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Games induced by the partitioning of a graph∗

M. Grabisch† A. Skoda‡

March 26, 2012

Abstract

The paper aims at generalizing the notion of restricted game on a
communication graph, introduced by Myerson. We consider commu-
nication graphs with weighted edges, and we define arbitrary ways of
partitioning any subset of a graph, which we call correspondences. A
particularly useful way to partition a graph is obtained by comput-
ing the strength of the graph. The strength of a graph is a measure
introduced in graph theory to evaluate the resistance of networks un-
der attacks, and it provides a natural partition of the graph (called
the Gusfield correspondence) into resistant components. We perform
a general study of the inheritance of superadditivity and convexity for
the restricted game associated with a given correspondence. Our main
result is to give for cycle-free graphs necessary and sufficient conditions
for the inheritance of convexity of the restricted game associated with
the Gusfield correspondence.

Keywords: communication networks, coalition structure, cooperative
game, strength of a graph.

1 Introduction

Communication games were introduced by Myerson in 1977 [10]. These are
cooperative games (N, v) defined on the set of vertices N of an undirected
graph G = (N,E), where E is the set of edges. v is the characteristic
function of the game, v : 2N → IR, A �→ v(A) and verifies v(∅) = 0. The
graph G describes how the players of N can communicate: e = {i, j} ∈ E if
and only if the players i and j can directly communicate. For every coalition
A ⊆ N , we consider the induced restricted graph GA := (A,E(A)), where

∗The authors wish to thank an anonymous referee, whose comments permitted to
improve greatly the presentation of the paper.
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E(A) is the set of edges e = {i, j} ∈ E such that i and j are in A. We
denote by A/G the set of connected components of GA, that is, those sets F
which are maximal subcoalitions of A such that all pairs of players i, j in F
can communicate by a path in GA starting from i and ending at j. Myerson
defined the network-restricted game (N, v),

(1) v(A) =
∑

F∈A/G

v(F ), for all A ⊆ N.

The new game (N, v) takes into account how the players of N can commu-
nicate according to the graph G. Owen [11] proved that if (N, v) is super-
additive then (N, v) is also superadditive without any assumption on G.

The aim of the paper is to take a more general view, by noting that A/G
is a partition of A, and considering instead arbitrary ways of partitioning any
subset of vertices. We call correspondence any way of partitioning, formally
a mapping P on 2N , assigning to any nonempty A ⊆ N a partition P(A) of
A. Then the above formula becomes

(2) v(A) =
∑

F∈P(A)

v(F ), for all A ⊆ N,

which defines what we call the main restricted game associated with P.
Then natural questions arise: supposing that v is superadditive, will v be
superadditive too? What about convexity of v when v is convex? These
questions are important in cooperative game theory, since their answers
condition the existence of the set of imputations, of the core, and whether
the Shapley value lies in the core.

Of course, generality cannot be considered as an aim per se, and must
convey some meaning in order to be useful. To this aim, we consider in this
paper weighted graphs, where each edge e ∈ E has a weight u(e), whose
interpretation may depend on the context (e.g., a degree of friendship, a
level of communication, a resistance under attacks, or a security level, etc.).
In this framework, an obvious way of partitioning a coalition A ⊆ N , which
we denote by Pmin, is to remove all edges of minimum weight in A. The
reason to do this is that these edges are weak in some sense, and may
easily disappear. The components of P(A) should then show the “stronger”
components of the graph.

There is however a more clever way to formalize the notion of “strength”
of a graph, which has been introduced by Gusfield [9] for graphs with edges
of unit strength and generalized to arbitrary edge-strengths by Cunningham
[4]. The strength σ(G,u) of G is defined by:

(3) σ(G,u) := min
A⊆E

u(A)

k(A) − k(∅)

where k(A) is the number of connected components of the graph G =
(N,E \ A) (and k(∅) the number of components of G). σ can be seen
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as a measure of the resistance of the network G under attack. Indeed, if we
suppose that someone wants to destroy as much as possible the communica-
tion possibilities, and that the effort required to delete a link between two
players is proportional to the strength of this link, then σ(G,u) is the min-
imal average effort one has to make to augment the number of components
as much as possible by deleting a subset A of edges of G. The partition of N
in connected components corresponding to the graph G = (N,E \A), where
A is a minimizer in the definition of σ, provides a decomposition of N into
connected components which are strongly coherent in the following sense:
they take into account both the strength u(e) of the links of communication
and the combinatorial structure of the communication graph G.

We denote by PG the correspondence arising from the strength. The
restricted game v associated with PG reflects both the combinatorial struc-
ture of the graph, like the Myerson game, and the strength of the graph. We
will give sufficient and necessary conditions for the inheritance of convexity
from v to v for cycle-free graphs, and this constitutes the main result of the
paper (Theorem 12).

We propose also another kind of restricted game associated with PG, by
in some sense iterating the processus of partitioning, that is, we partition
by PG each component of the graph partitioned by PG, and continue this
process until the partition of N in singletons is obtained. Then, for a given
A ⊆ N , P(A) is built by taking the biggest possible components in the
successive partitions. We denote by ṽ the restricted game associated with
this partition, and show that convexity is inherited from v to ṽ in any case,
using results by Algaba et al. [1], and Faigle [5].

The article is organized as follows. We define in Section 2 the partitions
associated with the strength of a graph. After having defined the game
associated with a correspondence in Section 3, we establish necessary and
sufficients conditions for inheritance of superadditivity in Section 4. We give
a simple counterexample to inheritance of superadditivity (and therefore of
convexity) in the general case. Then we define a slightly weaker condition
than convexity in Section 5.1 and establish necessary conditions on the edge-
weights to have inheritance of this property. Then we prove that these
conditions are also sufficient in the case of cycle-free graphs for superadditive
games. We compute the Shapley value of the game (N, v) in the case of cycle-
free graphs in Section 6. Finally we study in Section 7 the inheritance of
superadditivity and convexity from (N, v) to (N, ṽ).
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2 Partition associated with the strength of a graph

Let G = (N,E) be a connected graph and let u : E → IR+ be a weight
function on the set E of edges. The strength of G is defined by:

(4) σ(G,u) := min
A⊆E

u(A)

k(A) − 1

where k(A) is the number of connected components of the graph G = (N,E\
A). When G and u are fixed and that there is no ambiguity, we simply
denote by σ the strength σ(G,u) of G. The computation of the strength is
a polynomial problem [4].

Let r be the rank function associated with G, i.e., for all A ⊆ E, r(A)
denotes the size of a maximal forest included in A. The rank function is
submodular :

(5) r(A ∪ B) + r(A ∩ B) ≤ r(A) + r(B) ∀A,B ⊆ E.

As G is a connected graph, we have r(E) = |V |−1 and r(E\A) = |V |−k(A).
Thus k(A) − 1 = r(E) − r(E \ A) and:

(6) σ(G,u) = min
A⊆E

u(A)

r(E) − r(A)
.

We will define the strength of a not necessarily connected graph by this
last formula because this last definition naturally extends to the case of a
matroid or a polymatroid (cf [7, 6, 13]).

Let us define the auxiliary function f by, ∀A ⊆ E:

(7)
f(A) := u(A) − σ(k(A) − 1)

= u(A) + σr(A) − σr(E).

