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Adaptive play in Texas Hold’em Poker

Raphaël Maı̂trepierre and Jérémie Mary and Rémi Munos1

Abstract. We present a Texas Hold’em poker player for limit heads-

up games. Our bot is designed to adapt automatically to the strategy

of the opponent and is not based on Nash equilibrium computation.

The main idea is to design a bot that builds beliefs on his opponent’s

hand. A forest of game trees is generated according to those beliefs

and the solutions of the trees are combined to make the best decision.

The beliefs are updated during the game according to several meth-

ods, each of which corresponding to a basic strategy. We then use

an exploration-exploitation bandit algorithm, namely the UCB (Up-

per Confidence Bound), to select a strategy to follow. This results

in a global play that takes into account the opponent’s strategy, and

which turns out to be rather unpredictable. Indeed, if a given strategy

is exploited by an opponent, the UCB algorithm will detect it using

change point detection, and will choose another one.

The initial resulting program , called Brennus, participated to the

AAAI’07 Computer Poker Competition in both online and equilib-

rium competition and ranked eight out of seventeen competitors.

1 INTRODUCTION

Games are an interesting domain for Artificial Intelligence research.

Computer programs are better than humans in many games includ-

ing Othello, chess [10] or checkers [14]. Those games are perfect

information games in the sense that all useful informations for pre-

dicting the outcome of the game is common knowledge of all players.

Moreover, those games are deterministic. On the contrary, Poker is

an incomplete information and stochastic game: players do not know

which cards their opponents are holding neither the community cards

remaining to come. These aspects make Poker a challenging domain

for AI research [7].

Thanks to Nash’s work [13] we know the existence of an equilib-

rium strategy (Nash equilibrium) for the 2 players game Poker. Now,

since this is a zero-sum game, if a player plays according to this strat-

egy, in average he will not lose. But a good Poker player should also

be able to adapt to his opponent game in order to exploit possible

weaknesses since the goal of Poker is to win the maximum of chips.

Studies have been done in the domain of opponent exploitation for

the game of RoShamBo [3, 4]. For this game, a Nash equilibrium

consists in playing uniformly randomly all three actions (Rock, Pa-

per, Scissors); this strategy does not lose (in average) since it is un-

predictable, but it does not win either!

Indeed, against a player who always plays ”Paper” for example,

the expected payoff of the Nash strategy is null (1/3 lose, 1/3 win,

1/3 draw), whereas a player who could exploit his opponent would

quickly find out that playing ”Scissors” all the time is the best deci-

sion.
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In the game of poker, this idea remains true up to some extent: if

an opponent bluffs too many times we should call him more often,

and on the other hand, if he does not bluff often, we should be very

careful. So it appears necessary to model our opponent strategy if we

want to exploit his weaknesses and maximize our income.

In the last few years, Poker research have received a large amount

of interest. One of the first approaches to build a Poker playing bot

was based on simulations [8]. The logical next step was to compute

Nash equilibria for Poker. In a zero-sum game, it is possible to com-

pute an equilibrium of the sequence form of the game using linear

programming methods. But in Poker the state space is so huge that

one needs to use abstraction methods (which gather similar states)

before solving the sequence form game. Such powerful methods have

been used in [5, 11, 12, 16] to reduce the size of the game and com-

pute a near optimal Nash equilibrium. Some research has also been

conducted in opponent modeling for game-tree search in [6], and the

resulting program, named Vexbot, is also available in Poker-Academy

software.

In this paper, we present a new method for building an adaptive

Poker bot based on beliefs updates and strategies selection. Our con-

tribution is two-fold. First, in opponent modeling we consider a be-

lief update on the opponent’s hand based on Bayes’ rule, which com-

bined with different opponent models, yields different basic strate-

gies. Second, we consider a strategy selection procedure based on a

bandit algorithm (namely the Upper Confidence Bounds algorithm

introduced in [2]) which performs a good trading-off between ex-

ploitation (choose a strategy that has performed well against the op-

ponent) and exploration (try another apparently sub-optimal strategy

in order to learn more about the opponent).

