced dipole

on the helium atoms and can be written in atomic units as

VCIDðrÞ ¼ � q2PbaHe

2r4
ð7Þ

More effects, however, need to be taken into account. First,

Pb2+ is an ion with an extended charge distribution. As a

consequence, the induced dipole moment on the helium atom

is larger than the value predicted from standard electrostatic

formulas. The size of Pb2+ also leads to a more pronounced

electrostatic interaction between the ion and the helium atom

electron clouds than one would anticipate from the model of

point charge and point dipole. Finally, the dipoles induced

on the helium atoms induce additional dipole and quadru-

pole moments on the Pb2+ ion, contributing again to the

bonding.

In the absence of detailed knowledge of the diverse

contributions to the interaction we decided to fit the two-body

interaction by an analytical model and to model the dominant

induction contributions. In our model, the potential energy

surface for (PbHen)
2+ clusters is constructed as follows:

V ¼
X

nHe

i¼1

ðV i
pair þ V i

ind � V
i;dimer
ind Þ þ

X

nHe

i¼1

X

nHe

j¼iþ1

ðV ij
pair þ V

ij
indÞ

ð8Þ

where V i
pair is the ab initio pair interaction between the Pb2+

ion and the i-th helium atom and Vij
pair denotes the pair

interaction between helium atoms. The pairwise terms are

then augmented by the non-additive interactions between

induced moments: Vi
ind is the interaction energy between the

induced moments on lead and induced moments on helium

atoms and is in fact a many-body term since it arises from the

response of the lead ion to the complete set of helium atoms,

Vij
ind describes interactions between induced moments on

helium atoms, Vi,dimer
ind is the interaction between induced

electric moments on lead and helium for a dimer and has to

be subtracted since this term is already implicitly included in

the pair contribution explicitly calculated by electronic

structure methods. The interaction between induced electric

moments is responsible for the non-additivity of the interaction.

For the Vij
pair part of the helium–helium pair interaction, we

used the HFD-B potential model of Aziz41 and the very recent

and highly accurate pair potential of Jeziorska et al.42 The

large number of evaluations of the potential surface is the

highest cost factor in a DMC calculation. The vast majority of

the production calculations were carried out with the older

Aziz potential due to its much higher computational speed.

Calculations with the roughly three times more expensive

potential from ref. 42 were performed for several cluster sizes

and the energy difference with respect to the HFD model

was additionally computed with our correlated sampling

technique.35 The energy differences were found to be very

small (mostly below the error bars of total energy calculations)

and certainly below the overall uncertainties of our

non-additive model.

The pair potential Vi
pair between the lead ion and helium

atoms has been calculated at the CCSD(T) level with an

extended aug-cc-pV5Z basis and additional bond functions

and subsequently represented by the following analytic form

with parameters resulting from least squares fitting given in

Table 1:

V
Pb�Hei
pair ðrÞ ¼ Ae�br �

X

6

i¼4

Ci

ri
ð9Þ

The C4 coefficient was fixed at 2.76 a.u., consistent with our

computed polarizability of 1.38 a30 for helium, in order to

guarantee the proper long-range limit (interaction between a

charge and an induced dipole) according to eqn (7): The

analytical fit together with the asymptotic form is displayed

in Fig. 1 and exhibits a well depth of about 810 cm�1 at a

Pb–He distance of 2.67 Å. The presence of other than electro-

static contributions to the binding is clearly visible since the

computed curve is more attractive than the charge–dipole

interaction. We should emphasize that none of the coefficients

beyond C4 has a clear physical interpretation and should

be regarded as a fitting parameter which ensures a correct

interpolation of the ab initio energies.

For the non additive part of our interaction model we need

a quantitative description of induced dipole moments on all

atoms. Due to the large size of the electron cloud of the lead

ion conventional electrostatic formulas for point multipoles

are only asymptotically valid. The effective distance dependent

polarizability of helium, a(r), was estimated from a SAPT

Fig. 1 Ab initio potential curves for the X1
S
+ state of Pb2+–He

(solid) and the zero order 2
P (dash dotted curve) and 2

S
+ states

(dashed curve) of Pb+–He together with the resulting X state

(solid curve) arising from spin–orbit mixing. The two dotted curves

indicate the expected q2/R4
Pb–He, q = 1, 2 asymptotes. The inset shows

the full set of spin–orbit eigenstates of Pb+He and their correlation

with the Pb+ atomic asymptotes on an expanded energy scale.
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decomposition of the Pb2+–He interaction energy and gives

