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Abstract

We consider multi-armed bandit problems where the numberois is larger
than the possible number of experiments. We make a stochesstumption on
the mean-reward of a new selected arm which characterizgsdbability of be-

ing a near-optimal arm. Our assumption is weaker than inipuswvorks. We

describe algorithms based on upper-confidence-boundedppla restricted set
of randomly selected arms and provide upper-bounds on thétiregy expected
regret. We also derive a lower-bound which matches (up tgarithmic factor)

the upper-bound in some cases.

1 Introduction

Multi-armed bandit problems describe typical situatiorieve learning and optimization should be
balanced in order to achieve good cumulative performantdessial multi-armed bandit problems
(see e.g. [9]) consider a finite number of possible actionafms) from which the learner may
choose at each iteration. The number of arms is typicallyhmamaller than the number of ex-
periments allowed, so exploration of all possible opticnasually performed and combined with
exploitation of the apparently best ones.

In this paper, we investigate the case when the number ofiarimfinite (or larger than the available
number of experiments), which makes the exploration ohaldrms an impossible task to achieve:
if no additional assumption is made, it may be arbitrarilych#® find a near-optimal arm. Here we
consider a stochastic assumption on the mean-reward ofemg@lected arm. When a new akm

is pulled, its mean-reward;, is assumed to be an independent sample of a fixed distribuflon
assumption essentially characterizes the probabilityiing near-optimal arms. It depends on two
parameterg > 0 andu* € [0, 1], and writes: the probability that a new arm:isptimal is of order
% for smalle, i.e. P(up > p* — €) = O(¢P) for e — 0. Note that as a consequenpé,is the best
possible mean-reward.

"We write f(e) = ©(g(e)) for e — 0 when3ci, c2, o > 0 such thate < eq, c1g(€) < f(€) < cagle).



Like in multi-armed bandits, this setting exhibits a trafid@tween exploitation (selection of the
arms that are believed to perform well) and exploration. €kploration takes two forms here:
discovery (pulling a new arm that has never been tried biforé sampling (pulling an arm already
discovered in order to gain information about its actual meavard).

Numerous applications can be found e.g. in [5]. It includdsol markets (a worker has many
opportunities for jobs), mining for valuable resourcescfsas gold or oil) when there are many
areas available for exploration (the miner can move to ardtbcation or continue in the same
location, depending on results), and path planning undeertainty in which the path planner has
to decide among a route that has proven to be efficient in the(paploitation), or a known route

that has not been explored many times (sampling), or a brandraute that has never been tried
before (discovery).

Let us writek; the arm selected by our algorithm at timeWe define the regret up to timeas
R, = nu* — >°)| u,- From the tower ruleER,, is the expectation of the difference between
the rewards we would have obtained by drawing an optimal amafm having a mean-reward
equal top*) and the rewards we did obtain during the time steps., n. Our goal is to design an
arm-pulling strategy such as to minimize this regret.

Overview of our results:  We writev,, = é(un) when for somer, C' > 0, v,, < Cuy, (log(uy,))?,
for all n > ng. We assume that the rewards of the arms li@iri]. Our regret bounds depend on
whethery* = 1 or u* < 1. Forp* = 1, our algorithms are such th&atR,, = O(n?/0+9)). For
p* < 1, we haveER,, = O(n/(+9Yif 3 > 1, and (only)ER,, = O(n'/?) if 3 < 1. Moreover
we derive the lower-bound: for any > 0, u* < 1, any algorithm satisfieBR,, > Cnf/(1+8) for
someC > 0. Finally we propose an algorithm having the anytime propevhich is based on an
arm-increasing rule.

Our algorithms essentially consist in pullidgdifferent arms randomly chosen, whefteis of order
nA/2if u* < 1andg < 1, andn?/(1+8) otherwise, and using a variant of the UCB algorithm on
this set of K arms, which takes into account the empirical variance ofé¢lards. This last point is
crucial to get the proposed rate fot = 1 andg < 1, i.e. in cases where there are many arms with
small variance.