As r is submodular and u is additive, f is submodular. By definition of σ,
∀A ⊆ E, f(A) ≥ 0 and f(A) = 0 with A = ∅ is equivalent to u(A)

k(A)−1 = σ,

that is, A realizes the minimum of the strength. Thus A = ∅ realizes the
minimum of the ratio in the definition of the strength if and only if A realizes
the minimum of the submodular function f . It is a classical result that the
family of sets which realizes the minimum of a given submodular function is
closed under union and intersection. Hence the family {A ⊆ E ; f(A) = 0}
is closed under union and intersection, and there exists a maximal element
Amax in F and a minimal one Amin in F . If Amin = ∅, we have:

(8) σ =
u(Amax)

k(Amax) − 1
=

u(Amin)

k(Amin) − 1

and for all A ⊆ E such that σ = u(A)
k(A)−1 we have:

(9) Amin ⊆ A ⊆ Amax.
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For example, if the graph G is a tree and if all weights are equal to 1, every
subset A = ∅ is a minimizer of the strength:

σ =
|A|

k(A) − 1
=

|A|

|A|
= 1.

We have Amax = E and Amin = ∅ and there are as many partitions of N
associated with the strength as nonempty subsets A of E. Especially each
edge e is a minimal minimizer but there is no smallest minimizer.

3 The main restricted game associated with a cor-

respondence

We now consider a correspondence P which associates to every subset A ⊆ N
a partition P(A) of A. Then for every game (N, v) we define the main
restricted game (N, v) associated with P by:

(10) v(A) =
∑

F∈P(A)

v(F ), for all A ⊆ N.

Thereafter we consider in particular two specific correspondences. We de-
note by PG the correspondence which associates to every subset A ⊆ N
the partition associated with the strength of the graph GA = (A,E(A)),
and we refer to it as the Gusfield correspondence. We denote by σ(A) the
strength of GA. As we have already noticed in Section 2, there may be
several minimizers for the strength of a given graph and therefore several
possible partitions. We will select the maximal subset Amax of E(A) we can
delete to achieve the minimum in the definition of the strength of GA (as
defined in Section 2), and denote by Pmax(A) the corresponding partition.
Therefore the main restricted game (N, v) associated with PG is defined by:

v(A) =
∑

F∈Pmax(A)

v(F ), for all A ⊆ N.

For a given subset A ⊆ N , we denote by Σ(A) the subset of edges of mini-
mum weight in E(A), i.e., e ∈ Σ(A) if and only if u(e) = mine′∈E(A) u(e

′
).

We denote by Pmin the correspondence which associates to every subset
A ⊆ N the partition Pmin(A) whose elements are the components of the
graph GA = (A,E(A) \ Σ(A)). For cycle-free graphs PG coincides with
Pmin. In particular, for a given subset A ⊆ N , we have Amax = Σ(A) and
the strength of GA satisfies σ(A) = mine

′
∈E(A) u(e

′
). For example, if G

is a tree with all edge-weights equal to 1, then for every subset A ⊆ N ,
Pmax(A) is the singletons partition of A and (N, v) is the trivial restricted
game defined by:

v(A) =
∑

i∈A

v({i}), for all A ⊆ N.

5



In the following sections, we are going to study conditions on partitions and
on the edge-weights to have inheritance of superadditivity and of convexity.
Some of the results are only valid for cycle-free graphs and we will then refer
to Pmin.

4 Inheritance of superadditivity

We first establish necessary and sufficient conditions for inheritance of super-
additivity. We recall that a game (N, v) is superadditive if, for all A,B ∈ 2N

such that A ∩ B = ∅, v(A ∪ B) ≥ v(A) + v(B). For any given subset
∅ = S ⊆ N , the unanimity game (N,uS) is defined by:

(11) uS(A) =

{

1 if A ⊇ S,
0 otherwise.

Theorem 1. Let G = (N,E, u) be an arbitrary weighted graph and P be an
arbitrary correspondence on N . Then the following claims are equivalent:

1) For all ∅ = S ⊆ N , uS is superadditive.

2) For all ∅ = S ⊆ N , uS is nondecreasing.

3) For all subsets A ⊆ B ⊆ N , P(A) is a refinement of the restriction of
P(B) to A.

4) For all superadditive game (N, v) the restricted game (N, v) is superad-
ditive.

Proof. A superadditive and non-negative function is obviously non-decreasing,
therefore 1) implies 2). Let us now suppose 2) is satisfied and let us consider
A ⊆ B ⊆ N . Let us denote by P(B) = {B1, B2, . . . , Bm} the partition of
B. For all Al ∈ P(A), we have:

(12) 1 = uAl
(A) ≤ uAl

(B).

But uAl
only takes values 0 or 1, therefore we have equality in (12). As

uAl
(B) =

∑m
j=1 uAl

(Bj), there exists a unique element Bj of P(B) such that
Al ⊆ Bj . Therefore 2) implies 3). Let us now suppose 3) is satisfied. Let us
consider a superadditive game (N, v) and A,B ⊆ N such that A ∩ B = ∅.
Then we have:

(13) v(A ∪ B) =
∑

C∈P(A∪B)

v(C) =
∑

C∈P(A∪B)

v((C ∩ A) ∪ (C ∩ B)).

As C ∩ A and C ∩ B are disjoint and v is superadditive, (13) implies:

(14) v(A ∪ B) ≥
∑

C∈P(A∪B)

(v(C ∩ A) + v(C ∩ B)) .
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As P(A) (resp. P(B)) is a refinement of P(A ∪ B) restricted to A (resp.
B), for every C ∈ P(A ∪ B) such that C ∩ A = ∅ (resp. C ∩ B = ∅), C ∩ A
(resp. C ∩ B) is a disjoint union of blocks of P(A) (resp. P(B)). As v is
superadditive, we obtain:

(15) v(A ∪ B) ≥
∑

C∈P(A∪B)

⎡

⎣

∑

F⊆C∩A,F∈P(A)

v(F ) +
∑

F⊆C∩B, F∈P(B)

v(F )

⎤

⎦

which yields:

(16) v(A ∪ B) ≥
∑

F∈P(A)

v(F ) +
∑

F∈P(B)

v(F ) = v(A) + v(B).

Therefore 3) implies 4). Finally, as 4) trivially implies 1), we have equiva-
lence of every claims.

Then Theorem 1 implies the following result.

Corollary 2. Let G = (N,E, u) be an arbitrary weighted graph. If we
consider on G the correspondence Pmin, then for every superadditive game
(N, v), the restricted game (N, v) is superadditive.

Proof. Let us consider A ⊆ B ⊆ N . We have either Σ(B) ∩ E(A) = Σ(A)
or Σ(B) ∩ E(A) = ∅. P(A) is the partition of A corresponding to the
components of the subgraph (A,E(A) \ Σ(A)). If two elements of A are
connected by a path γ in the subgraph (A,E(A) \Σ(A)), then they are also
connected by γ in the subgraph (B,E(B) \ Σ(B)). Therefore P(A) is a
refinement of the restriction of P(B) to A and the result is a consequence
of Theorem 1.

If we consider the Gusfield correspondence PG, the graph represented
in Figure 1 shows that we do not have inheritance of the superadditivity
in general, even if all weights are equal. Taking A = {1, 2, 3, 4} and B =

1 2

3

5 4

e1

e2

e3

e4

e5 e6

Figure 1:

{1, 2, 3, 4, 5}, we get Pmax(B) = {{1}, {2}, {3}, {4}, {5}} and Pmax(A) =
{{1}, {2, 3, 4}}. Therefore Pmax(A) is not a refinement of the restriction of
Pmax(B) to A, and Theorem 1 proves that there is no inheritance of the
superadditivity.