induced He dipole moments according to

m
!
He ¼

qPbaðrÞ
r2

e
!
PbHe ð10Þ

where a(r) = 1.34541 + 23.2314 exp(�0.153667r) and~ePbHe is

a unit vector pointing from Pb to He. This induced dipole

moment then induces an additional dipole moment (and also

higher moments) on the lead atom, which has been

calculated as

m
!
PbðrÞ ¼

2m
!
HeaPb

r3
ð11Þ

with aPb = 14.6 a30. After evaluation of the approximate size of

higher order contributions we decided to retain in our model

only induced dipole moments. The interaction between

induced dipole moments ~ma and ~mb separated by a distance

rab was then calculated using the standard formula

Vmamb ¼ 1

r3ab
½m!a � m!b � 3ðm!a � e!abÞðe!ab � m!bÞ� ð12Þ

We checked in explicit CCSD(T) calculations on Pb2+He2 that

our model captures all essential features of the three body

interactions. As a further test we used our model to predict

minimum energy structures for larger clusters which we

compared with results from DFT optimizations. The energies

of the respective minima are displayed in the right panel of

Fig. 2 which shows more than satisfactory agreement. In view

of the limited validity of DFT calculations for the present

system these results should, however, be taken with some

caution, but they largely exclude the presence of major defects

in our analytical many body model.

2 Pb+–He. Constructing the potential energy surface for

the singly charged (PbHen)
+ clusters is significantly more

complicated due to the open shell s2p character of the Pb+

ion which leads to a triply degenerate 2P state which splits into
2
S
+ and 2

P states for Pb+He. Both potential curves were

computed at the CCSD(T)/aug-cc-pV5Z (augmented with

bond functions) level and fitted to the analytical form given

in eqn (9) with the appropriate constraint on the C4 coefficient.

The resulting potential parameters are given in Table 1. The

fitted potential curves are shown in Fig. 1. Note that also here

we observe significant binding contributions beyond electro-

statics for the 2
P state. The minimum of the 2

P state occurs at

2.9 Å at an interaction energy of �265 cm�1. The shallow 2
S
+

state has a minimum of �32.5 cm�1 at an internuclear separa-

tion of 4.3 Å. The interaction potentials show that the Pb+ ion

is noticeably larger than Pb2+ and the bonding is significantly

weaker. In reality this effect is enhanced by the mixing between

the 2
P and the much more weakly bound 2

S
+ state arising from

spin–orbit coupling which will be discussed below.

From these pair contributions, we can construct the total

potential energy surface within the diatomics-in-molecules

framework.43 We first define diabatic potentials which depend

on the lead–helium distance and the orientation between the

p orbital and the Pb–He axis:

U(r, g) = V0(r) + V2(r)P2(cos g) (13)

where P2 is the second Legendre polynomial and g is the angle

between the p-orbital orientation and the Pb–He vector. The

isotropic component V0(r) can be expressed as 1
3
(VS + 2VP)

and V2(r) as
5
3
ðVS � VPÞ. We then construct the total diabatic

energy in a pairwise additive fashion:

U ¼
X

nHe

i¼1

Ui ð14Þ

and we diagonalize this diabatic energy in a basis of the three

p orbitals, retaining the lowest eigenvalue as the total energy.

To this eigenvalue we add the induction contribution and the

helium–helium interaction.

V ¼ Diag½hpkjUjpli� þ
X

nHe

i¼1

X

nHe

j¼iþ1

ðV ij
pair þ V

ij
indÞ ð15Þ

Table 1 Parameters for the analytical representation of pairwise
interactions between Pb2+ ions and helium and pairwise interactions
between Pb+ ions and helium. All parameters are given in atomic units

Pb2+–He Pb+–He

1
S
+ 2

S
+ 2

P

A 91.3675 27.7663 70.8869
B 1.98184 1.48046 1.96445
C4 2.76 0.69 0.69
C5 �10.7639 �14.0453 �6.7847
C6 113.415 158.906 89.5906

Table 2 Total ground state energies (in cm�1) for Pb2+–Hen and
Pb+–Hen clusters from DMC calculations with several potential
models (SO/Ind = spin–orbit coupling and induction, SO = only
spin–orbit coupling, no SO = neither spin–orbit coupling nor
induction). Numbers in parentheses are 1s statistical uncertainties in
units of the last digit