Previous works on many-armed bandits: In [5], a specific setting of an infinitely many-armed
bandit is considered, namely that the rewards are Bernmlilom variables with parametgr
wherep follows a uniform law over a given intervadl, x*]. All mean-rewards are therefore in
[0, #*]. They proposed three algorithms. (1) Thdailure strategywhere an arm is played as long
asls are received. When(ais received, a new arm is played and this strategy is repdateder.
(2) Them-run strategyuses the 1-failure strategy until eithercontinuoud's are received (from the
same arm) orn different arms have been played. In the first case, we contoplay forever the
current arm. In the second case, the arm that gave the mosisméhosen to play for the remaining
rounds. Finally, (3) then-learning strategyses the 1-failure strategy during the firssrounds, and
for the remaining rounds it chooses the arm that gave the hsadiiring the firsin rounds.

For u* = 1, the authors of [5] have shown that 1-failure strategy;-run strategy, antbg(n)+/n-
learning strategy have a regiek,, < 2,/n. They also provided a lower bound on the regret of any
strategy:ER,, > v/2n. Foru* < 1, the corresponding optimal strategies gfep*-run strategy
and./nu* log(nu*)-learning strategy. All these algorithms require the kremige of the horizon

of the game. In many applications, it is important to desigokdthms having the anytime property,
that is, the upper bounds on the expected rel§iet have the similar order for ath. Under the
same Bernoulli assumption on the reward distributionsh suigorithms has been obtained in [10].

In comparison to their setting (uniform distribution capends tg3 = 1), our upper- and lower-
bounds are also of ordgrfn up to a logarithmic factor, and we do not assume that we kn@aetéx
the distribution of the mean-reward. However it is worthingtthat the proposed algorithms in
[5, 10] heavily depend on the Bernoulli assumption of theanelg and are not easily transposable to
general distributions. Note also that the Bernoulli asstisnpdoes not work for the real problems
mentioned above, where the outcomes may take several [gogalbes.

Thus an important aspect of our work, compared to previous/paamed bandits, is that our setting
allows general reward distributions for the arms, undengp assumption on the mean-reward.



2 Main results

In our framework, each arm of a bandit is characterized byisigibution of the rewards (obtained
by drawing that arm). The essential parameter of the digidh of rewards is its expectation.
Another parameter of interest is the standard deviatioth v variance, poor arms will be easier
to spot while good arms will have higher probability of noirtgedisregarded at the beginning due to
unlucky trials. To draw an arm is equivalent to draw a distiitin v of rewards. Leju = [ wv(dw)
ando? = [(w — p)?v(dw) denote the expectation and variance-ofThe quantitieg, ando are
random variables. Our assumptions are the following:

(A) all rewards are uniformly bounded: without loss of geality, we may assume that the rewards
are in[0, 1] (more general distributions can be considéyed

(B) the expected reward of a randomly drawn arm satisfiesetlesty* € (0, 1] andg > 0 s.t.
P{u> p* — e} = 0(e?), fore — 0 1)
(C) thereis a functiov : [0, 1] — R such thatP{c? < V(u* — u)} = 1.

The key assumption here is (B). It gives us (the order of) tiralver of arms that needs to be drawn
before finding an arm that isclose to the optimuri.e., an arm for whichy > 11* —¢). Assumption
(B) implies that there exists positive constantandc, such that for any € [0, 1*], we havé

c1€? <P{u>p* — e} <P{u>p* — e} < coé’. 2

Assumption (C) is weak to the extent that it always holdsifon) = p*(1 — p* + ) (here we use
Varw < EW(1 — EW)), but it is convenient when one may want to deal with bandibfgms
where near-optimal arms have low variance (for instanés hilwppens whep* = 1).

