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Abstract

The paper deals with a generalized linear model with functional data using a wavelet
representation of the signals. A reduction of dimension is first obtained through a principal
component analysis. The discriminative function is then given by a loglikelihood maximization,
with a LASSO penalization, in order to ensure the sparsity of the wavelet representation.
In order to have a data-driven procedure, we explore different cross-validation schemes. A
simulation study is presented, showing our estimator that is competitive with those described
in Reiss and Ogden (2013). We apply this model to a classification of functional EEG data, to
study the capacity of discrimination of nearby sounds.

Keywords: Generalized functional linear model; Curves classification; Wavelets; Principal
component reduction; LASSO penalization; Cross-validation.

1 Introduction

This paper is motivated by a study where the goal is to find out whether the EEG signals measured
by external electrodes contain information relative to the cerebral activity in response to auditory
stimuli. We are thus interested in discrimination and classification of curve data. More precisely
we wish to predict a categorical variable Y with respect to an explanatory functional variable
(X(t))t∈[0,1].

1

irene.gannaz@insa-lyon.fr


We refer to the monograph of Ramsey and Silverman (2005) for an overview of a wide variety of
statistical problems dealing with functional data. In this paper we focus on a functional generalized
linear regression model, which can be seen as a generalized linear model with functional predictors.
Because of our motivation in real data application, we are in particular interested in the functional
logistic linear regression, which is a particular case of the generalized framework.

Due partially to the large scope of applications, there is an amount of literature on functional
linear regression. Two main approaches were investigated. On the first hand, the functional
principal component regression based inference was explored by many authors. Among others,
we can cite Cardot et al (1999), Cardot et al (2003a), Cai and Hall (2006), Hall and Horowitz (2007)
or Delaigle et al (2009) in a Gaussian model. In a logistic or generalized framework, it was
explored for example by Müller and Stadtmüller (2005) Aguilera et al (2006) or Escabias et al (2007).
On the second hand, many papers choose to estimate the discriminative function of the model
through the projection of the explanatory curves on a functional base, applying a roughness
penalty in order to reduce the dimension of the problem. Different bases were used to decompose
functions in literature. Among others, we can cite the use of splines by James (2002) with an EM
algorithm. Marx and Eilers (1999), Cardot et al (2003b), Marx and Eilers (2005), Cardot and Sarda
(2005) consider a splines-based approach with different roughness penalties.

Recently, the use of wavelets-basis has been developed by Brown et al (2001) within a bayesian
framework, or by Amato et al (2006). More recently, Zhao et al (2012) explored a wavelets-based
procedure with a LASSO penalty in functional linear regression. The authors establish that,
provided an appropriate choice of the smoothing parameter associated with the penalty, the
estimator is consistent. They also present simulated and real data applications.

A combination of a principal component reduction and a penalized-decomposition based approach
was also suggested by Reiss and Ogden (2007) with splines basis and in Reiss et al (2013) with
wavelet bases. The estimators defined in this paper are quite similar to those of Reiss et al (2013)
and a comparison is yield in the simulation section.

The contribution of this paper is to propose an alternative method of Reiss et al (2013) in a
generalized regression framework. The asymptotic behaviour of the estimation procedure is not
studied here and may be studied in a further research. This paper focuses on the estimation
procedure and the real data application on cerebral responses to auditory stimuli. Due to the
high frequency of the signals measured in this application, the wavelet decomposition indeed
seems more adapted than others basis like splines. Moreover we are expected that the features
allowing the discrimination of the signals are localized in time and in frequency, and thus the time
and frequency localization property of the wavelets basis will be useful to capture them. Like
in Reiss and Ogden (2007) and Reiss et al (2013) we also choose to combine this procedure with a
principal component reduction on the wavelets coefficients of the curve predictors, to ensure an
important reduction of the dimension of the problem.

The paper is structured as follows: the first section describes the functional generalized linear
regression model, while the second section details the estimation scheme proposed. The last section
presents an algorithmic construction of the estimators and their applications on simulated and real
data.
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2 The functional generalized linear regression

We observe independent data (Yi, {Xi(t), t ∈ [0, 1]}), i = 1, . . . , n, where the predictor variables
({Xi(t), t ∈ [0, 1]})i=1,...,n are curves. The functional predictors Xi(.) are supposed to belong to the

separable Hilbert space L2([0, 1]) whose usual inner product is defined as

∀α, β ∈ L
2([0, 1]), < α, β >=

∫

[0,1]
α(t)β(t) dt.