n Pb2+–Hen

Pb+–Hen

SO/Ind SO No SO

2 –1412.9(1) �113.59(2) �422.7(1)
3 –2091.7(1) �170.23(2) �614.3(1)
4 –2745.3(1) �226.69(2) �804.5(1)
5 –3383.5(1) �282.94(3) �987.2(2)
6 –4006.1(2) �338.90(3) �1131.8(2)
7 –4596.2(2) �394.45(3) �1167.6(3)
8 –5164.6(2) �449.36(4) �1203.5(3)
9 –5700.9(4) �503.35(5) �1240.5(3)
10 –6186.8(5) �556.24(4) �1276.7(4)
11 –6608.2(5) �607.08(6) �626.1(1) �1313.2(4)
12 –7072(1) �656.76(9) �679.6(1) �1347.1(4)
13 –7295(1) �701.32(8) �728.2(2) �1382.4(4)
14 –7533(1) �742.8(1) �773.4(2) �1417.4(4)
15 –7689(2) �779.8(2) �814.6(3) �1447.8(5)
16 –7764(2) �811.5(2) �849.5(4) �1475.9(6)
17 –7825(2) �836.2(2) �877.9(4) �1500.6(6)
18 –7898(3) �853.1(3) �897.5(4) �1523.7(7)
19 �864.5(2) �911.4(4) �1549.4(7)
20 �876.5(3) �1567.6(6)
21 �884.9(2) �1589.7(9)
22 �894.2(2) �1607.5(10)
23 �903.5(3) �1627.1(10)
24 �913.1(3) �1646.1(11)
25 �921.6(3) �1660.7(11)
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Unlike the Pb2+ case we did not include an induced dipole

moment on the lead ion.

Up to this point, the effect of spin–orbit coupling has

been neglected. We consider that the spin orbit splitting

of the complex is identical to that of the Pb+ ion (D =

14 081 cm�1 44). The spin–orbit coupling operator ASOL̂Ŝ then

needs to be included into the diabatization procedure. We

therefore have to diagonalize the complex 6 � 6 matrix in the

spin-orbital basis.

V ¼ Diag½hpk; ajUjpl ; a0i� þ
X

nHe

i¼1

X

nHe

j¼iþ1

ðV ij
pair þ V

ij
indÞ ð16Þ

The spin–orbit splitting D = 3ASO is so much larger than the

zero order separation between the 2
P and 2

S
+ states that this

procedure essentially reduces to the weighted isotropic average

V0 =
1
3
(VS + 2VP) but the full diagonalization procedure was

used for the potential evaluation in our DMC calculations.

We tested the quality of our many body model by

comparison with explicit DFT calculations on larger clusters

with and without inclusion of spin–orbit coupling. The

resulting energies are displayed in the left panel of Fig. 2

and show very satisfactory agreement. While performing the

calculations without spin–orbit coupling we encountered some

difficulties with the convergence of the DFT procedure due to

state switching which explains the absence of some data

points. The rather different evolution of the total energy with

a well defined kink at n = 6 in the absence of spin–orbit

coupling and a smooth behavior for the full calculations is a

result of strong electronic anisotropy which disappears due to

the strong mixing induced by spin–orbit interaction, an effect

on which we will elaborate further below.

B Strong coordination: the case of Pb2+

Shell closure effects and the appearance of so called

magic numbers have been reported in theoretical studies

of several ion–helium systems16,18,45 and are known from

experiments.14,15,22,46,47 The Pb2+–He interaction ranks

among the strongest ion–helium interactions known and one

might expect the formation of very pronounced snowballs in

spite of the small helium mass and resulting large zero point

energy. The experimentally observed ion yield distribution47

indicates that n = 12 has special stability. This coordination

number also appeared to be special in the theoretical study

of Hermann et al.3 which found, however, that the first

coordination or solvation shell is completed only at n = 15.

In this section we will analyse the necessary distinction

between energetic and structural preference.

1 Quantum ground state energetics. The total quantum

ground state energies E0 relative to separated particles and

the incremental energies E0(n) � E0(n � 1) from our DMC

calculations with and without inclusion of the induction terms

are displayed in Fig. 4 and collected in Table 2. Induction

terms have a very strong influence on the total ground state

energies, in particular for larger clusters. However, the pattern

of energy increments is not qualitatively modified by these

terms. The evolution of the energy increments can be divided

into three regimes: For sizes up to n = 12 the energy gained

through the binding of an additional helium atom is relatively

large and smoothly declines until a special stabilization is

reached at n = 12. The sizes n = 13 to 15 with somewhat

unsystematic binding energies form a transition regime to the

final regime of weak incremental binding starting at n = 16.