Let X 1, Xk 2,... denote the rewards obtained when pulling &m These are i.i.d. random
variables with common expected value denotgd Let 7;675 £ %ijl Xi; and Vy, £
%ijl(Xk_j — X1.5)? be the empirical mean and variance associated with thesfidsaws of
armk. LetTy(t) denote the number of times arkris chosen by the policy during the firsplays.
We will use as a subroutine of our algorithms the followingsien of UCB as introduced in [2].
Let (&:):>0 be a nondecreasing sequence of nonnegative real numbeif.bié referred to as the
exploration sequence since the larger it is, the more UCHoeap. For any arnk and nonnegative

integerss, t, introduce
— 2Vi & 3E
Bt = Xiys + \ % + ?t ®)

with the conventiorl /0 = +o0. Define the UCB-V (for Variance estimate) policy:

UCB-V policy for a set K of arms:
Attimet, play an arm inC maximizing By, 7, (¢—1),¢-

From [2, Theorem 1], the main property Bf. . ; is that with probability at least — 5(log t)e ~t/2,
foranys € [0,t] we haveuy, < By s:. So provided that, is large, By, 1, (+—1),: iS an observable
guantity at timet which upper boundg;, with high probability. We consider nondecreasing se-
quence&;) in order that these bounds hold with probability increasiith time. This ensures that
the low probability event, that the algorithm might concate the draws on suboptimal arms, has a
decreasing probability with time.

2This is done in [7, see p.49 and Chap.4] where it is assumedhidaistributions have uniformly bounded
exponential moments.

3Precise computations lead to a number which is of oedérup to possibly a logarithmic factor.

“Indeed, (1) implies that for som@ < ¢} < ¢, there exist® < ¢y < p* such that for anyg < ¢,
el < P{u>up —e} <P{p>pu" —e} < che” . Straightforward computations show that one may take
c1 = ciel ande, = max(ey ?, ch).



2.1 UCB revisited for the infinitely many-armed bandit

When the number of arms of the bandit is greater than thetotraber of plays, it makes no sense
to apply UCB-V algorithm (or other variants of UCB [3]) sinitefirst step is to draw each arm once
(to haveBy, 1, .1, finite). A more meaningful and natural approach is to dectda@beginning
that only K" arms will be investigated in the entire experiment. Theshould be sufficiently small
with respect tan (the total number of plays), as in this way we have fewer ptaybad arms and
most of the plays will be on the best &f arms. The numbek should not be too small either, since
we want that the best of th€ arms has an expected reward close to the best possible arm.

It is shown in [2, Theorem 4] that in the multi-armed banditking a too small exploration se-

guence (e.g. such & < %1og t) might lead to polynomial regret (instead of logarithmic éog.

& = 2logt) in a simple 2-armed bandit problem. However, we will shoattthis is not the case

in the infinitely many-armed bandit, where one may (and afjotdke much smaller exploration
sequences (typically of ordésg log t). The reason for this phenomenon is that in this settinggethe
are typically many near-optimal arms so that the subrowti@8-V may miss some good arms (by
unlucky trials) without being hurt; there are many otherrrgatimal arms to discover! This illus-

trates a tradeoff between the two aspects of exploratianpkathe current, not well-known, arms
or discover new arms.

We will start our analysis by considering the following UGKec) algorithm:

UCB-V(0) algorithm: Given parameter&” and the exploration sequen@g)
e Randomly choosé& arms,

e Run the UCB-V policy on the set of th& selected arms.

Theorem 1 If the exploration sequence satisfitkg(10logt) < & < logt, then forn > 2 and
K > 2 the expected regret of the UCBa4] algorithm satisfies:

ER, < C{(log K)nK /% + K (logn)E[ (Y +1) A (na)] }, @)

whereA = u* — p with 1 the random variable corresponding to the expected rewaalsgmpled
arm from the pool, and whel€ is a positive constant depending onlyanand 5 (see(2)).

Proof: The UCB-V(x) algorithm has two steps: randomly chodsearms and run a UCB sub-
routine on the selected arms. The first part of the proof etudihat happens during the UCB
subroutine, that is, conditionally to the arms that havenbreadomly chosen during the first step

of the algorithm. In particular we consider in the followititat i1, . .., ux are fixed. From the
equality (obtained using Wald’s theorem):
ER, = Y1 E{Ty(n)} Ay (5)

with A, = p* — py, it suffices to bound®T}(n). The proof is inspired from the ones of Theorems
2 and 3in [2]. The novelty of the following lemma is to make appthe product of probabilities in
the last term of the right-hand-side. This enables us torpmate the idea that if there are a lot of
near-optimal arms, it is very unlikely that suboptimal aremne often drawn.