We consider a generalized regression problem, where the response values Yi are drawn
independently from a one-parameter exponential family of distributions, with a probabilistic
density of the form:

exp

(
yη(Xi)− b(η(Xi))

φ
+ c(y, φ)

)
. (1)

In this expression, b(·) and c(·) are known functions, which determine the specific form of the
distribution. The parameter φ is a dispersion parameter and is also supposed to be known in what
follows. The unknown function η(·) is the natural parameter of the exponential family, which
carries information from the explanatory variables. It is linked with the quantity E(Yi|Xi) through
the relation g(E(Yi|Xi)) = η(Xi). The function g = ḃ−1 is called link function.

In the functional generalized linear model, η(·) is given by a functional linear relation:

η(Xi) =
∫

[0,1]
Xi(t)β(t) dt. (2)

The function β(·) captures the distinctions between the curves (Xi(·))i=1,...,n. Intuitively if |β(x0)|
is large this means the value taken by the signal at the point x0 is discriminant. Yet, this
interpretation is sometimes not easy in some applications. We refer to McCullagh and Nelder
(1989) and Fahrmeir and Tutz (1994) for presentations of the generalized linear models and to
the aforementioned papers for generalized regression with functional predictors. Note that we
are motivated by curves predictors but an extension to image predictors, as it was done in
Reiss and Ogden (2010) and Reiss et al (2013), is possible.

In applications, the curves Xi(t) are discretized at points t1, . . . , td equidistant on the interval [0, 1].
This hypothesis excludes applications with random observations of curves but it holds in many
applications where t represents time and the signals are observed at equispaced times. In the
discretized model, equation (2) can be written on a matricial form

η = Xβ,

with the notation η = (η1, . . . , ηn)T = (η(X1), . . . , η(Xn))T, β = (β(t1), . . . , β(td))
T and X the n × d

matrix of general term (Xi(tj))i=1,...,n, j=1,...,d. The exponent T denotes the transpose operator.

In the specific logistic framework, which mainly interests us for applications, the response Yi is
drawn from a Binomial distribution, i.e. we have m Yi ∼ B(m, µi). The number of classes, m + 1,
is considered known, which corresponds to a supervised classification. The relation g(E(Yi|Xi)) =

η(Xi) is obtained with g the logistic link, g(u) = exp(u)
1+exp(u)

. The data is classified as follows: the label

k is given to the ith curve Xi(·) if k is the closest integer of m g(Xi). In the case m = 1, the label
associated with the curve Xi(·) is consequently 11{g(Xi)>0.5}.
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3 Estimation procedure

Our estimation procedure is closed to the one investigated by Zhao et al (2012). We first apply a
wavelet transform on the data and apply a LASSO penalization to reduce the dimension of the
regression problem. Then, as suggested by Reiss and Ogden (2007), we add a constraint on the
wavelets coefficients of the regression function, imposing that they belong to the space generated
by the first components of the wavelet representation of the explanatory curves. A cross validation
step is necessary to calibrate the parameters of the procedure. A brief presentation of different
cross-validation criterions is thus done.

3.1 Projection into the wavelet domain

We consider a wavelet transform of the explanatory curves. Thanks to their time and
frequency localization, wavelets allow to capture local singularities and to consider more spatially
inhomogeneous functions than kernel or splines. They seem well adapted for dimension reduction
purposes and to discriminate signals with localized features. For the sake of concision, we present
very briefly the wavelets theory and we refer to Daubechies (1992), Meyer (1992) or Mallat (1999)
for more details. For their use in statistics, see Härdle et al (1998), Abramovich et al (2000).

Throughout the paper we assume that we are working within an R-regular (R ≥ 0) multiresolution
analysis of

(
L2[0, 1], 〈·, ·〉

)
, associated with an orthonormal basis generated by dilatations and

translations of a compactly supported scaling function, ϕ(t), and a compactly supported mother
wavelet, ψ(t). For simplicity reasons, we will consider periodic wavelet bases on [0, 1].

