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Abstract

We consider the Bellman residual minimization approach for solving discounted Markov
decision problems, where we assume that a generative model of the dynamics and rewards
is available. At each policy iteration step, an approximation of the value function for the
current policy is obtained by minimizing an empirical Bellman residual defined on a set
of n states drawn i.i.d. from a distribution µ, the immediate rewards, and the next states
sampled from the model. Our main result is a generalization bound for the Bellman residual
in linear approximation spaces. In particular, we prove that the empirical Bellman residual
approaches the true (quadratic) Bellman residual in µ-norm with a rate of order O(1/

√
n).

This result implies that minimizing the empirical residual is indeed a sound approach for
the minimization of the true Bellman residual which guarantees a good approximation of
the value function for each policy. Finally, we derive performance bounds for the resulting
approximate policy iteration algorithm in terms of the number of samples n and a measure
of how well the function space is able to approximate the sequence of value functions.

Keywords: Markov decision processes, reinforcement learning, Bellman residual mini-
mization, generalization bounds, finite sample analysis

1. Introduction

In this paper we consider the problem of solving a Markov decision problem (MDP) (Bert-
sekas and Shreve, 1978; Puterman, 1994) by means of an approximate policy iteration
algorithm (Bertsekas and Tsitsiklis, 1996b; Si et al., 2004; Powell, 2007) with a linear ap-
proximation space F . In particular, we focus on the Bellman residual minimization ap-
proach (Schweitzer and Seidmann, 1985; Baird, 1995; Munos, 2003; Lagoudakis and Parr,
2003; Scherrer, 2010) when a generative model is available, that is, for any state-action pair
it is possible to obtain the immediate reward and an independent sample of the next state
drawn from the transition distribution.

More in details, at each iteration k, in order to evaluate the current policy πk, we build
an approximation Vk ∈ F of the value function V πk by solving an empirical Bellman resid-
ual minimization problem: Vk = arg minf∈F Bn(f), where Bn(f) is the empirical Bellman
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residual. The specific definition of Bn is critical since, as observed in several previous works
(see e.g., Sutton and Barto 1998; Lagoudakis and Parr 2003; Antos et al. 2008), the squared
temporal difference between successive states (e.g., states obtained following a single tra-
jectory), gives rise to a biased estimate of the (true) Bellman residual B(f) = ||f −T πf ||2µ.
In this paper, in order to build an unbiased estimate of B(f) we take advantage of the
generative model and build Bn on n states drawn i.i.d. from a given distribution µ, as well
as the immediate rewards and two next states independently sampled from the generative
model (i.e., the double-sampling technique suggested in Sutton and Barto 1998, p. 220).

Motivation. The idea of minimizing the Bellman residual is natural (see e.g., Schweitzer
and Seidmann 1985; Baird 1995) and it is based on the property that for any policy π the
value function V π has a zero residual, i.e., B(V π) = 0. As a result, it is reasonable to expect
that the minimization of the Bellman residual B(f) in a given function space F leads to a
function which is close to the value function. Williams and Baird (1994) and Munos (2007)
proved that indeed the residual ||T πf − f || (in sup-norm and Lp-norms, respectively) of a
function f is related to its distance (in the same norm) to the value function V π, ||V π −f ||.
Thus, minimizing the Bellman residual leads to a small approximation error. However,
those results concern the (true) Bellman residual B(f) but not its empirical estimate Bn(f),
which is the quantity that is actually minimized by real algorithms.

Although it is often believed that the minimization of the empirical residual Bn(f)
is “approximately” equivalent to minimizing the (true) residual B(f), no such result is
available in the literature so far. The closest work in this direction is by Antos et al. (2008),
who provides a finite-sample analysis of a variant of the Bellman-residual minimization,
called Modified Bellman residual, which reduces to Least Squares Temporal Differences
(LSTD) in the case of linear function spaces. A finite sample analysis of LSTD is also
reported in Lazaric et al. (2010), and a regularized version of those algorithms is described
in Farahmand et al. (2008). However, these works analyze algorithms that are related but
different from the empirical Bellman residual minimization considered here.

Contribution. Our main contribution in this paper is to address this question: does
minimizing the empirical Bellman residual Bn implies that we also minimize the true Bell-
man residual at all states w.r.t. a distribution µ? In other terms, is it possible to control
the true Bellman residual B(f) in terms of the empirical Bellman residual Bn(f)?

We show that the answer to those questions is actually not obvious but is positive. It
is not obvious because we show that the usual generalization results for regression cannot
be trivially adopted in bounding the difference between the true Bellman residual and
its empirical counterpart. In fact, in Bellman residual minimization we are not trying to
minimize an empirical distance to a given target function, but we are directly searching
for an approximate fixed-point (in F) of an empirical version of the Bellman operator T π.
As a result, it might be possible that a function with very low empirical residual (even
possibly zero) at the sampled states has a large (true) Bellman residual at other states and
even at the same states. However, we show that this problem does not occurs when the
empirical Bellman residual minimizer belongs to a set of controlled sized (e.g. measured in
terms of the norm of its parameter). More precisely, we show that for functions fα ∈ F
with bounded parameter ||α||, the difference between B(fα) and Bn(fα) decreases as the
number of samples n increases. Then, we prove that when the number of samples n is large
enough, the norm ||α̂|| of the empirical Bellman residual minimizer fα̂ = arg minfα∈F Bn(f)
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is indeed upper-bounded, provided that the set of features defining the linear space F are
linearly independent under the distribution µ. Thus we deduce that the Bellman residual
B(fα̂) of the empirical Bellman minimizer fα̂ is bounded by the empirical Bellman residual
Bn(fα̂) plus an estimation error term of order O(1/

√
n). In other terms, we provide a

generalization result for the Bellman residual in linear approximation spaces. This result
implies that minimizing the empirical residual is indeed a sound approach for deriving a
good approximation of the value function for each policy.