By conventional criteria n = 12 and n = 14 would be

identified as magic numbers indicating that inclusion of zero

point averaging does not lead to a qualitative change of the

stabilization energy pattern derived from electronic minima by

Hermann et al.3 In the usual fall off of the ion yield with

increasing mass, n = 12 is expected to stick out much more

than n = 14, which is in agreement with the experiment.47

2 Structure of Pb2+Hen clusters. The lowest energy

structures encountered in DMC calculations with typically 109

Fig. 2 Energies of global minima for Pb+Hen (left panel) and Pb2+Hen (right panel). Note the different energy scales. Triangles indicate energies

found in searches on the many body model surfaces and crosses give energies obtained in minimizations using DFT calculations (see text for

details). The left panel shows data from calculations with (upper pair of curves) and without (lower pair of curves) inclusion of spin–orbit coupling.

This journal is �c the Owner Societies 2010 Phys. Chem. Chem. Phys., 2010, 12, 1152–1161 | 1157



samples are depicted for selected Pb2+Hen aggregates in the

left column of Fig. 3 and are good estimates for the respective

global minimum arrangements. The interaction is dominated

by the central field provided by the Pb2+ ion. The resulting

classical structures are controlled by the net helium–helium

attraction for small n and by the size of the repulsive core of

helium atoms for large n. At n = 12 the standard icosahedral

symmetry is reached but up to 15 helium atoms can be

accommodated at practically identical distances, as previously

found.3 For n = 16 one helium atom occupies a more distant

position and for n = 18 one can clearly distinguish 3 atoms in

such a situation.

Radial density profiles from DMC calculations for

Pb2+Hen clusters for several relevant sizes n are shown in

Fig. 6. The peak helium density increases more or less linearly

with n and slowly shifts outward up to n= 12 where a value of

about 0.26 Å�3 is reached, corresponding to 12 times the bulk

liquid helium density (upper panel of the Figure). By compari-

son with the density of solid helium (rHe = 0.214 kg l�1 =

0.032 Å�3 at 1.15 K and 66 atm48) this shell might be called

solid already for very small n. This interpretation is, however,

improper because for most n this shell is structurally disor-

dered. From n = 12 to n = 15 a single shell structure is

observed which now exhibits a noticeable increase of its width

indicative of the progressive disordering of the symmetric

packing reached at n = 12. One could be tempted to interpret

this transition between an ordered icosahedral structure and

disordered structures as some kind of melting or dissolving of

the nanocrystal by additional helium. The formation of a

second density maximum clearly sets in only at n = 16. The

peak density of this second maximum again exceeds the bulk

helium density and in an exploratory calculation for n = 125

we actually observed a well developed third maximum not

shown in the Figure.

Inclusion of zero point delocalization does not destroy the

single shell nature of n = 15, but it is questionable if this

system would qualify as a true coordination compound or

snowball. The low but appreciable helium density in the

minimum between the shells definitely allows particle

exchange. The ‘‘snowball’’ of size n = 15 will probably not

keep its identity and should be viewed as a dynamical object

involved in exchange with its environment.

C Weak coordination: the case of Pb+

The Pb+ ion is noticeably larger than the Pb2+ ion and could

therefore allow larger coordination numbers. The much

weaker interaction with helium would tend, however, to

render the structures less rigid, which can make structural

transitions less obvious. The structure of the Pb+Hen
aggregates is profoundly affected by the strong spin–orbit

interaction which almost eliminates the anisotropy. The mass

spectra recorded by Döppner et al.47 show a drop of the ion

count rate after n = 17 which could be taken as an indication

of shell closure.

1 Quantum ground state energetics. The total ground state

energies given in Table 2 and depicted in the left panel of Fig. 5

nicely illustrate the importance of spin–orbit coupling. The

lower curve gives energies computed without accounting

for this effect and indicates systematically lower energies

(more binding) than the upper series of triangles which show

ground state energies for the complete model with induction

and spin–orbit coupling. The lower energies result from

essentially P-type interactions and the pronounced kink at

n = 6 is due to the strong anisotropy of this model. The

essentially isotropic spin–orbit model leads to ground state

energies with a rather smooth evolution with cluster size and

a slow transition to a weak binding regime which sets in at

n = 18. These trends are more clearly visible in the right panel

of Fig. 5 which displays the energy gained upon addition of a

helium atom. In comparison with the experimental evidence

n = 17 seems to be the last member of the more strongly

binding regime. The effect is, however, rather weak and n=17

does not qualify as a magic number.

2 Structure of Pb+Hen clusters. The two rightmost

columns of Fig. 3 show lowest energy particle arrangements

visited during very long DMC runs and are representative of

the global minima as already discussed in our comparison

between potential model minima and explicit DFT calculations.