We end this section with an immediate consequence of Theorem 1.

Corollary 3. If there is inheritance of convexity for all unanimity games,
then there is inheritance of superadditivity for all superadditive games.

7



5 Inheritance of convexity

5.1 Necessary conditions

In this part we establish necessary conditions on the weight vector u for
the inheritance of convexity from the original communication game (N, v)
to the restricted game (N, v). Actually, we are going to establish necessary
conditions for a slightly weaker condition than convexity. Let F be a weakly
union-closed family1 of subsets of N such that ∅ /∈ F . A game v on 2N is
said to be F-convex if for all A,B ∈ F such that A ∩ B ∈ F , we have:

(17) v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B).

Of course convexity implies F-convexity. The F-convexity implies also the
following condition. If a game v on 2N is F-convex then, for all i ∈ N and
all A ⊆ B ⊆ N \ {i} such that A,B and A ∪ {i} ∈ F we have:

(18) v(B ∪ {i}) − v(B) ≥ v(A ∪ {i}) − v(A).

We say that a subset A ⊆ N is connected if the induced graph GA =
(A,E(A)) is connected. The family of connected subsets of N is obviously
weakly union-closed. We first establish that for this last family we have
equivalence of these two conditions.

Theorem 4. Let G = (N,E) be an arbitrary graph and let F be the family
of connected subsets of N . Then the following conditions are equivalent:

(19) v is F-convex.

(20)
v(B ∪ {i}) − v(B) ≥ v(A ∪ {i}) − v(A), ∀i ∈ N,∀A,B ∈ F s.t.
A ⊆ B ⊆ N \ {i} and A ∪ {i} ∈ F .

The result is well known if F = 2N . The proof is the same as Schrijver’s
[12] (p. 767) with minor changes (as we are dealing with connected subsets
of N). At first we have to prove the following lemma.

Lemma 5. Let G = (N,E) be an arbitrary graph. Let S ⊂ T be two
connected subsets of N . Then there exists a node t ∈ T \S such that T \ {t}
is still connected.

Proof. Let T
′
(resp. S

′
) be a spanning tree of GT (resp. GS). If t is a leaf

node of T
′
then T

′
\ {t} is a spanning tree of GT\{t}. Therefore if one of the

leaf nodes of T
′
belongs to T \S, the result follows. Otherwise all leaf nodes

of T
′
are in S and for all t ∈ T \S, T

′
\{t} is disconnected. But T

′
\{t}∪S

′

is a spanning connected subgraph of GT\{t}.

1F is weakly union-closed if A ∪ B ∈ F for all A, B ∈ F such that A ∩ B �= ∅.
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Proof of Theorem 4. We assume (20) is satisfied and we establish (19) by
induction on |A∆B|. If |A∆B| = 1, then we have A ⊆ B or B ⊆ A and
(19) is trivially satisfied. If |A∆B| = 2, we may suppose |A \ B| = 1 and
|B \ A| = 1 (otherwise A ⊆ B or B ⊆ A and (19) is trivial). Setting
S := A ∩ B, T := A and B \ A = {i}, we have S, T ∈ F with S ⊆ T , and
S∪{i} ∈ F . Then (19) is equivalent to v(T ∪{i})+v(S) ≥ v(T )+v(S∪{i}),
which is equivalent to (20) applied to S and T and therefore (19) is satisfied.
If now |A∆B| ≥ 3, we may assume by symmetry of A and B that |B\A| ≥ 2.
Applying Lemma 5, we can find t ∈ B\A such that B\{t} is still connected.
By induction, we apply (19) to the pair {A,B \ {t}}:

(21) v(A ∪ (B \ {t})) − v(B \ {t}) ≥ v(A) − v(A ∩ B)

because |A∆(B \ {t})| = |A∆B| − 1 < |A∆B|. By induction we now apply
(19) to the pair {A ∪ (B \ {t}), B}:

(22) v(A ∪ (B \ {t}) ∪ B) − v(B) ≥ v(A ∪ (B \ {t})) − v(B \ {t})

because |(A ∪ (B \ {t}))∆B| = |A \ B| + 1 < |A \ B| + |B \ A| = |A∆B|.
Let us observe that A ∪ (B \ {t}) is connected because A and B \ {t} are
connected and their intersection is A∩B = ∅. As A∪ (B \{t})∪B = A∪B,
(22) may be written as:

(23) v(A ∪ B) − v(B) ≥ v(A ∪ (B \ {t})) − v(B \ {t}).

(21) and (23) imply v(A ∪ B) − v(B) ≥ v(A) − v(A ∩ B).

Proposition 6. Let G = (N,E, u) be an arbitrary weighted graph and P be
an arbitrary correspondence on N . If for all non-empty subset S ⊆ N , uS

is superadditive then for all A,B ⊆ N the following claims are satisfied.

1) Each element of P(A ∪ B) is a finite union of elements of P(A) and
P(B).

2) If Aj ∈ P(A), Bk ∈ P(B) and Aj ∩ Bk = ∅ then Aj and Bk are subsets
of the same element of P(A ∪ B).

Proof. As for all non-empty S ⊆ N , uS is superadditive, Theorem 1 implies
that P(A) (resp. P(B)) is a refinement of P(A ∪ B)|A (resp. P(A ∪ B)|B).
That is each Aj ∈ P(A) (resp. Bk ∈ P(B)) is a subset of some component
Dj (resp. Dk) in P(A∪B). As A∪B = (∪jAj)

⋃

(∪kBk), each Dl ∈ P(A∪B)
is a finite union of such Aj ’s and Bk’s. 2) is an obvious consequence of 1)
as P(A ∪ B) is a partition.

Lemma 7. Let G = (N,E, u) be an arbitrary weighted graph, and P an
arbitrary correspondence on N . Let us consider A,B ⊆ N such that A∩B =
∅. If for all non-empty subset S ⊆ N , uS is superadditive, then the following
claims are equivalent.
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1) For all ∅ = S ⊆ N , we have :

(24) uS(A ∪ B) + uS(A ∩ B) ≥ uS(A) + uS(B).

2) P(A ∩ B) = {Aj ∩ Bk ; Aj ∈ P(A), Bk ∈ P(B), Aj ∩ Bk = ∅}.

Proof. We first prove that 1) implies 2). As A ∩ B is a subset of A and B,
Theorem 1 implies that P(A∩B) is a refinement of P(A)|A∩B and P(B)|A∩B .
Hence, for every Cl ∈ P(A∩B), there exists Aj ∈ P(A) and Bk ∈ P(B) such
that Cl ⊆ Aj ∩Bk. Taking S = Aj ∩Bk, 1) implies uS(A∪B)+uS(A∩B) ≥
uS(A)+uS(B) = 1+1 = 2. As uS only takes values 0 or 1, the last inequality
implies uS(A ∪ B) = uS(A ∩ B) = 1. Therefore there exists Cp ∈ P(A ∩ B)
such that Aj ∩Bk ⊆ Cp. As P(A∩B) is a partition, we must have Cl = Cp

and therefore Cl = Aj ∩ Bk.
We now prove 2) implies 1). If uS(A) = uS(B) = 0, then (24) is trivially
satisfied. Let us now assume w.l.o.g. uS(A) = 1. Then there exists Aj ∈
P(A) such that S ⊆ Aj. As A ⊆ A ∪ B, Theorem 1 implies that P(A)
is a refinement of P(A ∪ B)|A, i.e., there exists Dj ∈ P(A ∪ B) such that
Aj ⊆ Dj and therefore uS(A ∪ B) = 1. If uS(B) = 0, then (24) is satisfied.
If uS(B) = 1, there exists Bk ∈ P(B) such that S ⊆ Bk. Hence S ⊆ Aj ∩Bk

and 2) implies Aj ∩ Bk ∈ P(A ∩ B), therefore uS(A ∩ B) = 1 and (24) is
still satisfied.