The paper is organized as follows. In Section 2 we introduce the notation. Section 3
reports the main contribution of this paper, that is the finite-sample analysis of Bellman
residual minimization for policy evaluation. Finally, in Section 4 we extend the policy
evaluation result to the whole policy iteration algorithm.

2. Preliminaries

In this section, we introduce the main notations used in the paper. For a measurable
space with domain X , we let S(X ) and B(X ;L) denote the set of probability measures
over X and the space of bounded measurable functions with domain X and bound 0 <
L < ∞, respectively. For a measure µ ∈ S(X ) and a measurable function f : X → R, we
define the ℓ2(µ)-norm of f as ||f ||2µ =

∫
f(x)2µ(dx), the supremum norm of f as ||f ||∞ =

supx∈X |f(x)|. Moreover, for a vector u ∈ R
d, we write its ℓ2-norm as ||u||2 =

∑d
i=1 u

2
i .

We consider the standard reinforcement learning (RL) framework (Bertsekas and Tsit-
siklis, 1996a; Sutton and Barto, 1998) in which a learning agent interacts with a stochastic
environment and this interaction is modeled as a discrete-time discounted Markov decision
process (MDP). A discounted MDP is a tuple M = 〈X ,A, r, P, γ〉 where the state space
X is a bounded closed subset of a Euclidean space, A is a finite (|A| < ∞) action space,
the reward function r : X ×A → R is uniformly bounded by Rmax, the transition kernel P
is such that for all x ∈ X and a ∈ A, P (·|x, a) is a distribution over X , and γ ∈ (0, 1) is
a discount factor. A deterministic policy π : X → A is a mapping from states to actions.
Under a policy π, the MDP M is reduced to a Markov chain Mπ = 〈X , Rπ, P π, γ〉 with
reward Rπ(x) = r(x, π(x)) and transition kernel P π(·|x) = P (·|x, π(x)).

Value functions. The value function of a policy π, V π, is the unique fixed-point of
the Bellman operator T π : B(X ;Vmax = Rmax

1−γ ) → B(X ;Vmax) defined by

(T πV )(x) = Rπ(x) + γ

∫

X
P π(dy|x)V (y). (1)

We also define the optimal value function V ∗ as the unique fixed-point of the optimal
Bellman operator T ∗ : B(X ;Vmax = Rmax

1−γ ) → B(X ;Vmax) defined by

(T ∗V )(x) = max
a∈A

[
r(x, a) + γ

∫

X
p(dy|x, a)V (y)

]
. (2)

Approximation space. We consider a linear function space F defined as the span of
d basis functions ϕi : X 7→ R, i = 1, . . . , d, i.e.,

F = {fα(·) = φ(·)⊤α, α ∈ R
d},
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where φ(·) =
(
ϕ1(·), . . . , ϕd(·)

)⊤
is the feature vector. We define the Gram matrix G ∈ R

d×d

with respect to a distribution µ ∈ S(X ) as

Gij =

∫

X
ϕi(x)ϕj(x)µ(dx), (3)

with i, j = 1, . . . , d. Finally, we write Lmax = supx∈X ||φ(x)|| and assume that Lmax <∞.

3. Bellman Residual Minimization for Policy Evaluation

In this section, we consider the Bellman Residual Minimization (BRM) algorithm for the
evaluation of a fixed policy π, using the double sampling technique (see e.g., Sutton and
Barto 1998). We assume that a generative model of the MDP is available, and that for
each state x and action a a call to the generative model returns the reward r(x, a) and two
independent samples drawn from the distribution P (·|x, a).

3.1 The Empirical Bellman Residual Solution

We build a dataset D = {(Xi, Ri, Yi, Y
′
i )1≤i≤n} where for all i = 1, . . . , n, we sample a state

Xi
iid∼ µ and make a call to the generative model to obtain the reward Ri = r(Xi, π(Xi))

and two independent next-state samples Yi and Y ′
i drawn from P π(·|Xi). The empirical

Bellman residual (EBR) is defined for any f ∈ F as

Bn(f) =
1

n

n∑

i=1

[f(Xi) − γf(Yi) −Ri]
[
f(Xi) − γf(Y ′

i ) −Ri

]
. (4)

The EBR minimizer fα̂ is defined, whenever it exists, as the minimizer of Bn(fα) in F :

fα̂ = arg min
fα∈F

Bn(fα), (5)

and α̂ is the parameter of the EBR minimizer. Using matrix notations, by defining the
n × d-matrices Ψ and Ψ′ as Ψij = ϕj(Xi) − γϕj(Yi) and Ψ′

ij = ϕj(Xi) − γϕj(Y
′
i ), Bn(fα)

may be written as

Bn(fα) =
1

n

[
α⊤Ψ⊤Ψ′α−R⊤(Ψ + Ψ′)α+R⊤R

]
,

where R ∈ R
n is the vector of components Ri. Thus, by defining the d× d empirical Gram

matrix A = 1
n(Ψ⊤Ψ′ + Ψ′⊤Ψ), the d-vector b = 1

n(Ψ + Ψ′)⊤R, and the constant c = 1
nR

⊤R,
we have

Bn(fα) =
1

2
α⊤Aα− b⊤α+ c. (6)

Using this notation, the gradient of Bn is ∇αBn(fα) = Aα− b, thus whenever the EBR
minimizer exists, its parameter α̂ is the solution to the linear system Aα = b.