The paper is organized as follows: after briefly reminding the rules

of Hold’em Poker, we present our contributions in Section 3, with the

description of the forest of game trees, the belief update rule for the

opponent modeling, and the bandit algorithm for the strategy selec-

tion. We conclude with experimental results.

2 Rules of the game

In this paper we consider the two player version of Texas Hold’em

Poker called heads-up. A good introduction to the rules can be found

in [7]. The betting structure used is limit poker. This is the structure

used in the AAAI Computer Poker Competition.

A hand of Hold’em consists in four stages, each one followed by

a betting round.

The game begins with two forced bets called the blinds. The first

player puts the small blind (half a small bet) and the other player

puts the big blind (one small bet). Each player is dealt two hidden

cards, a first betting round occurs, this is the preflop stage. Then,

three community cards (called the board) are dealt face up, this is

the flop stage. In the third stage, the turn, a fourth card is added to



the board. A last card is added to the board in the river stage. After

the last betting round the showdown occurs: the remaining players

compare their hands (their hole cards) and the player with the best

five cards combination formed with his two cards and the community

cards wins the pot (amount of chips bet by all players).

In limit Poker, two sizes of bet are used: in the first two stages the

bet is called the small bet. And in the last ones the bet is called big

bet and worths two small bets.

In betting rounds the player who acts has three possibilities:

• He may fold, so he loses the game and the chips he put in.

• He may call, in this case he puts the same amount of chips as

his opponent, if no chips have been bet in the round this action is

called check

• He may raise, in this case he puts one bet more than his opponent

has bet, if no chips have been bet this action is called bet.

3 OUR APPROACH

The approach studied in this paper is close to the human way of play-

ing poker: our bot tries to guess what are his opponent’s hands based

on the previous decisions of the opponent in this game. For that pur-

pose, we assign to each possible hand of the opponent, the probability

he holds this hand given what he has played before. This association

hand/probability represents the beliefs of our bot, and are saved in

a table. These probabilities are updated after each action taken by

the opponent using a simple Bayes rule (see subsection 3.2). Then,

given those beliefs, we compute a ”forest” of Min-Max trees (where

each tree corresponds to a possible hand assignments to both players

based on the current beliefs of our bot about his opponent) to evalu-

ate the current situation and make our decision based on a weighted

combination of the solutions returned by the Min-Max trees. We de-

scribed this step in the next subsection. This method is used to make

decisions after the flop, for preflop play we use precalculated tables

from [15].

3.1 Forest of Game Trees

A forest of trees is composed of a set of Min-Max game trees where

each game tree is defined by two couples of hands, one for each

player. A couple of hands represent a player point of view: his real

hand and his belief about his opponent’s hidden cards. For the AI

player, real hand is represented by the two actual hidden cards dealt

to him, and the opponent’s hands are chosen randomly according to

the current belief table of probabilities about his opponent’s cards.

For the opponent player, his real hand is chosen (randomly) accord-

ing to the belief table (independently of the choice of the AI oppo-

nent’s hand) and his belief about our bot’s hand is uniformly ran-

domly generated (i.e. currently, there is no model of the opponent’s

belief about our bot’s cards). The beliefs about opponent’s hands are

fixed within a tree.

To each leaf and node of each game tree, 2 values are assigned,

each one corresponding to the value for each player (Vp1 and Vp2).

One represents the expected outcome from the point of view of the AI

bot: the result of the game between his hand against the current belief

about his opponent (Vp1). The other value is the expected outcome

from the point of view of the opponent (Vp2).

Since each possible hand for our opponent have different probabil-

ities, we build a ”forest” of such trees in order to evaluate the current

situation. Once all the game trees have been solved, the value of each

possible action is given by the convex combination of the values of

all trees weighted by the probability of the hands used in the trees

(belief that this tree corresponds to the true situation). Those proba-

bilities are given by the beliefs table.

Each game tree is solved as follows. There are 3 kinds of nodes:

• Action nodes: Nodes representing actions of players.

• Chance nodes: Nodes representing chance events (cards dealing)

• Leaves: Nodes representing the end of the game.