For any j ≥ 0 and k = 0, 1, . . . , 2j − 1, let us define ϕj,k(t) = 2j/2 ϕ(2jt − k) and ψj,k(t) =

2j/2ψ(2jt − k). Then for any given resolution level j0 ≥ 0 the family

{
ϕj0,k, k = 0, 1, . . . , 2j0 − 1; ψj,k, j ≥ j0; k = 0, 1, . . . , 2j − 1

}

is an orthonormal basis of L2[0, 1].

As we consider dicretized versions of curves, we introduce W the discrete projection operator on
this basis. We suppose each curve Xi(·) is observed at equidistant points t1, . . . , td on the interval
[0,1]. We moreover suppose that exists J ∈ N such that d = 2J . In real data application it is often
sufficient to cut off the end of the signal when it is of no interest.

Every signal Xi(·) is decomposed by Xi = WTθi, for i = 1, . . . , n. We introduce ω the vector of
wavelets coefficients of the function β(·). In the matricial form, β = WTω, and thus η = Xβ = Θω.
The functional regression model is expressed like a regression on the wavelet coefficients. To reduce
the dimension of the resulting problem but also to respect the functional nature of the regressor β(·),
we impose the sparsity of the wavelet coefficients vector ω. This is usually done in literature thanks
to a ℓ1-penalization. It is widely used in wavelets-based estimation and leads to a soft-thresholding
of coefficients. We refer for example to Donoho and Johnstone (1994), Donoho and Johnstone (1995)
or Donoho and Johnstone (1998) and to Gannaz (2013) in a generalized framework.
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This approach has been proposed by Zhao et al (2012) in functional linear models with real
responses. The authors establish the asymptotic consistency of the wavelet estimator obtained by
the maximisation of a loglikelihood criterion with a ℓ1-penalty on the wavelet coefficients.

3.2 Principal component reduction

Following Reiss and Ogden (2007), we introduce an additional dimension reduction through a
constraint on the wavelet coefficients ω. We impose that they belong to the space generated by
the first components of the wavelet coefficients matrix of the curve predictors.

Let a1, a2, . . . , ad be the eigenvalues of Θ. We suppose the eigenvalues are sorted in the descending
order a1 ≥ a2 ≥, · · · ≥ ad. We introduce the matrix Vq of size d × q such as the ith column of the
matrix Vq is the eigenvector associated with the eigenvalue ai, for i = 1, . . . , q. We then search ω

such that there exists γ ∈ Rq verifying ω = Vqγ. Note that an extension to Partial Least Squares
reduction can easily be done, similarly to Reiss and Ogden (2007).

3.3 Definition of the estimators

Actually, the estimators are defined as follows:

ω̃n(q, λ) = argmin
ω

−
n

∑
i=1

L
(

Yi, θT
i ω

)
+ λ

d

∑
ℓ=2j0+1

|ωℓ| (3)

w.r.t. ∃γ ∈ R
q, ω = Vqγ (4)

where L is the loglikelihood. The estimation of the canonical parameter η is given by η̃n(q, λ) =
Θ ω̃(q, λ). Note that only the wavelets coefficients are include in the LASSO penalty.

In order to have a data-driven procedure, one needs to choose the smoothing parameter λ and
the number of principal components q. We propose different cross-validation procedures. First, a
usual minimization of the mean squared error using multiple folds validation can determine λ and
q. Parameters also can be chosen by the minimization of a Generalized Cross Validation criterion
initially proposed by Craven and Wahba (1979). It has also been applied by O’Sullivan et al (1986)
in generalized functional regression models and was used for an automatic choice of the wavelet
thresholds e.g. in Jansen et al (1997). For a given estimator ω̃n(q, λ), let µ̃n(q, λ) = g−1(η̃n(q, λ)) be
the resulting estimation of (E[Y|Xi])i=1,...,n. If d fn(q, λ) is the number of degree of freedom of the
model, the GCV score is equal to

GCV(q, λ) = −∑
n
i=1 L(yi, µ̃i(q, λ))

d fn(q, λ)2
.