Although the empirical Bellman residual Bn(fα) is a quadratic function of α, with A a
symmetric matrix, A may not be definite positive. A may even possess negative eigenvalues,
thus Bn(fα) may not have any minimizer. However we will see in the next section that when
n is large enough then the EBR minimizer exists and is unique.
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3.2 Finite-Sample Analysis

Defining B(f) = ||f − T πf ||2µ the true squared Bellman residual in µ-norm, we have the
property that for any f , Bn(f) is an unbiased estimate of B(f). In fact,

E
Yi,Y ′

i

iid
∼P π(·|Xi)

[
[f(Xi) − γf(Yi) −Ri]

[
f(Xi) − γf(Y ′

i ) −Ri

]
|Xi

]
=
[
f(Xi) − T πf(Xi)

]2
,

thus, since Xi
iid∼ µ, it follows that ED[Bn(f)] = B(f).

The main issue is to show that by minimizing the empirical Bellman residual Bn, we actu-
ally obtain a function fα̂ whose (true) residual fα̂−T πfα̂ is small at the states (X1, . . . , Xn)
and at other states measured by µ (i.e., it has a small B). This property would hold if we
could have a generalization result for the Bellman residual, like in the regression setting.

In regression, generalization bounds for spaces bounded in sup-norm are applied to the
result of the truncation (at a threshold which depends on a sup-norm of the target function)
of the empirical risk minimizer (Györfi et al., 2002). However, this approach does not work
for BRM, because the truncation f̄α̂ of the EBR minimizer fα̂ may amplify the residual (i.e.,
B(f̄α̂) may not be smaller than B(fα̂)). Thus, we follow another direction by considering
spaces of functions F(C) ⊂ F with bounded parameter: F(C) = {fα ∈ F , ||α|| ≤ C}, and
provide a generalization bound for Bellman residual for functions fα ∈ F(C) (the proof is
in Appendix).

Lemma 1 For any δ > 0, we have that with probability at least 1 − δ,

sup
fα∈F(C)

|B(fα) − Bn(fα)| ≤ c1

√
2d log(2) + 6 log(8/δ)

n
,

where c1 = 96
√

2[C(1 + γ)Lmax +Rmax]
2.

Unfortunately, this result cannot be immediately applied to the EBR minimizer fα̂ since
we do not have a bound on the norm ||α̂||. In fact, when we solve the minimization problem
(5), we do not have any control on the norm of the solution (if it exists) ||α̂||. For instance,
if we consider the case in which two features ϕ1 and ϕ2 are identical, then α1ϕ1 +α2ϕ2 = 0
whenever α1 = −α2, thus ||α|| can be made arbitrarily large without changing the value of
fα simply by playing on the values of α1 and α2. In order to avoid such degenerate situations,
we introduce the following assumption on the linear independence of the features (ϕi)1≤i≤d

w.r.t. the distribution µ.

Assumption 1 The smallest eigenvalue ν of the Gram matrix G (defined in (3)) is strictly
positive, i.e., ν > 0. 1

We show in the following that Assumption 1 is a sufficient condition to derive a bound
on the norm ||α̂|| for any α̂ solution of the EBR minimization problem. Before moving to
the analysis of the EBR minimizer with linear independent features, we first introduce some
additional notation. Let L(f) = ||(I − γP π)f ||2µ be the quadratic part of B(f), and

Ln(f) =
1

n

n∑

i=1

[f(Xi) − γf(Yi)]
[
f(Xi) − γf(Y ′

i )
]
,

1. Note that this condition implies the linear independence of the features in µ-norm.
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be its empirical version. Thus Ln(fα) = 1
2α

⊤Aα. Now, whenever the EBR minimizer fα̂

exists, since by definition α̂ satisfies Aα̂ = b, we can write

Bn(fα) =
1

2
(α− α̂)⊤A(α− α̂) − 1

2
α̂⊤Aα̂+ c = Ln(fα−α̂) − Ln(fα̂) + c, (7)

and deduce that Bn(fα̂) = c− Ln(fα̂) = c− 1
2b

⊤α̂.

Bounding ||α̂||. In order to deduce a bound on the parameter of the EBR minimizer α̂, in
the next three lemmas, we relate ||α|| to respectively L(fα) and Ln(fα). For that purpose,
let us write

Cπ(µ) = (1 − γ)||(I − γP π)−1||µ,
which is related to the concentrability coefficient (see e.g., Antos et al. 2008) of the dis-
counted future state distribution starting from µ and following policy π, i.e., (1 − γ)µ(I −
γπ)−1 w.r.t. µ. Note that if the discounted future state distribution is not absolutely con-
tinuous w.r.t. µ, then Cπ(µ) = ∞.

Lemma 2 Under Assumption 1, for any α ∈ R
d

||α||2 ≤ 1

ν
||fα||2µ ≤ Cπ(µ)2

ν(1 − γ)2
L(fα).

This indicates that the eigenvalues of the Gram matrix G̃ defined by G̃ij =
∫
X ψiψjdµ, where

ψi = (I − γP π)ϕi, are lower bounded by ξ = ν(1−γ)2

Cπ(µ)2
.