Theorem 8. Let G = (N,E, u) be an arbitrary weighted graph, P an arbi-
trary correspondence on N , and F a weakly-union closed family of subsets of
N such that ∅ /∈ F . If for each non-empty subset S ⊆ N , uS is superadditive,
then the following claims are equivalent.

1) For all non-empty subset S ⊆ N , the game (N,uS) is F-convex.

2) For all A,B ∈ F such that A ∩ B ∈ F , P(A ∩ B) = {Aj ∩ Bk ; Aj ∈
P(A), Bk ∈ P(B), Aj ∩ Bk = ∅}.

Moreover if F = {A ⊆ N ;A connected} then 1) and 2) are equivalent to:

3) For all i ∈ N and for all A,B ∈ F , A ⊆ B ⊆ N \{i} such that A∪{i} ∈
F , we have for all A

′
∈ P(A ∪ {i}), P(A)|A′ = P(B)|A′ .

Proof. If A∩B ∈ F then A∩B = ∅. Applying Lemma 7, we have equivalence
of 1) and 2). Let us suppose 2) is satisfied and let us consider A ⊆ B ⊆ N \
{i}. As (A∪{i})∩B = A, we have P(A) = {Aj ∩Bk ; Aj ∈ P(A∪{i}), Bk ∈
P(B), Aj ∩ Bk = ∅} and it implies 3). Let us now suppose 3) is satisfied.
Applying Lemma 7 to the pair {A∪ {i}, B}, we get uS(B ∪ {i}) − uS(B) ≥
uS(A∪{i})−uS(A), ∀i ∈ N,∀A,B ∈ F s.t. A ⊆ B ⊆ N \{i} and A∪{i} ∈
F . Therefore if F = {A ⊆ N ;A connected}, then Theorem 4 implies 1).
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Let γ = (e1, e2 . . . , em) be an induced elementary path of G (i.e. a
path with no repeated vertices which is an induced subgraph of G) with
ei = {i, i + 1} for 1 ≤ i ≤ m. We denote by uj the weight of ej .

Proposition 9. Let G = (N,E, u) be an arbitrary weighted graph, and F the
family of connected subsets of N . Let us consider the correspondence Pmin

or PG. If for every unanimity game (N,uS), the restricted game (N,uS) is
F-convex, then for all induced elementary paths γ = (e1, e2 . . . , em) in G,
and for all i, j, k such that 1 ≤ i < j < k ≤ m, the edge-weights satisfy:

(25) uj ≤ max(ui, uk).

Thus we have a property of convexity on the edge-weights along every
induced elementary path in G.

Proof. Suppose there exists i, j, k such that 1 ≤ i < j < k ≤ m and uj >
max(ui, uk). At first we make several reductions of this situation. We can
fix ei and ek and select an edge ej such that uj is maximal for all ej between
ei and ek. We now fix such an ej and we select a maximal index i such that
i < j and ui < uj. In the same way, we select k minimal such that j < k
and uk < uj. For all l ∈]i, k[ we now have by construction ui < ul = uj and
uk < ul = uj . We can now shrink the path γ to its restriction from i to k+1
and suppose that i = 1 and k = m. If necessary we can also exchange γ
with the inverse path starting from m + 1 and ending at 1 to have u1 ≥ um.
Therefore we can suppose:

(26) ∀l, j ∈]1,m[, ul = uj > u1 ≥ um.

We define the sets A = {2, 3, . . . ,m}, B = {1, 2, . . . ,m} as represented in
Figure 2 and we denote now by i the vertex m + 1. We have A ⊂ B ⊂
N \ {i} and A,B and A ∪ {i} are connected. For every S ⊆ N , P(S) is

1 2 m i
u1 u2 u

m−1 um
B

A

Figure 2:

obtained by deleting the edges with minimum weight in E(S). Therefore, as
a consequence of (26), we have P(A∪{i}) = {A, {i}}, P(B) = {A, {1}}, and
P(A) = {{2}, {3}, . . . , {m}}. Then A ∈ P(A∪{i}) but P(B)|A = A = P(A)
and this contradicts Theorem 8.

Remark 1. If u1 (resp. um) is the smallest weight of the edges of γ, then
the condition of convexity of the ui’s means that the sequence (ui)

m
i=1 is

non-decreasing (resp. non-increasing) as ui ≤ max(u1, ui+1) = ui+1 (resp.
ui+1 ≤ max(ui, um) = ui) for all 1 ≤ i ≤ m − 1.

11



Remark 2. We cannot restrict the convexity condition to only every 3-
uple of consecutive edges ui ≤ max(ui−1, ui+1), 2 ≤ i ≤ m − 1, because of
the obvious counter-example: u2 = u3 > max(u1, u4). Nevertheless u2 =
max(u1, u3) and u3 = max(u2, u4).

Now we show there exists another necessary F-convexity condition asso-
ciated with every induced subgraph (A,E(A)) of G corresponding to a star.
A star Sk corresponds to a tree with one internal node and k leaves. We
establish the result for stars with three leaves. The generalization to stars
of greater size is immediate. We consider a star S3 with vertices {1, 2, 3, 4}
and edges e1 = {1, 2}, e2 = {1, 3} and e3 = {1, 4}.

Proposition 10. Let G = (N,E, u) be an arbitrary weighted graph, and
F the family of connected subsets of N . Let us consider the correspon-
dence Pmin or PG. If for every unanimity game (N,uS), the restricted game
(N,uS) is F-convex, then for every induced star of type S3 of G, the edge-
weights u1, u2, u3 satisfy, after renumbering the edges if necessary:

u1 ≤ u2 = u3.

Proof. We have to prove that we cannot have two edge-weights strictly
smaller than a third one. By contradiction let us assume we have u1 ≤ u2 <
u3, after renumbering if necessary. Let us consider the situation of Figure 3

3

1 2

4

u2

u3

u1

B

A

Figure 3:

where A = {1, 4}, B = {1, 3, 4}, and i = 2. By deleting the edge of minimal
weight we obtain successively: P(B) = {A, {3}}, P(A∪{i}) = {A, {i}} and
P(A) = {{1}, {4}}. Therefore A ∈ P(A∪{i}) but P(B)|A = A = P(A) and
it contradicts Theorem 8.

Remark 3. For an induced star with n edges e1, e2, . . . , en the weights verify
u1 ≤ u2 = u3 = · · · = un after renumbering the edges if necessary.

We can easily obtain necessary conditions for inheritance of convexity
in the case of an induced cycle in G on m vertices with m ≥ 4. Denote by
1, 2, . . . ,m the nodes of an induced cycle C and by e1, e2, . . . , em the edges
with ei = {i, i + 1} for 1 ≤ i ≤ m − 1 and em = {1,m}.