If µ̃n(q, λ) = Rn(q, λ)y, with Rn(q, λ) operator depending on the number of components q and
of the degree of smoothness λ of the procedure, than the degrees of freedom d fn(q, λ) in the
denominator is d fn(q, λ) = n − trace(Rn(q, λ)). As it can be seen in the algorithm section 4.1,
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we have

d fn(q, λ) = trace

(
Θ diag

(
11ω̃n(q,λ) 6=0

)
Vq

(
VT

q Θ
TW̃−1

ΘVq

)−1
VT

q Θ
TW̃−1

)
,

with W̃ corresponding to the variance matrix. With a Gaussian distribution, W̃ is the identity matrix
and in the logistic model, W̃ = diag

(
exp(η̃i)(1 + exp(η̃i))

−2, i = 1, . . . , n
)

.

The third method for choosing (q, λ) is an Akaike Information Criterion,

AIC(q, λ) = −2
n

∑
i=1

L(yi, µ̃i(q, λ)) + 2 (n − d f (q, λ))/n,

or its corrected version

AICcorr(q, λ) = AIC(q, λ) + 2
(n − d fn(q, λ))(n − d fn(q, λ) + 1)

d fn(q, λ)− 1
.

We refer to Burnham and Anderson (2002) for an overview on AIC and its derivatives.
According to Wood (2006), the AIC criterion is better justified than the GCV criterion, and
Burnham and Anderson (2002) advise the use of the corrected AIC «unless the sample size is large
with respect to the number of estimated parameters ». The four cross validation procedures (5-folds
cross validation, GCV, AIC and corrected AIC) have been implemented in order to better compare
their efficiency.

Let (q̂, λ̂) be the argument minimizing one of the criterions described in this section. The estimator

of the regression coefficients ω are then given by ω̂n = ω̃n(q̂, λ̂). And the function β(·) is estimated

by β̂n = Wω̂n.

4 Application

This section deals with the implementation of the procedure. We first describe an algorithm to
compute the estimator and we then study its behaviour on simulations and on a real data example.
All the calculations were carried out in R version 2.14.1 (R Core Team, 2013) on a Unix environment.
For the discrete wavelet transform, we used the wavelets package 0.2-6 developed by Aldrich (2010).

4.1 Algorithm

The optimisation problem (3) is solved by Iterative Reweighted Least Squares (see page 40
of McCullagh and Nelder (1989)). Each step of the algorithm must take into account the ℓ1-
penalization on the wavelets coefficients. We apply the algorithm presented in Section 2.1.
of Friedman et al (2010), more precisely their naïve adaptation of an algorithm proposed by
Van der Kooij (2007).

Actually, the kth iteration of the algorithm becomes:
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Let η(k) = Θω̃(k−1) and µ(k) = g(η(k)).

We introduce Y(k) = (Y − µ(k)) dη
dµ

∣∣∣
µ=µ(k)

and W(k) = diag

(
dη
dµ

∣∣∣
µ=µ(k)

)
.

The threshold levels are λ[k) = λVq(VT
q Θ

TW(k)−1
ΘVq)−1VT

q 11d×1.

For j = 1, . . . , d.

ω(k) = Vq

(
VT

q Θ
TW(k)−1

ΘVq

)−1
VT

q Θ
TW(k)−1 (Θ·,jγ

(k)
j + Y(k))

ω̃
(k)
j = sign(ω

(k)
j )

(
|ω(k)

j | − λ
(k)
j

)
+

The dependence with the parameters (q, λ) is omitted in the algorithm to simplify the notations.

Zhao et al (2012) suggest to implement the LASSO penalization either by homotopy (Osborne et al,
2000) or by least angle regression (Efron et al, 2004). The algorithm of Friedman et al (2010)
seems more adapted in the generalized framework, where an iterative resolution of the maximum
likelihood is already needed. Moreover, its computation is quite easy in this framework.

4.2 A simulation study

We compare our procedure with four estimators of the refund package (Crainiceanu et al, 2012)
corresponding to the estimators studied in Reiss et al (2013). Actually, we will compare the
behaviour of seven procedures:

SPCR A splines-based estimation, with a principal component reduction and a penalization,
initially described in Reiss and Ogden (2007). Parameters are given by a 5-folds cross
validation.

WCR A wavelets-based estimation, with the sparse principal component reduction described in
Johnstone and Lu (2009), associated with a 5-folds cross validation.