Proof From the definition that ν is the smallest eigenvalue of G, we have α⊤α ≤ 1
να

⊤Gα =
1
ν ||fα||2µ. Now since (I − γP π) is an invertible operator (the eigenvalues of any stochastic
kernel P π have a modulus less than 1), we have ||fα||2µ ≤ ||(I−γP π)−1||2µ||(I−γP π)fα||2µ =(Cπ(µ)

1−γ

)2L(fα), and the lemma follows.

This lemma provides a bound on ||α̂|| in terms of L(fα̂). However L(fα̂) is not known,
and we would like to relate it to its empirical counterpart Ln(α̂). The next lemma (the
proof is in the Appendix) provides a generalization bound for L, which enables to bound
the difference between L and Ln.

Lemma 3 For any δ > 0, we have that with probability at least 1 − δ,

∀α ∈ R
d, |L(fα) − Ln(fα)| ≤ c2||α||2

√
2d log(2) + log(4/δ)

n
,

where c2 = 96
√

2(1 + γ)2L2
max.

Combining Lemmas 2 and 3 we deduce that when n is large enough (as a function of ν
and Cπ(µ)), then all the eigenvalues of the empirical Gram matrix A are strictly positive,
and thus the EBR minimizer exists and is unique.
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Lemma 4 For any δ > 0, whenever n ≥ nπ(ν, δ) =
4c2

2
Cπ(µ)4

ν2(1−γ)4
(2d log 2 + log 4/δ), with

probability 1 − δ we have for all α ∈ R
d, ||α||2 ≤ 2

ξLn(fα).
We deduce that all the eigenvalues of the empirical Gram matrix A are strictly positive,

and thus the EBR minimizer exists and is unique.

Proof From Lemmas 2 and 3,

||α||2 ≤ 1

ξ
L(fα) ≤ 1

ξ

(
Ln(fα) + c2||α||2

√
2d log(2) + log(4/δ)

n

)
,

thus whenever c2

√
2d log(2)+log(4/δ)

n ≤ ξ
2 , i.e., n ≥ nπ(ν, δ), we have ||α||2 ≤ 2

ξLn(fα). The
claim about the eigenvalues of the empirical Gram matrix simply follows from the statement
of the Lemma, the inequality α⊤α ≤ 1

χα
⊤Aα, where χ is the smallest eigenvalue of A, and

the definition of Ln(fα) = 1
2α

⊤Aα.

From this result we immediately deduce a bound on ||α̂||.

Corollary 5 For any δ > 0, whenever n ≥ nπ(ν, δ), with probability 1 − δ we have

||α̂|| ≤ 2

ξ
(1 + γ)LmaxRmax.

Proof From Lemma 4, using Cauchy-Schwarz’s inequality, and recalling the definition of
Ψ in Section 3.1

||α̂||2 ≤ 2

ξ

1

2
b⊤α̂ =

1

ξ

d∑

j=1

(
1

n

n∑

i=1

Ri(Ψi,j + Ψ′
i,j)α̂j

)

≤ 1

ξ

1

n

n∑

i=1

Rmax

(
2
∣∣∣

d∑

j=1

α̂jφj(Xi)
∣∣∣+ γ

∣∣∣
d∑

j=1

α̂jφj(Yi)
∣∣∣+ γ

∣∣∣
d∑

j=1

α̂jφj(Y
′
i )
∣∣∣
)

≤ 2

ξ
Rmax||α̂|| sup

x
||φ(x)||(1 + γ)

from which the result follows.

We now state our main result which bounds the Bellman residual of the EBR minimizer.

Theorem 6 For any δ > 0, whenever n ≥ nπ(ν, δ/2), with probability 1 − δ we have

B(fα̂) ≤ Bn(fα̂) + c3

√
2d log(2) + 6 log(8/δ)

n
,

where c3 = 96
√

2[2ξ (1 + γ)2L2
max + 1]2R2

max.

Proof When n ≥ nπ(ν, δ), Corollary 5 states that ||α̂|| ≤ C is bounded and the results
follows from a direct consequence of Lemma 1.
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Thus, the true residual B(fα̂) of the EBR minimizer fα̂ is upper-bounded by the empir-
ical residual Bn(fα̂) plus an estimation error term, which is of order O(1/

√
n). We deduce

that minimizing the empirical residual is indeed a sound method for deriving a function
with small (true) Bellman residual B.

Remark 1 The obtained estimation error term is of order O(1/
√
n), which is worse than

the estimation error of order O(log n/n) deduced in linear regression with a quadratic loss
(see e.g., Györfi et al. 2002). This is due to the fact that although B(f) is positive for any
f , this is not the case for Bn(f), which may be negative (e.g., think of Bn(V π) which is an
unbiased estimate of B(V π) = 0). Thus the usual argument described in Györfi et al. (2002),
where one would derive

√
B(f) ≤ 2

√
Bn(f) + O(1/

√
n) does not directly apply here. One

could also think of applying this argument to Ln, since Ln is positive for sufficiently large n.
However, this does not work either, since Ln is the sum of terms which are not individually
positive, independently of the value of n. Therefore, it remains an open question to whether
it is possible to obtain a bound of the form B(fα̂) ≤ cBn(fα̂)+O(log n/n) (with an additional
multiplicative factor c > 1). This could be particularly interesting when Bn(fα̂) is small.

Remark 2 The dependence to the dimension d of the function space F is of order L4
max

√
d.