Lemma 1 For any real number and any positive integer, we have

ETk(n) S u+ Z?:qul Zi:u P(Bk75,t > T) + Z?:u+1 Hk/#k P(E'S/ = [0, t], Bk/7sl7t S T)
(6)

where the expectations and probabilities are conditiontdlthe set of selected arms.

Proof: We haveTy(n) —u < >, .1 Zi(u,t) WhereZy(u,t) = 1;,—p.1, (1)>u- We have
Zi(u,t) < Lypak Bromy, 1,62 B 1, -1y Th (1) >u

< lasequ By ou>r T vkrzk 3s€0,4] By <r

where the last inequality holds since if the two terms in #st sum are equal to zero, then it implies
that there exist&’ # k such that for any’ € [0, ¢] and anys € [u,t], Bir s/t > T > By, s¢. Taking

the expectation of both sides, using a union bound and thepentience between rewards obtained
from different arms, we obtain Lemma [T



Now we use Inequality (6) with = &% = 1y + 46 = ;* — 2 andu the smallest integer

larger thar82 (F A_k) logn. These ch0|ces are made to ensure that the probabilitias intt.s.
k
of (6) are small. Precisely, for any> « andt < n, we have

207 + Ap/AE | L& - \/[20,3+Ak/2]10gn+310gn

+3
S S u u
[[207+Ak/2]A7 308 A [op+AR/4 | 3 A A
< k[ 24 Ax] i 32[o 2+Ak] 7 [ §§+Ak + §0i+2k:| < T5
. . . . . 2 o o +Ak/4
where the last inequality holds since it is equivalentie- 1)? > 0 for x = k2+A . Thus:

- &
BBy > 1) < P(Xpo /755 4375 > i + Ay /2)
<P(Xks + Aog+An/4E: | 38>+ AR/2) +P(Vis > 02 + Ay /4) @)

— s s o 2
< P(Xs — > Ag/d) + P(EZ2EE 2 > A /)
S 2675Ai/(320’2+8Ak/3)’
where in the last step we used Bernstein’s inequality twice.

Summing up these probabilities we obtain

t 00 —uA} /(3207 +8A1/3)
_sA2/(320248A,/3) _ o € K
ZP(Bk,s,t >7) < 226 ROTTEIRTEER = 21 — —AZ/(3202484,/3)
< (80ak + )e_uAi/(32o§+8Ak/3) < (% + AL;C) nt, 8)

where we have used that— e=* > 42/5 for 0 < 2 < 3/8. Now let us bound the product of
probabilities in (6). Since = p* — A, /2, we have

[[ P@Es €04, Buor<7) < 1T P(3s € [0,1], By s < ) -
k' #£k kg >pt—Ay /2

Now from [2, Theorem 1], with probability at least— 5(logt)e /2, for any s € [0,¢] we have
ik < Brsi. FOré > 2log(10logt), this givesP(3s € [0,¢], Bi ¢ < ) < 1/2. Putting all
the bounds of the different terms of (6) leads to

o} 80 7
logn + ( Uk + —) +n2 Nak,

A2 Ak)

<

ET(n) < 1+32( 35 g
with Na, the cardinal of{k’ € {1,...,K} : uw > a — Ag/2}. Sinced;, < p* < 1 and
Tk (n) < n, the previous inequality can be simplified into

ET}(n) < {[50( +A )logn} An}+n2—NAk, 9)

Here, for sake of simplicity, we are not interested in havight constants. From now and on, we
will take the expectations with respect to all sources oflanness, that is including the one coming
from the first step of UCB-\Hc). The quantitieg\y, ..., Ak are i.i.d. random variables satisfying
0 < Ap < p*andP(Ag, < €) = O(¢?). The quantitiesry, ..., o are i.i.d. random variables
satisfying almost surely? < V(Ay). From (5) and (9), we have