WNET A wavelets-based estimation with a ℓ1-penalty. Its asymptotic behaviour and its
implementation are studied in Zhao et al (2012). The smoothness parameter is given by a
5-folds cross validation. It is available for elastic-net penalties in the refund package but only
the ℓ1-penalty has been considered to have more comparable procedures.

WPCR The wavelets-based estimation described previously in the manuscript, with a principal
component reduction and a ℓ1-penalization. A 5-folds cross validation is used to choose the
number of components and the smoothing level.

G-WPCR The same as WPCR but with parameters given by a GCV minimization.

A-WPCR The same as WPCR but with parameters obtained by an AIC procedure.

Ac-WPCR The same as WPCR but with parameters obtained by a corrected AIC procedure.
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Reiss et al (2013) already compared the first four estimators cited here but in a quite different
context since the regressors were images rather than curves. It seems interesting to include four
of them in our study. Note that Reiss et al (2013) also propose estimators based on a Partial Least
Squares reduction step instead of a Principal Components reduction, but they are not studied here
for the sake of concision.

Note that the conceptions of estimations WCR and WPCR are quite different: the first one is looking
for sparsity in the reduction of dimension on the explanatory curves whereas in WPCR we are
imposing sparsity to the discriminative function in addition with a reduction of the dimension of
the curves predictors. Nevertheless, D’Aspremont et al (2008) argue that there exists connexions
between the LASSO variable selection and ℓ0-penalized extremal eigenvalues decomposition (see
references therein) and it would be interesting to investigate whether there is a link between our
procedure and a sparse component reduction.

The 5-folds cross validation like the GCV do not need any knowledge of the dispersion parameter φ.
But it is necessary to apply the AIC and its corrected version. In the Bernoulli model, as we consider
supervised classification, φ = 1/m is given. We will suppose in the Gaussian model that it is known
in the simulations. In a real data application one can use the others cross-validation procedures to
estimate φ and then plug it into the AIC.

We consider the same explanatory curves Xi(·) than Reiss and Ogden (2010), drawn from a
Gaussian process on [0; 1]. More precisely, Xi(·) are independent zero-mean Gaussian processes
with Xi(0) = Xi(1) = 0 and such that Cov(Xi(s), Xi(t)) = s(1 − t) for s < t. The target functions β

are classical signals introduced by Donoho and Johnstone (1994): Heavisine, Doppler and Blocks and
Bumps. All of them are given in Figure 1. The signals were discretized in an equidistant grid of 256
points.
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Figure 1: Target functions β(·).

In the Gaussian model, following Cardot et al (2003b), we define the signal to noise ratio of the
model by the ratio between the standard deviation of Xiβ and

√
φ. We simulate data with a small

noise level φ = 0.022 Var(Xiβ) and data with a high noise level φ = 0.182 Var(Xiβ), taking the
values proposed by Cardot et al (1999). This signal-to-noise ratio does not take into account the
fact that we do not wish to estimate Xiβ but the function β. Concerning the Binomial model,
comparisons were only done on the case of two classes, because estimators of Reiss et al (2013) have
not been implemented in the refund R-package for more classes. A multiplicative factor was also
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applied to curves Xi(·) in order that
∫

Xi(t)β(t)dt belongs to the interval [−4, 4] (the multiplicative
factor being respectively 0.1, 0.1, 0.17 and 0.33 for Heavisine, Doppler, Blocks and Bumps). Indeed,
this condition is necessary so that the Binomial model is consistent, see for example on p. 28 of
Fahrmeir and Tutz (1994).

First, we do not give here the computation times but our procedure (WPCR, G-WPCR, A-WPCR
and Ac-WPCR) is much more longer than the other procedures. The implementation could perhaps
be improved because the time efficiency was not aimed in our code, but the recursive algorithm of
Friedman et al (2010) chosen is probably more greedy than the Least Angle algorithm.

We carried out the estimation on 100 replications of 100 observations of the model. The parameter
q was chosen on a regular grid of step 10 and the parameter λ was seek on by dichotomy. The Least
Asymmetric Daubechies wavelet basis with a filter level equal to 16 was used.The quality is given

by the Integrated Squared Error: ISE(β̂, β) = 1
d ∑

d
i=1

(
β̂(ti)− β(ti)

)2
. Boxplots of the ISE for each

simulation frameworks are given respectively in Figure 2 for the Gaussian model with a small noise
level, in Figure 4 for the Gaussian model with a small noise level and in Figure 6 for the Bernoulli
model.