The value of a leaf depends on the last selected action:

• If it is a ”fold”, the value corresponding to the player who has

made this action is 0 while his opponent’s value equals the amount

of chips in the pot at this point of the tree,

• If it is a ”call” the value of each player is the amount of chips won

(or lost) against his opponent’s hand.

Now, concerning the action nodes values computation: the value

of the active player (the one who takes an action in that node) is

defined as the maximal value (for the same player) of the 3 children

nodes (corresponding to the 3 possible actions) minus the cost of the

action (the amount of chips added in the pot corresponding to the

action). His opponent’s value is the value of the child corresponding

to the action chosen by the active player. Figures 1 and 2 illustrate

the action nodes value update. In case of equality, when choosing the

max value for the active player, we choose the most aggressive action

(i.e. ”raise” rather than ”call”, ”call” rather than ”fold”), the reason

being that in heads-up poker, playing aggressively is usually better

than playing passively.

Figure 1. Update of action nodes: here active player is player 1 (black
nodes). His values is Vp1. Values shown on the edges are the children nodes
values minus the corresponding action cost. Active player choose the action

corresponding to the maximum edge value. Here the rightmost action is
chosen (Vp1 = 40). His opponent value (Vp2) is the value corresponding to

the action chosen by player1: Vp2 = 10.

Players value at chance nodes is the mean of each sons of the node,

for example if we are on the ”turn” stage, in two players games, there

is 45 remaining possible cards to be dealt. So value for players is:

Vp1 =
1

45

i=45
X

i=1

Vp1i
; Vp2 =

1

45

i=45
X

i=1

Vp2i

Since computing whole trees is too long for online play, we use an

approximation for computing trees values at chance nodes: instead
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Figure 2. Here active player is player2 (white nodes), he chooses the max
value among the Vp2 (this corresponds to the second action). The

corresponding Vp1 and Vp2 are updated.

of computing chance nodes values nine times at each stage of the

game (1 time for each sequence of actions leading to a next stage) we

compute values for the first chance node encountered, and for chance

nodes in the same subtree (resulting from the same card dealt) we use

the value of the first chance node, modified to consider the change of

pot size.

3.2 Belief Update

The AI’s belief about his opponent’ hidden cards (H) is the prob-

ability that he really holds these cards given the past actions of the

opponent. At the beginning of a hand2, each possible couple of cards

is assigned a uniform probability since no information is revealed

from our opponent yet. After each action of our opponent, we update

those beliefs according to a model of play of the opponent, which is

expressed in terms of the probabilities of choosing an action given

his game. Actually we consider several possible such models, each

of which defining a specific style of play.

A model of play of our opponent is defined by the probabilities

P(a|H, It) of choosing an action a given his hidden cards H and the

information set It, where It represents all the information available

to both players at time t (e.g. the flop, the bets of the players up to

time t, ...). Now, once the opponent has chosen an action a at time t,

the beliefs P(H|It) on his hidden cards H are updated according to

Bayes’ rule:

P(H|It) = P(H|It−1)P(a|H, It−1),

where It = (It−1 ∪ {a}).

2 here hand means the game from preflop to showdown if it occurs

Thus a simple belief update is performed after each action, based

on a model of play P(a|H, It) of the opponent. Now we explain our

choice of such models. To define the style (or model) of play, Poker

theorists usually [9] consider two attributes:

• Whether the player plays tight (plays very few hands) or loose

(plays a lot of hands);

• Whether the player is aggressive (raises and bluffs) or passive

(calls other players bets).

We selected three features to define relevant properties of a game

state. The first one is the stage S of the game (Flop, Turn, River)

since it defines the amount of the bets and the number of remaining

community cards to come. The second one is the hand strength F

(probability of winning) of the hand. The third one is the size of the

pot C since it greatly influence the way of playing. We thus model

the strategy of the opponent P(a|H, It) using these three features

(F, C, S) of H and It, and write P(a|F, C, S) the corresponding

model (approximation of P(a|H, It)).