If m = 3, it is easy to see that for every choice of the weights u1, u2, u3

we have conservation of the convexity. Let N = {1, 2, 3}, i = 3, and consider
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∅ = A ⊆ B ⊆ N \{i}. If A = B then v(B∪{i})−v(B) = v(A∪{i})−v(A). If
A ⊂ B, we can suppose A = {2} and B = {1, 2} as represented in Figure 4.
Then v(A) = v(2), v(A ∪ {i}) = v(2) + v(i) and v(B) = v(1) + v(2). If

i

1 2

e3 e2

e1
AB

Figure 4:

v(B∪{i}) = v(B)+v(i) then v(B∪{i})−v(B) = v({1, 2})+v(i)−v(1)−v(2).
If v(B ∪ {i}) = v({1, i}) + v(2) then v(B ∪ {i}) − v(B) = v({1, i}) − v(1).
As v is supermodular, we have in these two cases v(B ∪ {i}) − v(B) ≥ v(i).
If v(B ∪ {i}) = v(1) + v(2) + v(i) then v(B ∪ {i}) − v(B) = v(i). Therefore
in all cases we have v(B ∪ {i}) − v(B) ≥ v(A ∪ {i}) − v(A).

For m ≥ 4 the inheritance of convexity implies strong restrictions on the
edge-weights.

Proposition 11. Let G = (N,E, u) be an arbitrary weighted graph, and
F the family of connected subsets of N . Let us consider the correspon-
dence Pmin or PG. If for every unanimity game (N,uS), the restricted game
(N,uS) is F-convex, then for every induced cycle of G, C = (1, e1, 2, e2, . . . ,
m, em, 1) with m ≥ 4, the edge-weights satisfy, after renumbering the edges
if necessary:

u1 ≤ u2 ≤ u3 = · · · = um.

Moreover, if we consider the correspondence PG and if we have also inheri-
tance of superaddivity then:

u1 = u2 = u3 = · · · = um,

or
u1 = u2 <

u3

2
< u3 = · · · = um.

Proof. Let us define M := max1≤i≤m ui. Let us consider a maximal con-
nected subset A ⊆ C such that for all e ∈ E(A), u(e) = M . If |C \ A| ≤ 1
the result is obviously satisfied. Let us assume |C \A| ≥ 2. After renumber-
ing if necessary, we may assume A = {2, 3, . . . , l + 1}, with 2 ≤ l ≤ m − 2,
ei = {i, i+1} for 2 ≤ i ≤ l, e1 = {1, 2}, and el+1 = {l+1, l+2} as represented
in Figure 5 for l = 3. As A is maximal we have u1, ul+1 < M . Let us consider
B = A∪{l+2} and i = 1. Then we have P(A∪{i}) = {A, {i}} and P(B) =
{A, {l + 2}}. Therefore P(B)|A = A = P(A) = {{2}, {3}, . . . , {l + 1}} and
this contradicts Theorem 8.
Let us now assume that there is also inheritance of superadditivity. Then
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4

3 5

2 1
e1

e5

e4e3

e2

A

B

Figure 5:

by Theorem 1, the following condition is satisfied:

(27) P(A) is a refinement of P(B)|A, ∀A ⊆ B ⊆ N.

Let us consider σ(C) = min0≤k≤m−2

(

u1+u2+kM
1+k

)

. Suppose first u1 + u2 ≥

M . Then, σ(C) corresponds to k = m − 2, and therefore Pmax(C) is ob-
tained by deleting all edges, i.e., Pmax(C) = {{1}, {2}, . . . , {m}}. Then
condition (27) applied to A = {1, 2, 3, 4} and B = C implies u1 = u2 = M .
Suppose now u1 + u2 < M . Then, σ(C) is obtained for k = 0. Therefore
Pmax(C) is obtained by deleting e1 and e2, i.e., Pmax(C) = {{2}, C \ {2}}
and condition (27) implies u1 = u2. Finally, as u1 + u2 < M , we get
u1 = u2 < M

2 .

We end this section with a counterexample to the inheritance of convex-
ity. Let us consider the situation represented in Figure 6. We suppose:

(28) u2 = u3 < u4 < u1.

We define A1 = B1 = {v1, v2}, A2 = {v5}, B2 = {v4, v5}, A = A1 ∪ A2 and
B = B1 ∪B2. According to (28), we have u2 = u3 < σ(B2) = u4 < σ(A1) =

v1 v2 i v4 v5
e1 e2 e3 e4

A1 = B1

A2

B2

Figure 6:

σ(B1) = u1. Therefore P(B) = {B1, {v4}, {v5}}, P(A∪{i}) = {A1, A2, {i}},
and P(A) = {{v1}, {v2}, A2}. Thus we have A1 ∈ P(A∪{i}) but P(B)|A1

=
A1 = P(A)|A1

. Then Theorem 8 proves there is no inheritance of convexity
even if the condition of Proposition 9 is satisfied. This counterexample shows
that the preceding conditions on edge-weights have no chance to be sufficient
if we don’t consider connected subsets and therefore the F-convexity.

5.2 Sufficient conditions

Let F be the family of connected subsets of N . Henceforth G will be a cycle-
free graph. Therefore Pmin = PG. We will now prove that the preceding
necessary conditions are also sufficient in this case for superadditive games.

14



Theorem 12. Let G = (N,E, u) be a cycle-free weighted graph. Let us
consider the correspondence P = Pmin. For every superadditive and F-
convex game (N, v), the restricted game (N, v) is F-convex if and only if the
following conditions are satisfied:

1) (Convexity condition) For all paths γ = {e1, e2, . . . , em} in G and for all
i, j, k such that 1 ≤ i < j < k ≤ m, we have uj ≤ max(ui, uk).

2) (Branching condition) For all stars Sn, n ≥ 3, with edges e1, e2, . . . , en,
the weights satisfy u1 ≤ u2 = u3 = . . . = un after renumbering the edges
if necessary.

Corollary 13. Let G = (N,E, u) be a cycle-free weighted graph. If we
consider on G the correspondence P = Pmin, then the following properties
are equivalent:

1) For each unanimity game (N,uS), the restricted game (N,uS) is F-
convex.

2) For each superadditive and F-convex game (N, v), the restricted game
(N, v) is F-convex.

3) For all A,B ∈ F such that A ∩ B ∈ F , P(A ∩ B) = {Aj ∩ Bk;Aj ∈
P(A), Bk ∈ P(B) s.t. Aj ∩ Bk = ∅}.

4) For all i ∈ N , for all A ⊂ B ⊆ N \ {i} with A,B,A ∪ {i} ∈ F , and for
all A

′
∈ P(A ∪ {i}), P(B)|A′ = P(A)|A′ .

Proof. Let us assume 1) is satisfied. Then Propositions 9 and 10 imply that
the conditions of Theorem 12 are satisfied and therefore 2) is satisfied. Ob-
viously 2) implies 1). As we consider the correspondence Pmin, Corollary 2
implies that we have inheritance of superadditivity. Then by Theorem 8, 1)
is equivalent to 3) and 4).

Before proving Theorem 12, we establish some useful lemmas.