We also compare the predictive quality of the estimators. We simulate 100 independent replications

(X′
i, y′i){i=1,...,100} from the same model and we calculate the prediction obtained by X′

i β̂n, with

β̂n estimator given on the first 100-simulated observations. The mean prediction error is

defined by 1
100 ∑

100
i=1(y

′
i − X′

i β̂n)
2 for the Gaussian model and by 1

100 ∑
100
i=1

∣∣∣∣y′i − 11{
X′

iβ̂n
>0.5

}
∣∣∣∣ for the

Bernoulli model. Boxplots of the mean prediction error for each simulation frameworks are given
respectively in Figure 3 for the Gaussian model with a small noise level, in Figure 5 for the Gaussian
model with a small noise level and in Figure 7 for the Bernoulli model.

In the Gaussian framework, Figure 2 shows that, except for the Heavisine function, our penalized
principal components reduction based estimators performed better than the Splines procedure with
a small noise level. In particular, the A-WPCR gives the smallest ISE, with a small dispersion.
Note that the insatisfying quality of the WPCR-class estimators for the Heavisine function can
be improved by imposing the number of components q to be sufficiently small, say under 50
for example. The WNET estimation behaves satisfyingly for the Heavisine target but leads to
oversmoothed estimators in the others contexts.

The boxplots of the mean prediction error in Figure 3 enhance the bad performance of the WNET
procedure. Indeed, even with the Heavisine function, it leads to worse prediction quality than
the others. Again, the WPCR estimation and its derivatives lead to a good quality of prediction,
especially for the AIC choice of the parameters. Splines-based estimation is competitive and gives
better predictive values for the Heavisine signal, which is coherent with the higher regularity of the
target curve.

To better understand the difference between the cross-validation steps, we give in Table 1 the

median of the degrees of freedom d fn(q̂, λ̂) given by the algorithm in a Gaussian model, with
a small noise level. As it can be observed in this Table, the GCV procedure leads to smoother
estimators than the others procedures, which explains the better results for the ISE given for
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Figure 2: Boxplots of the ISE. Gaussian model, small noise level.

SPCR WCR WNET WPCR G−WPCR A−WPCR Ac−WPCR

0.
2

0.
4

0.
6

0.
8

1.
0

Heavisine

SPCR WCR WNET WPCR G−WPCR A−WPCR Ac−WPCR

0.
0

0.
5

1.
0

1.
5

2.
0

Doppler

SPCR WCR WNET WPCR G−WPCR A−WPCR Ac−WPCR0.
0

0.
5

1.
0

1.
5

Blocks

SPCR WCR WNET WPCR G−WPCR A−WPCR Ac−WPCR

0.
00

0.
02

0.
04

0.
06

0.
08

Bumps

Figure 3: Boxplots of the mean prediction error. Gaussian model, small noise level.
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the estimation of the smooth Heavisine signal. On the contrary, the AIC and the corrected AIC
schemes give undersmoothed estimators and capture well the singularities of the Blocks and the
Bumps functions and the high frequency of the Doppler function.

Function Heavisine Doppler Blocks Bumps

WPCR 60.0 70.0 70.0 77.6
G-WPCR 27.4 37.2 40.0 40.0
A-WPCR 69.3 90.0 98.0 97.0
Ac-WPCR 99.0 99.0 99.0 70.0

Table 1: Median of the degree of freedom for the estimators in the Gaussian model, with a small
noise level.

Note that we could easily extend the WPCR procedures from soft-thresholding to hard-
thresholding (which corresponds to a ℓ0-penalization on wavelets coefficients, see e.g.
Antoniadis and Fan (2001)). As it can be seen in Antoniadis et al (2001), this would probably gives
better estimation results for Blocks and Doppler signals but not for the estimation of Heavisine.
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Figure 4: Boxplots of the ISE. Gaussian model, high noise level.

With a higher noise level, the differences of behaviour between the procedures appear less
important. As it can be seen in Figure 4, Splines-based and WCR schemes still preform better in the
Heavisine estimation and WPCR procedures, with all cross-validation steps, are more efficient for
the Bumps estimation. Yet, for the Doppler and the Blocks functions, qualities are quite similar. Note
that for the Blocksmodel, the structure of the target function is not recognized by any procedures
and in this high noise level context procedures give an oversmoothed estimation function.