ER, = KE{T1(n)A} < KIE{ {50("@1) + 1) log n} (nAy) + nA12NA1} (10)
Let p denote the probability that the expected rewardf a randomly drawn arm satisfigs >
w* —d/2 for a givens. Conditioning onA; = ¢, the quantityNa, follows a binomial distribution
with parametergd — 1 andp, henceE(2-V21|A; = §) = (1 —p+p/2)K~1. By using (2), we get:

E{A27"a1} = E{A(1 = P(u > p* — A1/2)/2)% 71} <Ex(Ay),



with x (u) = u(1 — c3u®)K 1 andcz = ¢1/2°. We havex’(u) = (1 — c3u? )X ~2[1 — c3(1 + (K —

1 K-—1
(O~ Fw=n5)

C'K~'/# for C' a positive constant depending omlyand3. For anyu; € [ug, 1*], we have
Ex(A1) < x(uo)P(A1 < up) + x(u1)P(Ar > ur) < x(uo)P(A1 < ur) + x(wr) -

Let us takeu; = C”(l"gTK) Y for ¢ a positive constant depending enandg sufficiently large

to ensures; > ug andy(u;) < K—11/8, We obtainEx(A;) < C’K*l/ﬁ% for an appropriate
constanC depending of; andg. Putting this into (10), we obtain the result of Theorenll.

Ther.h.s. of Inequality (4) contains two terms. The firsttés the bias: when we randomly draw
arms, the expected reward of the best drawn ar@(i& ~'/#)-optimal. So the best algorithm, once

the K arms are fixed, will lead to a regré(nK —'/%). The second term is the estimation term. It
indicates to what extent the UCB subroutine performs alrasstell as the best arm among the
selected ones.

2.2 Strategy for fixed play number

Consider that we know in advance the total number of ptaysd the value of3. In this case,
one can use the UCB-¥%) algorithm with parametek of order of the minimizer of the r.h.s. of
Inequality (4). This leads to the following UCB-F (for Fixédrizon) algorithm.

UCB-F (fixed horizon): given total number of plays, and parameters* andg3 of (1)

n?  iff<l,ut <1

e ChooseK arms withK of order 8 T
n?+1  otherwise,i.e.ifu* =1org >1

e Run the UCB-V algorithm with thél chosen arms and an exploration sequence
satisfying

2log(10logt) < & <logt (11)

Theorem 2 For anyn > 2, the expected regret of the UCB-F algorithm satisfies

C(logn)y/n if 3 <landp* <1
ER, <{ C(logn)*y/n ifg=1andy* <1 (12)
C’(logn)nﬁ otherwise, i.e. iu* =1org > 1

with C' a constant depending only @f, c; and 3 (see(2)).

Proof: The result comes from Theorem 1 by bounding the expect#tienk [(% +1)A(nA)].
First, as mentioned before, Assumption (C) is satisfiedfoh) = p*(1 — pu* + A). Soforp* =1
and this choice of functiof’, we haveE < 2. Forpu* < 1, sinceA < p*, we haveE < EU(A)
with W(¢) = 2% A (nt). The function? is continuous and differentiable by parts. Using Fubini’s
theorem and Inequality (2), we have

EU(A) = U(p*)—E [ ¥ (t)dt = \I/(;ﬁ? IWO“ \IJ’(tﬁ)]P’(A < t)dt
2 1 202 1—

X 24+ g =nz iff<1
< 2+ [ g meet?dl < 2+ czlog(n/2) i;gzl
2 4 2¢c2 if 5>1

B—1

Putting these bounds in Theorem 1, we get
c{ (log K)ynK =118 + (1ogn)Kn¥} if < 1andy* <1
ER, < { C{(log K)nK~1/% + (1ogn)2K} if 3= 1andu* <1
C{ (log K)nK =% 4 (log n)K} otherwisey* = 1or 3 > 1

with C' a constant only depending @n, co and3. The numberk of selected arms in UCB-F is
taken of the order of the minimizer of these bounds up to arltigaic factor.[]



Theorem 2 makes no difference between a logarithmic exjidoraequence and an iterated loga-
rithmic exploration sequence. However in practice, it &acly better to take an iterated logarithmic
exploration sequence, for which the algorithm spends mess fime on exploring all suboptimal
arms. For sake of simplicity, we have fixed the constants i). (1t is easy to check that for
& = (log, and¢ > 1, Inequality (12) still holds but with a constafitdepending linearly irg.