This is due to the fact that we cannot use truncation in this Bellman residual setting (see
the first paragraph of Section 3.2), which would give us an order L2

max

√
d. We use instead

a covering of the function space F(C) (see Theorem 7) with C (which itself depends on
Lmax) being a bound on ||α̂||. This explains the additional L2

max factor.

Remark 3 It is interesting to notice that although we derived Corollary 5 specifically for
the case of Bellman residual minimization, a similar result can be obtained in the traditional
regression setting. The bound on the norm of α̂ solution of the least-squares problem may
be used to derive an excess risk bound for the empirical risk minimizer in an unbounded
space without truncation, at the price of a weaker dependence on Lmax, as discussed in
Remark 2.

3.3 Bellman Residual Minimization and Approximation of V π

We are now interested to relate the Bellman residual of fα̂ to the minimum Bellman residual
in F , i.e., inff∈F B(f), and to the approximation error (in µ-norm) of the value function V π

w.r.t. the function space F , i.e., inff∈F ||V π − f ||µ. In fact, these two quantities are related
since for any function f ∈ F , we have T πf − f = (I − γP π)(V π − f). Thus, by defining

fα̃ = arg min
f∈F

B(f), and fα∗ = arg min
f∈F

||V π − f ||µ,

we have

||V π − fα∗ ||µ ≤ ||V π − fα̃||µ ≤ Cπ(µ)

1 − γ

√
B(fα̃) ≤ Cπ(µ)

1 − γ

√
B(fα∗). (8)

We can now relate both the Bellman residual of fα̂, B(fα̂), and its approximation error,
||V π − fα̂||µ, to the minimum possible Bellman residual in F and the distance between V π

and F .
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Theorem 7 For any δ > 0, whenever n ≥ nπ(ν, δ/2), with probability 1 − δ, the Bellman
residual of the EBR minimizer fα̂ is bounded as

B(fα̂) ≤ inf
f∈F

B(f) + c4

√
2d log(2) + 6 log(16/δ)

n
,

with c4 = (96
√

2+1)[2ξ (1+γ)2L2
max+1]2R2

max, and the approximation error of V π is bounded

as ||V π−fα̂||2µ ≤
(Cπ(µ)

1−γ

)2B(fα̂). Moreover, since inff∈F B(f) ≤ (1+γ||P π||µ)2 inff∈F ||V π−
f ||2µ, we obtain an alternative bound

||V π − fα̂||2µ ≤
(
Cπ(µ)

1 − γ

)2
(

(1 + γ||Pπ||µ)2 inf
f∈F

||V π − f ||2µ + c4

√
2d log(2) + 6 log(16/δ)

n

)
.

Proof From the definition of α̃ (the minimum of B), we have L(fα̃) = 2〈Rπ, (I −
γP π)φ⊤α̃〉µ. Thus, from Lemma 2, we obtain

||α̃||2 ≤ 1

ξ
L(fα̃) ≤ 2

ξ
(1 + γ)LmaxRmax||α̃||, thus ||α̃|| ≤ 2

ξ
(1 + γ)LmaxRmax.

Now using Chernoff Hoeffding’s inequality, we have with probability 1 − δ/2,

Bn(fα̃) ≤ B(fα̃) +
[2
ξ
(1 + γ)2L2

max + 1
]2
R2

max

√
2 log(2/δ)

n
. (9)

We may write

B(fα̂) ≤ (B(fα̂) − Bn(fα̂)) + Bn(fα̃) ≤ inf
f∈F

B(f) + (B(fα̂) − Bn(fα̂)) + (Bn(fα̃) − B(fα̃)).

The claim follows by applying Theorem 6 (with probability δ/2) and (9) for the second and
third terms on the right hand, respectively, and a union bound so that both events hold
simultaneously with probability at least 1− δ. The other inequalities are deduced from the
definition of α̃ and α∗ and (8).

This result means that whenever the space F is such that it contains a function with
a small Bellman residual or that it can well approximate V π, then the residual of the
EBR minimizer fα̂ is small. In addition, assuming that Cπ(µ) is small, fα̂ is also a good
approximation of the value function V π.

4. Bellman Residual Minimization for Policy Iteration

We now move to the full analysis of the policy iteration algorithm where at each iter-
ation k, the policy πk is approximated by the solution of an empirical Bellman resid-
ual minimization. The Bellman Residual Minimization Policy Iteration (BRM-PI) algo-
rithm is described in Figure 1. At each iteration k, BRM-PI generates a new dataset

Dk = {(X(k)
i , R

(k)
i , Y

(k)
i , Y

′(k)
i )}n

i=1 where X
(k)
i

iid∼ µ, R
(k)
i = r(X

(k)
i , πk(X

(k)
i )), and Y

(k)
i
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Input: Function space F , state distribution µ, number of samples n, number
of iterations K
Initialize: Let V0 ∈ B(X ;Vmax) be an arbitrary value function
for k = 1, 2, . . . ,K do

(1) Let πk be the greedy policy w.r.t. Vk−1 (see Eq. 13).

(2) Build a new dataset Dk = {(X(k)
i , R

(k)
i , Y

(k)
i , Y

′(k)
i )}n

i=1, where X
(k)
i

iid∼
µ, R

(k)
i = r(X

(k)
i , πk(X

(k)
i )), and use the generative model to draw two

independent samples Y
(k)
i and Y

′(k)
i from Pπk(·|X(k)

i ).
(3) Let α̂k be the solution to the linear system Akα = bk, where Ak and bk
are defined by (10) and (11).
(4) Let Vk = fα̂k

.
end for
Return policy πK .