11



SPCR WCR WNET WPCR G−WPCR A−WPCR Ac−WPCR

6
8

10
12

14

Heavisine

SPCR WCR WNET WPCR G−WPCR A−WPCR Ac−WPCR

6
7

8
9

10

Doppler

SPCR WCR WNET WPCR G−WPCR A−WPCR Ac−WPCR

3.
0

3.
5

4.
0

4.
5

5.
0

Blocks

SPCR WCR WNET WPCR G−WPCR A−WPCR Ac−WPCR

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
10

Bumps

Figure 5: Boxplots of the mean prediction error. Gaussian model, high noise level.

Concerning the prediction quality, Figure 5 confirms the less important difference between the
procedures than in a small noise model. WNET gives equivalent or higher prediction errors except
for the Heavisine function, but all algorithms are competitive.

At least, we consider the Binomial distribution, which corresponds to the classification of the
signals (Xi(·))i=1,...,n in two classes. The first remark that can be done in view of Figure 6 is that,
on the contrary of the conclusions in the Gaussian framework, the splines-based procedure obtains
better quality estimators than the wavelets-based procedures. This shows a priori that the validation
step used to choose the parameters in the wavelets schemes introduces a bias, more important than
in the splines-based estimation. The second remark is the bad performance, according to Figure 6,
of the WCR estimator. Nevertheless, Figure 7 shows that its quality of prediction is satisfying.

Concerning the penalized wavelets components reduction estimation developed here, one can see
in Figure 6 that if AIC was the best-performing validation step with the Gaussian distribution, its
corrected version is preferable with a Binomial distribution. Comparing the quality of prediction,
one can see that GCV, AIC and corrected AIC give equivalent results, which are globally the
same quality as splines-based estimators. Finally, Figure 7 puts in evidence that the 5-folds cross-
validation step leads to a bad quality of prediction. Actually, this is due to the fact that the algorithm
WPCR often leads to a zero function.

In conclusion, our procedure is competitive with those described in Reiss et al (2013). The main
drawback of our estimation scheme remains its computational time since it is much longer than
procedures of the refund package (Crainiceanu et al, 2012). The combination of a penalization and
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Figure 6: Boxplots of the ISE. Bernoulli model.
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of a principal components reduction in a wavelets-based procedure leads to estimators of good
quality, among others when comparing to the WNET and the WCR procedures of Reiss et al (2013).
We have also established that the quality of the estimation and of the prediction are comparable
with the splines-based method developed in Reiss and Ogden (2007) and performs better in a
small-noise level Gaussian framework.

4.3 A real data application

This application has been done in a collaboration with Ludovic Bellier, Rafael Laboissière and
Fabien Millioz, of the DyCog Team, Lyon Neuroscience Research Center, France. We are interested
in the human perception of speech, more precisely in the capacity to discriminate bilabial plosives,
here /b/ versus /p/.

Data was obtained by an electroencephalography (EEG) which recorded the auditory evoked
potentials from the scalp in a standard 32-electrodes mounting cap, on a single subject. The subject
was placed in a soundproof booth and watched a mute movie while hearing the stimuli, instructed
to not pay attention to the heard sounds. Four stimuli were emitted in a random order. Stimuli
are presented in Figure 8. They correspond to sounds /ba/, /pa/ and two intermediates obtained
by modifying the offset of the plosives /b/ and /p/, taking intermediate values. The signals were
sampled at 5 kHz and the interstimulus interval was 410 ms. For each of the four stimuli, we
dispose of 1000 records, which we will study on a 210 equally spaced grid. For a more detailed
description of the experiment, we refer to Bellier et al (2013).

A high-pass filter was applied to the EEG signals to keep only the frequencies corresponding to
auditory activity and not to muscular activity. In addition, we consider averages of ten signals in
order to get rid of a possible random effect. We then dispose of 100 curves for each stimuli.

We first apply the generalized functional linear model to discriminate the responses to the two pure
stimuli /ba/ and /pa/. For i = 1, . . . , 100, the curve Xi(·) is an average auditory evoked potential
measured from the EEG for the ith stimulus heard. The binary label Yi corresponds to the stimulus,
taking the value 0 if the stimulus sound is /ba/ and the value 1 if it is the heard sound /pa/. We are
looking for the estimation of the function β(·) in the model (1,2) with a Binomial distribution.