Lemma 14. Let us consider subsets A,B ⊆ N and a partition {B1, B2, . . . ,
Bp} of B. If A,Bi, and A ∩ Bi ∈ F , for all i ∈ {1, . . . , p}, then for every
F-convex game (N, v) we have:

(29) v(A ∪ B) +

p
∑

i=1

v(A ∩ Bi) ≥ v(A) +

p
∑

i=1

v(Bi).

Proof. We prove the result by induction. (29) is obviously satisfied for
p = 1. Let us assume it is satisfied for p and let us consider a partition
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{B1, B2, . . . , Bp, Bp+1} of B. We set B
′

= B1 ∪ B2 ∪ . . . ∪ Bp. The F-
convexity of v applied to the subsets A∪B

′
and Bp+1 provides the following

inequality:

(30) v((A ∪ B
′

) ∪ Bp+1) + v((A ∪ B
′

) ∩ Bp+1) ≥ v(A ∪ B
′

) + v(Bp+1).

By induction (29) is valid for B
′
:

(31) v(A ∪ B
′

) +

p
∑

i=1

v(A ∩ Bi) ≥ v(A) +

p
∑

i=1

v(Bi).

Adding (30) and (31) we obtain the result for p + 1.

Lemma 15. Let us consider a correspondence P on N and subsets A ⊆
B ⊆ N such that P(A) = P(B)|A. If A ∈ F and if all elements of P(A)
and P(B) are in F , then for every F-convex game (N, v) we have:

(32) v(B) − v(B) ≥ v(A) − v(A).

Proof. If P(B) = {B1, B2, . . . , Bp} then P(A) = {A∩B1, A∩B2, . . . , A∩Bp},
and Lemma 14 implies (32).

The following lemma gives a simple condition ensuring Pmin(A) is in-
duced by Pmin(B) for A ⊆ B.

Lemma 16. Let G = (N,E, u) be a cycle-free weighted graph and let us
consider A ⊆ B ⊆ N such that σ(A) = σ(B). Then Pmin(A) = Pmin(B)|A.
Moreover if A ∈ F then for every F-convex game (N, v) we have:

(33) v(B) − v(B) ≥ v(A) − v(A).

Proof. We have to prove for every component Bk of Pmin(B) with Bk∩A = ∅,
that Bk ∩ A is a component Ak of Pmin(A). Let α0 be a fixed vertex of
A ∩ Bk and Ak be the component of Pmin(A) which contains α0. We will
prove A ∩ Bk = Ak. As σ(A) = σ(B), Σ(A) = E(A) ∩ Σ(B). Let now α1

be another vertex of Ak and γ be a path in Ak from α0 to α1. Each edge e
of γ is in E(A) \Σ(A) and therefore satisfies u(e) > σ(A). As σ(A) = σ(B)
and A ⊆ B, each edge e of γ is in E(B) and satisfies u(e) > σ(B), i.e.,
e ∈ E(B) \ Σ(B). Therefore γ is a path from α0 to α1 in B and therefore
α1 ∈ Bk. That is :

(34) Ak ⊆ A ∩ Bk.

Let now α1 be a vertex in A ∩Bk. As A is connected, there exists a path γ
from α0 to α1 in A and possibly another one γ

′
from α0 to α1 in Bk. But

as G has no cycle γ = γ
′
and γ is a path in A ∩ Bk. For each edge e of γ, e

is in E(A) and in E(B) \ Σ(B), that is u(e) > σ(B). As σ(A) = σ(B), we
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have also u(e) > σ(A) and therefore e ∈ E(A) \ Σ(A). Thus γ is a path of
a component of Pmin(A). As α0 ∈ Ak, γ is a path in Ak and then α1 ∈ Ak.
That is:

(35) A ∩ Bk ⊆ Ak.

Following (34) and (35), we have shown A ∩ Bk = Ak. Lemma 15 implies
(33).

Lemma 17. Let G = (N,E, u) be a cycle-free weighted graph. Let us assume
that the edge-weight function u satisfies the convexity conditions 1) and 2)
of Theorem 12. If A and B are connected, A ⊆ B ⊆ N \ {i}, j ∈ A∩B and
e := {i, j} ∈ E, then either u(e) ≥ σ(A) ≥ σ(B) or σ(A) = σ(B) > u(e).

Proof. As A ⊆ B, we have σ(A) ≥ σ(B). Let us assume:

(36) σ(A) > u(e).

As A and B are connected, we can consider a path γ1 = (e1, e2, . . . , em)
in GA such that u(e1) = σ(A) and j is an end-vertex of em, and a path
γ2 = (e

′

1, e
′

2, . . . , e
′

r) in GB such that u(e
′

1) = σ(B) and j is an end-vertex
of e

′

r, as represented in Figure 7. The convexity condition applied to the

j i
e1 e2 em

e
′

1
e
′

2

e
′

r

e

Figure 7:

path γ1 ∪ {e} and (36) imply u(em) ≤ max(u(e1), u(e)) = u(e1) = σ(A). As
em ∈ E(A), u(em) = σ(A) and using again (36), we obtain:

(37) u(em) > u(e).

If em = e
′

r, we have u(e
′

r) = u(em) = σ(A). If now em = e
′

r, the branching
condition for the three edges em, e

′

r, e and (37) imply again u(em) = u(e
′

r) =
σ(A). The convexity condition applied to the path γ2 ∪ {e} imply u(e

′

r) ≤
max(u(e

′

1), u(e)) and therefore:

(38) σ(A) ≤ max(σ(B), u(e)).

Then (36) and (38) imply σ(A) ≤ σ(B). Therefore we have σ(A) = σ(B) >
u(e).
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Proof of Theorem 12. We have already seen in Section 5.1 that conditions
1 and 2 are necessary. We now prove they are sufficient. Let (N, v) be a
given F-convex game. According to Theorem 4, we have to prove that, for
all i ∈ N , for all A ⊆ B ⊆ N \ {i} and A,B,A ∪ {i} ∈ F , we have:

(39) v(B ∪ {i}) − v(B) ≥ v(A ∪ {i}) − v(A).

We will consider P(A) = {A1, A2, . . . , Ap} and P (B) = {B1, B2, . . . , Bq}.
As A ∪ {i} is connected, there exists an edge e = {i, j} with j ∈ A (and
therefore j ∈ A∩B). As A is connected and as G is cycle-free, e is necessarily
unique. Using Lemma 17, we have several cases to consider.
Case 1 σ(A) = σ(B) > u(e). Then Pmin(A ∪ {i}) = {A, {i}}, Pmin(B ∪
{i}) = {B, {i}}, and therefore v(A ∪ {i}) = v(A) + v(i) and v(B ∪ {i}) =
v(B) + v(i). Then (39) becomes equivalent to v(B) − v(B) ≥ v(A) − v(A).
As σ(A) = σ(B), Lemma 16 implies that this last inequality is satisfied.
Case 2 u(e) = σ(A) ≥ σ(B). Then Pmin(A ∪ {i}) = {Pmin(A), {i}} and
v(A ∪ {i}) = v(A) + v(i). According to Corollary 2, v is superadditive.
Therefore v(B ∪ {i}) − v(B) ≥ v(i) = v(i) = v(A ∪ {i}) − v(A).
Case 3 u(e) > σ(A) ≥ σ(B). Let us suppose w.l.o.g. j ∈ A1 ∩ B1. Then
P(A∪{i}) = {A1∪{i}, A2, . . . , Ap} and P(B∪{i}) = {B1∪{i}, B2, . . . , Bq}.
We obtain:

(40) v(A ∪ {i}) − v(A) = v(A1 ∪ {i}) − v(A1),

and

(41) v(B ∪ {i}) − v(B) = v(B1 ∪ {i}) − v(B1).