Figure 1: The Bellman Residual Minimization Policy Iteration (BRM-PI) algorithm.

and Y
′(k)
i are two independent samples drawn from P πk(·|X(k)

i ). The d× d-matrix Ak and
d-vector bk are defined as

Ak =
1

n
(Ψ⊤

k Ψ′
k + Ψ

′⊤
k Ψk) (10)

bk =
1

n
(Ψk + Ψ′

k)
⊤R(k) (11)

where (Ψk)ij = ϕj(X
(k)
i ) − γϕj(Y

(k)
i ) and (Ψ′

k)ij = ϕj(X
(k)
i ) − γϕj(Y

′(k)
i ). Then α̂k is

defined as the solution of
Akα = bk (12)

(the next theorem will provide conditions under which this system has a solution), which
defines the approximation Vk = fα̂k

of the current value function V πk . Finally, the approx-
imation Vk is used to generate the policy πk+1 for the next iteration k + 1

πk+1(x) = arg max
a∈A

[
r(x, a) + γ

∫

X
P (dy|x, a)Vk(y)

]
. (13)

Note that in order to compute the expectation we can use the generative model and
replace the expectation by an average over a sufficiently large number of samples. However
this is not convenient and a usual technique used to avoid computing the expectations for
deriving the greedy policy is to use action-value functions Q instead of value functions V
(see e.g., Watkins 1989; Lagoudakis and Parr 2003; Antos et al. 2008), or functions defined
over post-decision states (Powell, 2007). We do not further develop this point here but we
simply mention that all the finite-sample analysis derived in the previous section for the
setting of value functions can be easily extended to action-value functions.

Now following the analysis of Munos (2003) and Antos et al. (2008), we relate the
performance of the policy πK returned by the algorithm to the optimal policy ||V ∗−V πK ||ρ
(where ρ is a distribution chosen by the user), in terms of the Bellman residuals of the EBR
minimizers fα̂k

at all the iterations k < K of the BRM-PI algorithm. In order to do so, we
make use of the concentrability coefficients, Cρ,µ, defined for any couple of distributions ρ
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and µ in Antos et al. (2008) and Munos and Szepesvári (2008) (A refined analysis can be
found in Farahmand et al. (2010)).

Let us also define n(δ) = supπ n
π(νπ, δ) and write Bπ(f) = ||f − T πf ||2µ the Bellman

residual of f under policy π. We can now state the main result which provides a performance
bound for BRM-PI.

Theorem 8 For any δ > 0, whenever n ≥ n(δ/K), with probability 1 − δ, the EBR min-
imizer fα̂k

, where α̂k is the solution of the linear system (12), exists for all iterations
1 ≤ k < K, thus the BRM-PI algorithm is well defined, and the performance V πK of the
policy πK returned by the algorithm is such that

||V ∗−V πK ||2ρ ≤
( 2γ

(1 − γ)2

)2
[
Cρ,µ sup

1≤k<K

(
inf
f∈F

Bπk(f)+ck

√
2d log(2) + 6 log(16K/δ)

n

)
+γKR2

max

]
,

where ck = (96
√

2+1)[ 2
ξk

(1+γ)2L2
max +1]2R2

max, with ξk defined similarly as ξ in Lemma 2
for the policy πk. A bound using the distances between the sequence of value functions and
F can be obtained using the fact that inff∈F Bπk(f) ≤ (1 + γ||P πk ||µ)2 inff∈F ||V πk − f ||2µ.

Proof From Antos et al. (2008, Lemma 12) we have

||V ∗ − V πK ||2ρ ≤
( 2γ

(1 − γ)2
)2(

Cρ,µ max
0≤k<K

Bπk(fα̂k
) + γKR2

max

)
. (14)

Now from Lemma 4, we have that at each step k < K, whenever n ≥ n(δ/K) ≥ nπk(νπk , δ/K),
with probability 1− δ/K, the EBR minimizer fα̂k

exists and from Theorem 7, the Bellman
residual of fα̂k

is bounded as

Bπk(fα̂k
) ≤ inf

f∈F
Bπk(f) + ck

√
2d log(2) + 6 log(16K/δ)

n
,

where we used a union bound that guarantees that these bounds hold for all K iterations.

The performance bounds reported in Theorem 8 are composed of the sum of three terms.
The first term is an approximation error term, which indicates how well the function space
F is adapted to the problem, either in terms of containing functions with low Bellman
residuals (for the sequence of policies) inff∈F Bπk(f), or in terms of well approximating the
corresponding value functions inff∈F ||V πk − f ||µ. The second term is an estimation error
term, which decreases as O(1/

√
n), and the third term is decreasing exponentially fast with

K, the number of policy iterations.

Remark: In the current description of the BRM-PI algorithm, we regenerate a new
dataset Dk at each policy evaluation step. However, we could generate once for all n samples
(X1, . . . , Xn) and all actions a ∈ A, the corresponding rewards Ri(a) = r(Xi, a) and 2n in-
dependent next states Yi(a) and Y ′

i (a) sampled from P (·|Xi, a). Then at each iteration k, we
use these samples and build the dataset Dk =

{(
Xi, Ri(πk(Xi)), Yi(πk(Xi)), Y

′
i (πk(Xi)

)}n

i=1
.