Theorem 2 shows that whert = 1 or 5 > 1, the bandit subroutine takes no time in spotting near-
optimal arms (the use of UCB-V algorithm using variancereate is crucial for this), whereas for
f < landp* < 1, which means a lot of near-optimal arms with possibly highareces, the bandit
subroutine has difficulties in achieving low regret.

The next theorem shows that our regret upper bounds are apiprto logarithmic terms except for
the case? < 1 andyu* < 1 for which it remains an open problem.

B

Theorem 3 Any algorithm suffers a regret larger tham 75 for some small enough constant
depending omrs andg.

Sketch of proof. (The full proof is provided in Appendix A) If we want to have agret smaller
thancn®/(1+5) we need that most draws are done on an arm having an individgegt smaller
thane = en~/(+8) . To find such an arm, we need to try a number of arms larger than
C'e P = C'¢PnP/(48) arms for some”’ > 0 depending ore, and 3. Since these arms are
drawn at least once and since most of these arms give a constpet, it leads to a regret larger
thanC” ¢—Pnf/(1+5) with C” depending o, and3. Forc small enough, this contradicts that the
regret is smaller thann®/(1+5) So it is not possible to improve on the¢/ (1+9) rate. We do not
know whether the rate®/? for 3 < 1 andyu* < 1 is improvable ]

2.3 Strategy for unknown play number

To apply the UCB-F algorithm we need to know the total numifeplays n» and we choose the
correspondings’ arms before starting. Whem is unknown ahead of time, we propose here an
anytime algorithm with a simple and reasonable way of chapki by adding a new arm from time
to time into the set of sampled arms. LEt, denote the number of arms played up to timewe
setK = 0. We define the UCB-AIR (for Arm-Increasing Rule):

UCB-AIR (Arm-Increasing Rule): given parameterg* and of (1),
e attimen, try a new arm if

[N

n if 6<landp* <1
K1 < _B_ .
nA+1  otherwiseu* =1org>1

e otherwise apply the UCB-V policy on the already drawn arntkan exploration
sequence satisfying

2log(10logt) < & <logt

This arm-increasing rule makes our algorithm applicabtetie anytime problem. This is a more
reasonable approach in practice than restarting-basedthlgs like the ones using the doubling
trick (see e.g. [4, Section 5.3]). Our second main resuti Ebw that the UCB-AIR algorithm has
the same properties as the UCB-F algorithm (proof given ipexpulix B).

Theorem 4 For any horizon time: > 2, the expected regret of the UCB-AIR algorithm satisfies

2 i *
ER, S{ C(logn)*\/n if 6 <landu* <1

S 13
C(logn)zn% otherwise, i.e. ifi* =1org3 > 1 (13)

with C' a constant depending only @n, ¢ and 3 (see(2)).



3 Comparison with continuum-armed bandits and conclusion

In continuum-armed bandits (see e.g. [1, 6, 4]), an infinftamns is also considered. The arms
lie in some Euclidean (or metric) space and their mean-m\wgaa deterministic and smooth (e.g.
Lipschitz) function of the arms. This setting is differerdrh ours since our assumption is stochastic
and does not consider regularities of the mean-reward whet arms. However, if we choose an
arm-pulling strategy which consists in selecting randothly arms, then our setting encompasses
continuum-armed bandits. For example, consider the doffialif’ and a mean-reward function
assumed to be locally equivalent to a Holder function (oforde [0, +00)) around any maximum

* (the number of maxima is assumed to be finite), i.e.

p(z®) — p(e) = O(|[¢" — z[|*) whenz — 2™ (14)