As A ⊆ B and as G is a cycle-free graph, we have Σ(B) ∩ E(A) = ∅ or
Σ(B) ∩ E(A) = Σ(A). Therefore A1 ⊆ B1 and by F-convexity of (N, v) we
have:

(42) v(B1 ∪ {i}) − v(B1) ≥ v(A1 ∪ {i}) − v(A1).

Using (40) and (41), (42) is equivalent to (39).

Let us observe that, as G has no cycle, if v is superadditive, v is super-
additive using Corollary 2. Hence if A and B are connected and A ∩ B = ∅
we still have v(A ∪ B) ≥ v(A) + v(B). For all connected subsets A and B
of N , we have v(A∪B) + v(A∩B) ≥ v(A) + v(B) (assuming v is F-convex
and superadditive).

6 Shapley value

We now investigate the computation of the Shapley value of the game v
in the case of cycle-free graphs. We assume that G = (N,E) is a tree

18



(results easily extend to forests). To compute the Shapley value, we have
to compute v(S ∪ i) − v(S) for every S ⊆ N \ i and every i ∈ N . Let us
consider some fixed i and S. Let S1, . . . , Sk be the connected components
of S, k ≥ 1, and suppose that i is linked to the components S1, . . . , Sl and
not to the others, with l ∈ {0, 1, . . . , k}, l = 0 indicating that no component
is linked to i. We remark that all cases are covered: S and S ∪ i connected
correspond to k = l = 1, S connected and S ∪ i not connected correspond
to k = 1, l = 0, etc. Since S1, . . . , Sl are connected to i, there exist edges
{i, j1}, . . . , {i, jl} from i to each S1, . . . , Sl, with weights u1, . . . , ul, assuming
w.l.o.g. u1 ≤ · · · ≤ ul, and u0 is the minimal weight on S. Put Pmin(Sℓ) =
{Sℓ,1, . . . , Sℓ,pℓ

}, ℓ = 1, . . . , k with Sℓ,1 ∋ jℓ for ℓ = 1, . . . , l. Then

v(S ∪ i) − v(S)(43)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

v(S1,1 ∪ · · · ∪ Sl,1 ∪ i) − v(S1,1) − · · · − v(Sl,1)

if u0 < u1
∑m

r=1 v(Sr) + v(Sm+1 ∪ · · · ∪ Sl ∪ i) −
∑l

r=1

∑pr

s=1 v(Sr,s)

if u1 = · · · = um < min(u0, um+1)

v(Sm+1,1 ∪ · · · ∪ Sl,1 ∪ i) − v(Sm+1,1) − · · · − v(Sl,1)

if u1 = · · · = um = u0 < um+1.

Note that m = l is allowed, in which case Sm+1 ∪ · · · ∪ Sl = ∅ and Sm+1,1 ∪
· · · ∪ Sl,1 = ∅.

The above formula, although complicated, gives an explicit expression
of v(S ∪ i) − v(S) for all S, i. Another way of computing the Shapley value
is to compute v iteratively using a suitable ordering of the players, say,
i1, i2, . . . , in, for which the induced subgraph of the players i1, . . . , ik is an
extension of the one of i1, . . . , ik−1 by at most one edge. Such an ordering
can be produced by the following algorithm:

Sequencing algorithm

Init: N set of nodes, i ∈ N . L ← {i}, N ← N \ {i}.

Do Until N = ∅:

• Choose j ∈ N which is neighbor of some i ∈ L

• L ← L ∪ {j}, N ← N \ {j}

End do

We claim that at each step, only one edge is added to the subgraph. Indeed,
at each step the subgraph induced by L is connected, and being a subgraph
of N , is a tree. Then any new node j has exactly one link in L, otherwise
there would exist a cycle in L.
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Supposing that the sequence i1, i2, . . . , in is built and that all values v(S)
with S ⊆ {i1, . . . , ik−1} have been computed, the computation of v(S ∪ ik)
is done as follows:

v(S ∪ ik) =

⎧

⎪

⎨

⎪

⎩

v(S) + v(i), if u(e) < uo

v(S1 ∪ i) + v(S2) + · · · + v(Sl), if u(e) > u0

v(S) + v(i), if u(e) = u0,

with, as before, u0 the minimal weight in S, Pmin(S) = {S1, . . . , Sl}, and e
the new edge formed, linking i to S1.

We finish this section by giving a property which may considerably sim-
plify the calculus of the Shapley value. A player i is called a dummy player
in a game (N, v) if v(S ∪ {i}) = v(S) + v({i}) for every S ⊆ N \ i.

Proposition 18. If there exists a dummy player i for v, then either {i} has
degree at most 1, or all players are dummy for v.

Proof. Suppose i is dummy for v. Then for any S ⊆ N \ i,

(44) v(S ∪ {i}) = v(S) + v({i}) = v(S) + v({i}).

According to (43), this happens if there is no edge from i to S (l = 0).
Therefore, one possibility is that i has no edge, i.e., it has degree 0. Suppose
then that this is not the case. Then there exist, say m edges adjacent to i,
denoted by {i, j1}, . . . , {i, jm} with weight u1, . . . , um. Only the 3d equation
in (43) with m = l permits to get v(S ∪ i) − v(S) = v(i), which means that
u1 = u2 = · · · = um = mine∈E(S) u(e).

Claim: any edge in the graph has same weight u1 if m > 1.
Indeed, take any edge e = {k, l} in E. If k or l = i, then we know

already that u(e) = u1. Suppose now there exists p ∈ {1, . . . ,m} such that
k or l = jp and consider S = {k, l}. Then imposing (44) for S shows that
u(e) = u1 is the only possibility. Suppose finally that both k, l differ from
i, j1, . . . , jm. If there is no edge linking j1 to k or l, let us take S = {j1, k, l}.
The partition of S is the partition in singletons since {k, l} is not connected
with j1. Therefore to satisfy (44), the partition of S ∪ {i} must also be in
singletons, which implies that u(e) = u1. If there is an edge between j1 and
k or l, then, as the graph is cycle free, there is no edge linking k or l to jp

for p ∈ {2, . . . ,m}. Taking now S = {j2, k, l} we still get u(e) = u1.
Now if all weights are equal, v is additive, therefore all players are

dummy.

7 A second family of restricted games associated

with the strength of a graph

Let (N, v) be a game on the set N of vertices of the graph G = (N,E) and
let u : E → IR+ be a weight function on the set of edges. For a family F
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of subsets of N and a subset A of N , we denote by F(A) the elements of F
included in A.

(45) F(A) := {F ∈ F ;F ⊆ A}.

We consider on the set of players N a hierarchy of coalition structures, that
is, a finite number of partitions P0,P1, . . . ,Pm of N such that P0 = {N},
Pm = {{1}, {2}, . . . , {n}} is the singleton coalition structure, and:

(46) Pm ≤ Pm−1 ≤ · · · ≤ Pi+1 ≤ Pi ≤ · · · ≤ P1 ≤ P0

where Pi+1 ≤ Pi means that every block of Pi+1 is a subset of a block of Pi.
P1 is one of the partitions of N given by the strength of the graph G. For
every A ∈ Pi, we consider the subgraph GA = (A,E(A)). We select a
minimizer of σ(GA) and consider the corresponding partition of A. This
partition provides the blocks of Pi+1 which are subsets of A. Let F be the
family

(47) F = P0 ∪ P1 ∪ . . . ∪ Pm.