This sampling strategy requires generating 2n× |A| samples instead of 2n×K for the pre-
vious method, which is advantageous when |A| ≤ K. In terms of performance, this version
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attains a similar performance as in Theorem 8. The main difference is that at each iteration
k, the target function V πk depends on the samples because the policy πk is greedy w.r.t. the
function fαk−1

learned at the previous iteration. As a result, Lemma 1 should be restated
by taking a supremum over all the possible policies that can be generated as greedy policies
of the functions in F . The complexity of this space of policies depends on the number of
actions |A| and the dimension d. Finally, the complexity of the joint space obtained by F
and the space of policies would appear in the final bound which would differ from the one
in Theorem 8 only in constant factors.

5. Conclusion and comparison with LSTD

We provided a generalization bound for Bellman residuals and used it to provide perfor-
mance bounds for an approximate policy iteration algorithm in which an empirical Bellman
residual minimization is used at each policy evaluation step.

Compared to the LSTD approach analyzed in Lazaric et al. (2010) we have a poorer
estimation rate of O(1/

√
n) instead of O(1/n) and it is an open question to whether an

improved rate for Bellman residuals can be obtained (see Remark 1). The assumptions
are also different: in this BRM approach we assumed that we have a generative model
and thus performance bounds can be obtained under any sampling distribution µ, whereas
since LSTD only requires the observation of a single trajectory (following a given policy)
it can only provide performance bounds under the stationary distribution of that policy.
However in a policy iteration scheme it is not enough to accurately approximate the current
policy under the stationary distribution since the greedy policy w.r.t. that approximation
can be arbitrarily poor. Thus the performance of BRM are better controlled than that
of LSTD, which is reflected in the fact that the concentrability coefficients C(ρ, µ) (used
in Theorem 8) can be controlled in the BRM approach (such as by choosing a uniform
distribution µ) but not in LSTD unless we make additional (usually strong) assumptions
on the stationary distributions (such as being lower-bounded by a uniform distribution, like
in (Munos, 2003)).
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Appendix A. Proof of Lemma 3

Step 1: Introduce the empirical process. Let J (C) be the class of functions induced
by Ln from F(C) defined as

J (C) = {jα : (x, y, z) 7→ (fα(x) − γfα(y))(fα(x) − γfα(z)); ||α||2 ≤ C}.

Note that this is the product of two linear spaces of dimension d. Furthermore, we can
now rewrite Ln(fα) = Pnjα and L(fα) = Pjα, where Pn is the empirical measure w.r.t.
Xi, Yi, Y

′
i and P is the measure according to which the samples are distributed. As a

result both Ln(fα) and L(fα) are linear w.r.t. jα. Note also that for any (x, y, z) ∈ X 3,
|jα(x, y, z)| ≤ ||α||22(1 + γ)2 supx∈X ||φ(x)||22 = C2(1 + γ)2L2

max, using Cauchy-Schwartz’s
inequality.

Step 2: Bound the covering number. We want to bound the ǫ-covering number
of the class of functions J (C) in norm ||.||∞. Since each function jα can be written as
jα(x, y, z) = gα(x, y)gα(x, z), where gα(x, y) =

∑d
i=1 αi(φi(x) − γφi(y)), we can relate the

covering number of J (C) to the covering number of the space of functions gα. Indeed, let
us consider an ǫ-cover G0 for the space of functions gα such that ||α||2 ≤ C. Thus for a
given α there exists gα0

∈ G0 such that ||gα − gα0
|| ≤ ǫ. Now, we can build a cover for

J (C). We have

|jα(x, y, z) − jα0
(x, y, z)| ≤ |gα(x, y)gα(x, z) − gα0

(x, y)gα(x, z)|
+|gα0

(x, y)gα(x, z) − gα0
(x, y)gα0

(x, z)|
≤ ||gα||∞||gα − gα0

||∞ + ||gα0
||∞||gα − gα0

||∞
≤ 2C(1 + γ)Lmaxǫ,

which enables us to deduce that

N (ǫ,J (C), ||.||∞) ≤ N
( ǫ

2C(1 + γ)Lmax
, {gα; ||α||2 ≤ C}, ||.||∞

)

≤ N
( ǫ

2C(1 + γ)Lmax
, {gα; ||g||n ≤ C(1 + γ)Lmax}, ||.||n

)

≤
(6C2(1 + γ)2L2

max

ǫ

)d

where we used the fact that ||g||n ≤ ||g||∞ and ||g||n ≤ ||α||2(1 + γ)Lmax.

Step 3: Use chaining technique. Let us consider ǫl-covers Jl of J (C), for l = 0, . . . ,∞,
with J0 = jα0

. We moreover assume that Jl+1 is a refinement of Jl and that ǫl+1 ≤ ǫl.
Then for a given j ∈ J (C), we define jl = Π(j,Jl) the projection of j into Jl, for the norm
||j||∞. Thus, j = (j − jL) +

∑L
l=1(jl − jl−1) + j0. Since 0 ∈ J (C), we consider jα0

= 0.
Note that by definition, we need ||j||∞ ≤ ǫ0. Thus we define ǫ0 = C2(1 + γ)2L2

max.