In our implementation, we model two basis strategies, one is

tight/aggressive and the other is loose/passive. A model is defined

as follow: for each possible stage of the game (Flop, Turn, River)

we have a table that gives the probability of choosing each ac-

tion as a function of the hand strength and the pot size. Hand

strength is discretized into 5 possible values and pot size is dis-

cretized every 2 big blind. For example at the Flop stage, the ta-

ble is composed of 5 × 4 = 20 values. Tables at other stages

are bigger since the maximum size of the pot is bigger. Those ta-

bles have been generated by resorting to expert knowledge. They

are not detailed in the paper for size reasons but are available at

http://sequel.futurs.inria.fr/maitrepierre/basis-strategies-tables

At the beginning we only consider one strategy (tight/aggressive),

and after several hands against an opponent, we are able to identify

some weakness in our strategy, so we add new strategies. A new strat-

egy is a convex combination of the two basis strategies. For example

since the initial strategy is very tight, adding a looser strategy and se-

lecting which one to use (by a method described in the next section)

will improve the global behavior. Figure 3 shows the improvement

of adding new strategies in games against Vexbot [6]. In the version

which participate to the AAAI’07 we considered 5 different strate-

gies built from the 2 basis strategies.

3.3 Strategy Selection

We have seen in the previous section that the different styles of play

about the opponent yield different belief updates, which in turn de-

fines different basic strategies. We now have to select a good one.

To do that we use a bandit algorithm called UCB (for Upper Confi-

dence Bounds), see [2]. This algorithm allows us to find a good trade-

off between exploitation (use what is believed to be the best strategy)

and exploration (select another apparently sub-optimal strategy in or-

der to get additional information about the opponent). UCB algo-

rithm works by defining a confidence bound for each possible strat-

egy, and selects the strategy that has the highest upper bound. In our

version we use a slightly modified version of the algorithm named

UCB-tuned [1], which takes into account the empirical variance of

the obtained rewards. For strategy i, the bound is defined as:

Bi(n)
def
= σi

r

2 ln n

ni

where:
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Figure 3. Performance of one, four, and five strategies against Vexbot
(which is an adaptive bot). We observe that the resulting meta-strategy is

stronger because it adapts automatically to the opponent and is less
predictable.

• n is the number of hand played.

• ni is the number of times strategy i was played.

• σi is the empirical standard deviation of the rewards.

The UCB (-tuned) algorithm consists in selecting the strategy i

which has the highest upper bound:

x̄i(n) + Bi(n),

where x̄i(n) is the average rewards won by strategy i up to time n.

This version of UCB assumes that the rewards corresponding to

each strategy are independent and identically distributed samples of

fixed random variables. However, in Poker, our opponent may change

his style of play and search for a counter-strategy which adapts to

ours. In order to detect possible changes in the opponent strategy,

we combine the UCB selection policy to a change-point detection

technique.

The change-point detection technique should detect brutal de-

crease in the rewards when using the best strategy (this would cor-

respond to an adaptation of the opponent to our strategy). For this

purpose, we define a lower bound on each strategy:

Li(n)
def
= x̄i(n) − Bi(n),

and we compute the moving average rewards, written x̄i(n − 200 :
n), on a window corresponding to the last 200 played hands with

each strategy. We say that there is change-point detection if, for the

current best strategy i, it happens that x̄i(n− 200 : n) ≤ Li(n) (i.e.

the average rewards obtained over a certain time period is actually

worse than the current lower bound on the expected rewards), then

we give the interpretation that this strategy is starting to be less effec-

tive against the opponent (the opponent adapts to it), and we decide

to forget the period when strategy i was the best, and recompute the

bounds and the average rewards for each strategy but only over the

200 lasts hands.

Change point detection is illustrated in Figure 4: near the 370th

hand, strategy 1 average income has decreased to be under the lower

confidence bound, so we recompute new average and bounds.

Figure 4. Change point detection. After hand 370 the average reward of
strategy 1 goes under UCB’s bound. So the historic of hands is reset and we

recompute new bounds for each strategies.