The estimators β̂n(·) obtained by the means of the seven procedures implemented are given in
Figure 9. We first notice that the splines-based estimators is far different from the others. Simulation
studies have also put in evidence that the WNET procedure leads to more sparsity than schemes
with components reduction, which is still observed in Figure 9.

To better understand which part of the curves are discriminative, we give a representation of the

discrete wavelet transform of the estimated function β̂n(·) obtained jointly by G-WFPCR and A-
WFPCR in Figure 10. We can see that the most significant coefficients are located at frequencies that
effectively contains the difference between the sounds /ba/ and /pa/. Moreover, the shift between the
beginning of the register and the higher coefficients is not surprising as it is well-known that some
time is necessary for the well-known by medecine as the time for the sound reaching the auditory
cortex.
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Figure 8: The four stimuli, /ba/, /pa/, and two intermediates.
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Figure 9: Estimation β̂n(·) in the discrimination of /ba/ and /pa/ average evoked potentials.

Table 2 gives the predictive label associated with the sound /pa/. Concerning the quality of
classification of the pure sounds /ba/ and /pa/, Ac-WPCR allows an quasi-exact discrimination, with
only one false estimated label. WPCR, G-WPCR and A-WPCR also gives satisfactory results, with
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Figure 10: Discrete wavelet transform of β̂n(·) obtained by G-WFPCR.

/ba/
intermediate
stimulus 1

intermediate
stimulus 2

/pa/

SPCR 44% 50% 52% 58%
WCR 20% 23% 54% 77%
WNET 24% 35% 59% 76%
WPCR 3% 44% 52% 97%
G-WPCR 1% 32% 54% 93%
A-WPCR 1% 32% 54% 93%
Ac-WPCR 1% 36% 56% 100%

Table 2: Classification rate in the class corresponding to /pa/ for each of the four stimuli. Each curve
is an average of ten EEG signals.

a reasonable misclassification rate. But SPCR, WCR and WNET failed in discriminating the signals.

We then focus on the evoked potentials of the intermediate stimuli. Ideally, we would have liked
the first intermediate stimulus to be recognized as a /ba/, and the second one as a /pa/. Figure ??

illustrates that we cannot validate this hypothesis. Indeed, if we put label 0 on the first average
curves of evoked potential for the first intermediate stimulus and label 1 on the curves for the
second intermediate stimulus, the minimum prediction error rate is 39%, reached with G-WPCR
and A-WPCR. Yet we do not reject either the hypothesis, since we have established in simulation
studies that such rates are effectively observed, even with correctly labelled curves.
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Finally, we tried to see if it was possible to discriminate responses to the four stimuli in four classes.
It appears that no algorithm gives satisfactory results, all of them leading finally to a two-classes
distinction. Consequently, we could say that the fact the two intermediate stimuli are identified by
the patient respectively as /ba/ and /pa/ is a plausible hypothesis.

To conclude, the WPCR class estimators are more efficient than alternative methods to discriminate
these high frequency signals and thus seem preferable when studying such curves. Simulations
also show the good behaviour of the WPCR class estimators within a wide variety of frameworks.
Note only that a preference should be given to splines-based procedures when expecting a smooth
target function, like Heavisine, or else the number of components retained must be forced not to be
high.

Conclusion

This paper presents a estimation procedure in generalized functional linear models, based on
a wavelet decomposition of the explanatory curves. A principal component reduction is used
to ensure a reduction of the dimension of the model, combined with a penalization of the log-
likelihood criterion to ensure the sparsity of the estimated discriminative function. The estimators
are compared with the four similar schemes presented in Reiss et al (2013), and different cross-
validation steps are proposed. The simulation study enhances that estimators are competitive. Yet
in the real data application on EEG signals, the estimators developed in this paper seem more
efficient. The application consists in discriminating the cerebral response to different sounds, in
particular /ba/ and /pa/. The component-reduction and penalized approach proposed here lead to a
good discrimination of the pure sounds, when others methods failed. Nevertheless, the study does
not allow to determine precisely whether non-pure sounds give cerebral response comparable to
pure ones.
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