Moreover, we have for any j ∈ J (C),

|(P − Pn)(j)| ≤ |(P − Pn)(j − jL)| +
L∑

l=1

|(P − Pn)(jl − jl−1)| ≤ 2ǫL +

L∑

l=1

|(P − Pn)(jl − jl−1)|
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We introduce for convenience the following notation: ρ(t) = Pr(∃f ∈ F(C), |L(fα) −
Ln(fα)| > t). Thus if we now introduce η and (ηl)l≤L such that

∑L
l=1 ηl ≤ η, then for L

large enough such that 2ǫL ≤ t2, we have:

ρ(ηt1 + t2) ≤ Pr(∃f ∈ F(C), 2ǫL +
L∑

l=1

|(P − Pn)(jl − jl−1)| >
L∑

l=1

ηlt+ t2)

≤
L∑

l=1

Pr(∃j ∈ J (C), |(P − Pn)(jαl
− jαl−1

)| > ηlt1)

≤
L∑

l=1

NlNl−1 sup
j∈J (C)

Pr(|(P − Pn)(jαl
− jαl−1

)| > ηlt1)

≤
L∑

l=1

2N2
l exp(− nt21η

2
l

2(4ǫl)2
)

where Nl = N (ǫl,J (C), ||.||∞), and where the last inequality comes from the fact that

|jαl
(Xi, Yi, Y

′
i )− jαl−1

(Xi, Yi, Y
′
i )−Pjαl

+Pjαl−1
| ≤ 2||jαl

− jαl−1
||∞ ≤ 4||jαl

− jα||∞ ≤ 4ǫl.

Step 4: Define the free parameters. Thus, if we define, for all l ≥ 1, ηl
def
= 8ǫl

t1

√
2 log(Nl)

n ,

then we deduce the following inequality: ρ(ηt1 + t2) ≤ 2
∑L

l=1N
−2
l .

Now, since Nl ≤ (6C2(1+γ)2L2
max

ǫl
)d, let ǫl = 6C2(1 + γ)2L2

max2
−l(δ/2)1/2d(22d − 1)1/2d for

l ≥ 1. Thus we deduce that
∑L

l=1N
−2
l ≤ δ/2. We finally get:

ηt1 + t2 =

L∑

l=1

8ǫl

√
2 log(Nl)

n
+ 2ǫL

≤ 48C2(1 + γ)2L2
max(δ/2)1/2d(22d − 1)1/2d

L∑

l=1

2−l

√
2 log(Nl)

n
+ 2ǫL

≤ 96C2(1 + γ)2L2
max√

n

L∑

l=1

2−l
√

2dl log(2) + log(2/δ) − log(22d − 1) + 2ǫL

≤ 96C2(1 + γ)2L2
max√

n

L∑

l=1

2−l
√

2d(l − 1) log(2) + log(4/δ) + 2ǫL

Thus, when L→ ∞, we get:

ηt1 + t2 ≤ 96C2(1 + γ)2L2
max√

n

∞∑

l=1

2−l
√

2d(l − 1) log(2) + log(4/δ)

We deduce that with probability higher than 1 − δ, the following holds true:

sup
f∈F(C)

|L(fα) − Ln(fα)| ≤ 96C2L2
max(

√
2d log(2)

n
+

√
log(4/δ)

n
)

323



Maillard, Munos, Lazaric, Ghavamzadeh

Then we use the fact that L(fα) = L(f α

||α||
)||α||2 and similarly Ln(fα) = Ln(f α

||α||
)||α||2 to

deduce that with the same probability, for all α,

|L(fα) − Ln(fα)| ≤ ||α||2( sup
f∈F(1)

|L(f) − Ln(f)|)

The final results follows by aesthetics simplifications.

Appendix B. Proof of Lemma 1

Step 1: Introduce the empirical process. The proof for Bn follows the same lines as
for Ln using the following class of functions, induced by Bn from F(C) and defined as:

J (C) = {jα : (x, y, z) 7→ (fα(x) − γfα(y) + r(x))(fα(x) − γfα(z) + r(x)); ||α||2 ≤ C}.

Then we have Bn(fα) = Pnjα and B(fα) = Pjα. Now, we have |jα(Xi, Yi, Y
′
i )| ≤ (||α||2(1 +

γ) supx ||φ(x)||2 + Rmax)
2 = [C(1 + γ)Lmax + Rmax]

2. Note that the function 0 does not a
priori belongs to J (C), thus we have an additional term to control corresponding to the
decomposition of j = (j − jL) +

∑L
l=1(jl − jl−1) + j0 for some nonzero j0 ∈ J(C).

Step 2: Bound the covering number. With this new definition of J (C), we have:

N (ǫ,J (C), ||.||∞) ≤
(6(C(1 + γ)Lmax +Rmax)

2

ǫl

)d

Step 3: Use chaining technique. Then using chaining technique, we get the corre-
sponding upper bound:

ρ(ηt1 + t2 + t3) = Pr(∃f ∈ F(C)|L(fα) − Ln(fα)| > ηt1 + t2 + t3)

≤ 2
L∑

l=1

N−2
l + 2 exp(− nt23

2[C(1 + γ)Lmax +R]4
)

where the last term comes from the bound on Pr(|(P − Pn)(j0) ≥ t3).

Step 4: Define the free parameters. We define ǫl = 9(C(1+γ)Lmax+R)22−l(δ/4)1/2d(22d−
1)1/2d for l ≥ 1, set t3 = [C(1 + γ)Lmax + R]2

√
2 log(4/δ)

n and derive that with probability
higher than 1 − δ,

sup
f∈F(C)

|B(fα) − Bn(fα)| ≤ 96[C(1 + γ)Lmax +R]2(

√
2d log(2)

n
+

√
log(8/δ)

n
)

+[C(1 + γ)Lmax +R]2
√

2 log(4/δ)

n
.

The final result follows after some aesthetics simplifications.
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