4 Numerical results

We tested our bot against Sparbot [5], Vexbot [6] which are the cur-

rent best bots in limit heads-up Poker, an AlwaysCall bot and an

AlwaysRaise bot (2 deterministic bots which always play the same

action). The tests was 1000 hands sessions and we test our bot against

each bots on 10 sessions. Vexbot and our bot memory was reset after

each session. Results are presented in Table 1.

Our bot Vexbot Sparbot AlwCall AlwRaise

Our bot +0.05 +0.02 +1.01 +1.87

Vexbot -0.05 +0.056 +1.04 +2.98

Sparbot -0.02 -0.056 +0.47 +1.34

AlwaysCall -1.01 -1.04 -0.47 =0.00

AlwaysRaise -1.87 -2.98 -1.34 =0.00

Table 1. Matches against different Bots, over 10 sessions of 1000 hands.
Results are expressed in smallBlind won per Hand for the line player versus

column one.

We have studied UCB’s behavior all along a match against Vexbot,

studying this match seems more interesting to us since Vexbot is the

only bot which adapts to his opponent’s behavior.

Figure 5 shows the different uses of the strategies all over the

match. We can see that some strategies are favored than others during
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such or such periods: between hands 1500 and 2500, strategies 1 and

2 are very often used. After, strategies 3 and 4 are used over the 1000

following hands. This shows our opponent’s capacity of adaptation

and the fact that UCB, thanks to change point detection, detects this

adaptation and changes the current strategy. We can see that strategy

5 isn’t very used during the match but the addition of this strategy

improves the performance of our bot figure 3 shows the performance

difference before and after the add of strategy 5. We must keep in

mind that UCB not only perform a choice over the strategies but also

bring us a strategy which is a mix of the basic ones. So Vexbot defeats

all our basic strategies but is defeated by the meta-strategy.

Also note that Sparbot which is a pseudo-equilibrium is defeated.

That is something very interesting because equilibrium players, since

they don’t have any weakness to exploit, are a nightmare for adaptive

play. It means that even taking no care of computing an equilibrium

play on our basis strategies, the meta-strategy can adapt to be not so

far of an equilibrium.

Figure 5. These curves show the number of uses of each strategy over
hands played. Reference curve represents an uniformly use of each strategy.
Plateaus represents periods during which a strategy isn’t used whereas slopes

show great use of it.

We register our bot to the AAAI’07 Computer Poker Com-

petition. It takes part in two competitions, the online learning

competition and the equilibrium one. Results can be viewed at

http://www.cs.ualberta.ca/~pokert. Even if our approach is able to

defeat all the AAAI’06 bots, we didn’t perform very well in this com-

petition (not in top 5 bots). We see several reasons to this: firstly, our

approach require a lot a computer time during the match. So we had

to limit the monte carlo exploration in order to comply with the time

limit. Secondly, the strategy of the top competitors is really very close

to a Nash equilibrium. So as our different strategies are not computed

to be Nash equilibrium, our aggressive play is defeated. In fact, in

future version we think that the meta-strategy obtained by uniformly

choose one of our basis strategy should lead to a Nash equilibrium.

Doing so will ensure us to not losing chips during the exploration

stage because at the very beginning, UCB performs a near uniform

exploration of all strategies. Moreover, it would offer a good response

to a Nash equilibrium player: an other Nash equilibrium.

An other future improvement will be the update at the same time of

the expectation of several arms of the UCB. This is possible because

there is correlations between the rewards of each arm: if a slightly

aggressive style doesn’t work, a very aggressive one will probably

fail too. It will allow us to add more basic strategies and having more

subtle attempt of exploitation.

5 CONCLUSIONS

We presented an Texas Hold’em limit poker player which adapts its

playing style to his opponents. It combines beliefs update methods to

obtain different strategies. The use of UCB algorithm enables a fast

adaptation to modifications of opponent’s playing style. For humans

player, the produced bot seems more pleasant than equilibriums ones

since it tries different strategies against his opponent. Moreover due

to the UCB selection, the style of play varies very quickly which

sometimes give the illusion that the computer tried to trap the oppo-

nent.

Using different strategies and choosing the right one depending on

opponents playing styles seems to be promising idea and should be

adapted to multi-player gaming.
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