We define a new game (N, ṽ) by:

(48) ṽ(A) :=
∑

F∈F(A), F maximal

v(F ) for all A ∈ N.

The family of sets F obviously satisfies the following property. For all A,B ∈
F , one and only one of the following properties is verified: A ∩ B = ∅, or
A ⊂ B or B ⊂ A or A = B. We say that F is a nested family. Therefore F
is also an intersecting system2, F is also weakly union-closed3 and therefore
F ∪ ∅ is also a partition system4 (cf. [1, 5, 8]).

We recall that a game (N, v) is convex if the function v is supermodular
i.e., for all A,B ∈ 2N , v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B). We say v is
F-superadditive if for all A,B ∈ F such that A ∩ B = ∅, we have:

(49) v(A ∪ B) ≥ v(A) + v(B).

Observe that for such games, since F is a nested family, we have for all
A,B ∈ F :

(50) v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B).

A game v defined on an intersecting system (N,F) and satisfying condition
(50) is called an intersecting convex game (cf. [5]). Algaba et al. [1] and
Faigle [5] have proved:

2If A and B ∈ F and if A ∩ B �= ∅ then A ∩ B and A ∪ B are in F .
3If A and B are in F and if A ∩ B �= ∅ then A ∪ B ∈ F .
4For all A ∈ F , the maximal subsets F ∈ F(A) form a partition of A, and the singletons

are in F .
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Theorem 19. If (N,F , v) is an intersecting convex game, then the re-
stricted game (N, 2N , ṽ) defined by:

ṽ(A) =
∑

F∈F(A), F maximal

v(F )

for all A ⊆ N , is a convex game.

This last theorem applies to any preceding nested family F we have
constructed by (45), (46), (47) and (48) using the strength of a graph, and
therefore the following theorem is a corollary of Theorem 19:

Theorem 20. If F is a family of subsets of N associated with the strength of
a graph G(N,E) by means of the preceding hierarchy of coalitions structures,
and if (N,F , v) is an F−superadditive game on N , then the restricted game
(N, 2N , ṽ) is a convex game.

We give in Appendix A a direct proof following the method of A. Van
den Nouweland and P. Borm (1991) [14].

8 Conclusion

All preceding games are point games on the set N of vertices of G. Borm,
Owen and Tijs in 1990 [3] have introduced arc games on the set E of edges
of G and the position value. We could also consider arc games in the same
spirit, by substituting to the partition into connected components the par-
tition associated with the strength of the graph. Aziz et al. [2] have in-
vestigated some properties of the wiretapping game associated with a given
graph. The value of this game is precisely equal to the reciprocal of the
strength of the graph. Using the strength of the subgraphs they construct
a prime partition of the set of edges which is of main interest to analyse the
wiretapping game. By means of this prime partition we could also construct
for a given arc game v on E a new restricted game. It would be interesting
to study inheritance of superadditivity and convexity for this type of games.
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Mathématiques, 133(2):169–185, 2009.

[14] A. van den Nouweland and P. Borm. On the Convexity of Communi-
cation Games. International Journal of Game Theory, 19(4): 421-30,
1991.

23



A Proof of Theorem 20

We give a direct proof following the method of A. Van den Nouweland and
P. Borm (1991) [14].

Proof. For all A,B ∈ N such that A∩B = ∅, we have v(A∪B) ≥ v(A)+v(B).
Let us now consider A,B and i ∈ N such that A ⊂ B ⊆ N \ {i}. We have
to prove ṽ(A ∪ {i}) − ṽ(A) ≤ ṽ(B ∪ {i}) − ṽ(B). By definition, we have:

(51) ṽ(A) =
∑

C∈F(A), C maximal

v(C)

and

(52) ṽ(A ∪ {i}) =
∑

C∈F(A∪{i}), C maximal

v(C).

Let us denote by C(i) the unique maximal set C ∈ F(A ∪ {i}) such that
i ∈ C. Let us denote by C the family:

(53) C := {C ∈ F(A), C maximal in F(A) and C ⊂ C(i)}.

Observe that as i /∈ A, C(i) = {i} ∪ (
⋃

C∈C C) (If C ∈ F , C ⊂ A ∪ {i}, C is
maximal in F(A∪ {i}) and i /∈ C, then C ⊂ A and C is maximal in F(A).)
Observe also that if C ∈ F(A ∪ {i}), C is maximal and C ⊂ C(i) then
C ∩ C(i) = ∅ (partition) and C ∈ F(A) with C maximal in F(A). Hence:

(54) ṽ(A ∪ {i}) − ṽ(A) = v(C(i)) −
∑

C∈C

v(C).

Analogously, we define D(i) as the maximal set D in F(B ∪ {i}) such that
i ∈ D and :

(55) D := {D ∈ F(B);D maximal in F(B),D ⊂ D(i)}.

Then D(i) = {i} ∪ (
⋃

D∈D D) and :

(56) ṽ(B ∪ {i}) − ṽ(B) = v(D(i)) −
∑

D∈D

v(D).

Hence, it remains to prove that:

(57) v(C(i)) −
∑

C∈C

v(C) ≤ v(D(i)) −
∑

D∈D

v(D).

We want now to prove that for every C ∈ C, there exists one and only one
D ∈ D such that C = D. As A ⊂ B, A ∪ {i} ⊂ B ∪ {i} and therefore
C(i) ⊆ D(i). Hence, for all C ∈ C, there exists precisely one D ∈ D
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such that C ⊆ D. D ∩ C(i) = ∅ because D ∩ C(i) ⊃ C = ∅. D ⊇ C(i)
contradicts i /∈ D. Therefore D ⊂ C(i). But i /∈ D and C(i) ⊂ A ∪ {i},
then D ⊂ A. But D is maximal in F(B), hence D ⊂ A is maximal in
F(A). As C ⊂ D ⊂ A and C and D are maximal in F(A), we have
C = D. We can now number the elements of C and D in such a way that
C = {C1, C2, . . . , Cs}, D = {D1,D2, . . . ,Dt} with s ≤ t and Cr = Dr for all
r, 1 ≤ r ≤ s. Superadditivity of the game (N, v) implies :

v

(

{i} ∪
s

⋃

r=1

Dr ∪
t

⋃

r=s+1

Dr

)

≥ v

(

{i} ∪
s

⋃

r=1

Dr

)

+

(

t
∑

r=s+1

v(Dr)

)

.

Then :

v

(

{i} ∪
⋃

D∈D

D

)

−
∑

D∈D

v(D) ≥ v

(

{i} ∪
s

⋃

r=1

Dr

)

−

(

s
∑

r=1

v(Dr)

)

.

As Dr = Cr for all r, 1 ≤ r ≤ s, we obtain:

v
(

{i} ∪
⋃

D∈D D
)

−
∑

D∈D v(D) ≥ v ({i} ∪
⋃s

r=1 Cr) −
∑s

r=1 v(Cr)
≥ v

(

{i} ∪
⋃

C∈C C
)

−
∑

C∈C v(C)

That is precisely (57).
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