Pulling randomly an arnX according to the Lebesgue measure[@n]?, we have:P(u(X) >
=€) = O(P(]|X — 2*||* < ¢)) = O(e¥/*), fore — 0. ‘Thus our assumption (1) holds with
8 = d/a, and our results say thatjif* = 1, we haveER,, = O(nf/(1+8)) = O(n/(a+d)),

Ford = 1, under the assumption thais a-Holder (i.e.|u(z) — u(y)| < c|lz—y||* for0 < « < 1),

[6] provides upper- and lower-bounds on the reg@gt = ©(n(*+1)/(2a+1)) " Our results gives
ER, = O(n'/(e+1)) which is better for all values af. The reason for this apparent contradiction
is that the lower bound in [6] is obtained by the constructidéra function very irregular, which
actually does not satisfy our local assumption (14).

Now, under assumptions (14) for any> 0 (around a finite set of maxima), [4] provides the rate
ER, = O(y/n). Our result gives the same rate wheh< 1 but in the case.* = 1 we obtain the
improved raté€R,, = O(n'/(®+t1)) which is better whenever > 1 (because we are able to exploit
the low variance of the good arms). Note that like our alganitthe algorithms in [4], as well as in
[6], do not make an explicit use (in the procedure) of the simoess of the function. They just use
a 'uniform’ discretization of the domain.

On the opposite, the zooming algorithm of [8] adapts to thesttmess oﬁf (more arms are sampled
at areas wherg is high). For any dimensiod, they obtainER,, = O(n(¢+1)/(d'+2)) where
d’ < d is their 'zooming dimension’. Under assumptions (14) weudsd!’ = “T‘ld using the

~ da—1)+ao
Euclidean distance as metric, thus their regrek s, = O(nﬁ). For locally quadratic
functions (i.e.a: = 2), their rate isO(n(4+2)/(4+4))  whereas ours i® (n%/(>t9). Again, we have
a smaller regret although we do not use the smoothnegdsrobur algorithm. Here the reason is
that the zooming algorithm does not make full use of the faat the function is locally quadratic
(it considers a Lipschitz property only). However, in thesea < 1, our rates are worse than
algorithms specifically designed for continuum armed bisndi

Hence, the comparison between the many-armed and contianed bandits settings is not easy
because of the difference in nature of the basis assumptiOuos setting is an alternative to the
continuum-armed bandit setting which does not requiretttere exists an underlying metric space
in which the mean-reward function would be smooth. Our agdiom (1) naturally deals with
possible very complicated functions where maxima may batéstin any part of the space. Our
algorithm will be competitive when applied to (and compate@lgorithms specifically designed
for) the continuum-armed bandit problem when there argivelg many near-optimal arms, which
matches the intuition that in such cases, a random selesttiategy will perform well.

To conclude, our contributions are: (i) Compared to presimany-armed bandits, our setting allows
general reward distributions for the arms, under a simpderaption on the probability of pulling
near-optimal arms. (i) We show that, since there is an ityfiof arms, we need much less explo-
ration of each arm than UCB variants applied to finite-armaddits (the usudbg term may be
replaced bylog log). (iii) Our UCB variant, making use of the variance estima&teables to obtain
higher rates in cases when the variance of the good arms ik gfiwa The UCB-AIR algorithm

is anytime, making use of an arm increasing rule (instead @duwbling trick). (v) We provide a
lower-bound matching the upper-bound (up to a logarithimétdr) in the casg > 1 or u* = 1.



A Theorem 3

Proof of Theorem 3. An elementary event of the probability space is charaadrizy the infinite
sequencd, I, ... of arms and by the infinite sequences of rewards correspgndiaach of the

arm: Xr, 1,Xn 2,3 X1,,1, X151, - - -, @and so on. Arml; is the first arm drawn/, # I; is the
second one, and so on. Lk ¢ < ¢’ < p*. Let K* denote the smallegtsuch thafu;, > p* — 4.
Let K be the number of arms ifif1, ..., Ix~_1} with expected reward smaller than or equal to

w* — &', An algorithm will request a number of arni§, which is a random variable (possibly
depending on the obtained rewards). Lidie the expected reward of the best arrfin, ..., Ik }.
Letx > 0 a parameter to be chosen. We have