The central column showing the structural evolution for the

full and almost isotropic model indicates the initial formation

of a polar cap and progressive coating of the central atom

eventually limited by the repulsive helium cores. This is similar

Fig. 3 Lowest energy structures derived from the non-additive model

potential for Pb2+Hen (left column) and Pb+Hen with (center column)

and without (right column) inclusion of spin–orbit coupling. Note the

icosahedral structure for Pb2+He12 and the single shell structure for

Pb2+He15 and pronounced belt (sub)structures for Pb+Hen if spin–

orbit coupling is neglected.
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to Pb2+ but with the important difference of looser structures.

The largest single shell system is n = 17.

The physically unrealistic model without spin–orbit

coupling is, however, interesting since it resembles other cases

of atoms in P-states interacting with rare gas atoms.49,50 Like

in these other systems we observe preferential filling of a very

compact belt in the nodal plane of the p-orbital followed by

occupation of much less favored out of plane positions. The

helium atoms try to avoid the region of maximum electron

density described by the p-orbital. This is exactly the mecha-

nism which leads to the formation of ‘‘bubbles’’ in liquid and

solid helium around certain dopants.

Selected radial density profiles for Pb+Hen clusters are

displayed in Fig. 7. The first shell of helium atoms aggregates

around Pb+ with a continuous and almost linear build up

of density until a maximum of about 0.09 Å�3 is reached at

n = 17, a little more than four times the bulk liquid helium

density. This size appears to represent closure of some sort of

shell consistent with our classical structures. This peak density

value is again far above the density of solid helium, but

remains significantly below the values calculated for Pb2+.

The onset of the build up of a second shell is much less

pronounced than for Pb2+ and initially one only sees a

broadening of the first peak and a prolongation of its tail.

Only at n= 25 a clearly identifiable density minimum between

first and second neighbor peaks is observed. The density at its

minimum is near half the bulk liquid helium density and well

above the values found for Pb2+ again allowing efficient

Fig. 4 Total ground state energies (left panel) and energy increments (right panel) for Pb2+Hen from DMC calculations using the full interaction

model with induction terms (triangles). Crosses indicate results obtained upon neglect of induction for selected sizes n. Note the consistent

appearance of ‘magic’ sizes at n = 12 and n = 14 in both models in spite of the significant contribution of induction to the total energies.

Fig. 5 Total ground state energies (left panel) and energy increments (right panel) for Pb+Hen from DMC calculations using the full interaction

model with induction terms and spin–orbit coupling (triangles) and a model without induction and spin–orbit coupling (crosses). Note the

pronounced signature of a belt filling structure at n = 6 without spin–orbit coupling and the smooth evolution upon inclusion of this effect.
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exchange of helium atoms. Even though for this system the

kissing number is very high (at least 17) the shells are not

clearly distinguishable.

IV. Conclusion

We have presented the construction of reliable and very

efficient many body models for Pb2+ and Pb+ ions interacting

with helium atoms based on high level ab initio calculations.

These models have been successfully tested against DFT

calculations on large clusters. Several similar interesting open

shell systems could be treated with the methodology developed

in the present study. The inclusion of spin–orbit effects

qualitatively changes the structures of Pb+Hen.

The energy scales for Pb2+Hen and Pb+Hen were found to

be very different and to be reflected in the resulting quantum

ground state properties studied by diffusion quantum Monte

Carlo. We have studied the influence of quantum delocalization

on the structure and energetics of these systems. The computed

stability patterns agree well with the available experimental

data. In particular we reproduce the magic number of n = 12

for Pb2+Hen and observe a transition between two binding

regimes near n = 17 for Pb+Hen.

Both systems exhibit high coordination with respect to

classical minimum energy structures (shell closure at n = 15

for Pb2+Hen and at n = 17 for Pb+Hen). Analysis of

the quantum distributions shows, however, that the first

coordination shell is essentially complete already at n = 12

for Pb2+Hen (maximum nearest neighbor density is reached).

The addition of further helium atoms partially degrades this

compact structure without, however, initiating the formation

of a new shell before n= 16. Once enough atoms are available

a distinct second shell starts to build up. Both n = 12 and

n = 15 are special sizes in the sense that they are the last

members of a structural or energetic motive.

The first solvation shell for Pb+ is completed at n = 17 as

indicated by the density maximum. Energetically this system

does not possess special stability, but it is the last member

of an initial binding motive and therefore plays a role

comparable to n = 15 in Pb2+Hen. The second shell is,

however, much less clearly distinguished from the first shell.

Even though both systems allow a very large number of

nearest neighbors they do not force us to revise the conven-

tional notion of coordination numbers because the limiting

sizes (15 and 17, respectively) are highly disordered and the

atoms in this first shell cannot be clearly separated from the

’solvent’ atoms.
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