Ry = Rulpcps—s+ Bulpsp-—s
> "51ﬂ§u*76+K5/1ﬂ>u*76
> nélﬂgu*—é + 56/1ﬂ>p*—6;f(2f€7
where the first inequality uses that> p* — ¢ implies that the armg, , . . ., Ik~ have been at least

tried once. By taking expectations on both sides and takirgnd/é’, we get
ER, > ndP(i < p* —6) + 66" (P(i > p* — ) —P(K < k)) = §'kP(K > k).

Now the random variabl& follows a geometric distribution with paramejes= %.

So we havéER, > §'k(1 — p)*. Takings = §’n~/(B+1) and¢’ a constant value 0, x*) (for

instance(2c,)~/” to ensurey < 2¢,0%), we havex = nTFe andp is of orderl/x and obtain the
desired result.

B Theorem 4
Proof of Theorem 4. We essentially need to adapt the proof of Theorem 1. We réeallK,
denote the number of arms played up to timd.et I, ..., Ik, denote the selected armk:is the
first arm drawn,[, the second, and so on. L&} denote the time arm being played for the first
time. 1 = S5, < 51, <--- < Sp, . Since armdy, ..., I, progressively enter in competition,
Lemma 1 no longer holds but an easy adaptation of its proafistioat fork € {I3,..., Ik, },
]E(Tk(n”‘[l? ttt 7IKn) S u + Z?:U“rl Zi:u ]P)(Bkvs’t > T) + Qk (15)
with

%= > [ PGES€0,4], Buoi<T).

t=ut+1 k' £k S, <t
As in the proof of Theorem 1, since the exploration sequeatisfiesS; > 21log(101logt), we have
P(3s" € [0,¢], Brr sy < 7) < 1/2 for armsk’ such thatu,, > 7. Consequently, lettingV
denote the cardinal of the sft’ : k' # k, uw > 7, S)r < t}, we have
O < Z?:l 2= Nrkt

Let us first consider the cageé = 1 or 8 > 1. In the case of UCB-AIRS], is the smallest integer
strictly larger than(j — 1)(%+1)/5. To shorten notation, let us writ§; for S;,. According to the

arm-increasing rule (try a new armif, _, < t%/(#+1) [S; S, 1) is the time interval in which the
competing arms aré, I, ..., I;.

As in the proof of Theorem 1, we consider= p* — A, /2. We have

EQlli=k) < Y5 S2g  B(2 s, = k)

Jj=1
= LI (S - SE(2 N L = k) (16)
< Zji"l (Sj+1 — Sj)E(2_NT‘°°‘sJ'*1) .

SinceN; «,s;_, follows a binomial distribution with parametgr— 1 andP(x > 7), we have

E(2% s ) = (1 - P(u > 7)/2) 7,
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and

SISy = SE(2 V)

<

S (841 — S) (1 — B
SH (4 B (1 - Ef2(pr -

whereé = ¢;27 177, Plugging (17) into (16), we obtain

S
x 1V
\]
S~—
TN
S~—
~—
<
i

IA
@l

E(Ar,Q,) < 2 GhE(AL [1-ea] ) ).

Now this last expectation can be bounded by the same congmaats fofEy (A, ) in the proof of
Theorem 1. We have, for appropriate positive constéhtandC> depending of; andg,

E(AL,Q) < C1 31 5577181 < Cy(log Kn)? . (18)
Using (15) andER,, = Zf:"l E(A[,95,), we obtain

V(Ar)
1

ER, < KnIE{ [50( + 1) 1ogn} A (A1) + Cs(log Kn)2},

from which Theorem 4 follows for the cage = 1 or 5 > 1. For the case < 1 andu* < 1,
replacing% by % leads to a similar version of (18) as

2 1

. 1=
E(AL,Q,) < Cy Y j5 17180 < Colog Kn) Ko™

which gives the desired convergence rate siiggas of ordern®/2.
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