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Abstract

Our setting is a Partially Observable Markov Decision Pssogith continuous
state, observation and action spaces. Decisions are basedParticle Filter for

estimating the belief state given past observations. Wsidena policy gradient
approach for parameterized policy optimization. For thappse, we investigate
sensitivity analysis of the performance measure with retSjoethe parameters of
the policy, focusing on Finite Difference (FD) techniquég&e show that the naive
FD is subject to variance explosion because of the non-dmess of the resam-
pling procedure. We propose a more sophisticated FD metlmichvovercomes
this problem and establish its consistency.

1 Introduction

We consider a Partially Observable Markov Decision ProlE@MDP) (see e.g. (Lovejoy, 1991;
Kaelbling et al., 1998)) defined by a state procg¥ss);>1 € X, an observation proces$¥;);>; €

Y, adecision (or action) proceéd,);>1 € A which depends on a policy (mapping from all possible
observation histories to actions), and a reward functionX — R. Our goal is to find a policy

7 that maximizes a performance measufe), function of future rewards, for example in a finite
horizon setting:

n

J(m) R (X)) (1)

t=1

Other performance measures (such as in infinite horizondistounted rewards) could be handled
as well. In this paper, we consider the caseaitinuous state, observation, and action spaces

The state procesds a Markov decision process taking its values in a (measeraate space,
with initial probability measure: € M(X) (i.e. X; ~ p), and which can be simulated using a
transition function/” and independent random numbers, i.e. for all 1,

Xt+1 = F(Xt, At, Ut), with Ut Z;L\/d v, (2)

whereF : X x A x U — X and(U,o(U), v) is a probability space. In many practical situations
U = [0,1]P andU; is ap-uple of pseudo random numbers. For simplicity, we adoptihtations

F(xg,ap,u) def F,.(u), whereF), is the first transition function (i.eX, = F},(Uy) with Uy ~ v).



Theobservation procesgY;),>1 lies in a (measurable) spateand is linked with the state process
by the conditional probability measub&Y; € dy:|X: = x:) = g(t, yt) dy:, whereg : X XY —

[0, 1] is the marginal density function df givenX;. We assume that observations are conditionally
independent given the state process. Here also, we assatnedhcan simulate an observation
using a transition functiotz and independent random numbers, i¥. > 1, V; = G(X:, W),

whereV, by, (for the sake of simplicity we consider the same probabsigace(U, o(U), v)).
Now, theaction process(4;);>1 depends on policy 7 which assigns to each possible observation
historyY:., (where we adopt the usual notatioh: " to denote the collection of integesssuch that

1 < s <t),anactiond; € A.

In this paper we will consider policies that depend onhikéef state(also callediltering distri-
bution) conditionally to past observations. The belief statettemib,, belongs taM (X) (the space

of all probability measures o) and is defined by, (dx;, Y1.1) def P(X; € dxz¢|Y1.+), and will be
written b, (dx;) or evenb; for simplicity when there is no risk of confusion. Becausétaf Markov
property of the state dynamics, the belief state, Y7 ;) is the mostinformative representation about
the current stat&; given the history of past observatiokis;. It represents sufficient statistics for
designing an optimal policy in the class of observationseblgolicies.

The temporal and causal dependencies of the dynamics ofeigd?OMDP using belief-based
policies is summarized in Figure 1 (left): at timethe stateX, is unknown, onlyY; is observed,
which enables (at least in theory) to updatdased on the previous beligf ;. The policyr takes

as input the belief statiy and returns an actiod, (the policy may be deterministic or stochastic).
However, since the belief state is an infinite dimensiongaband thus cannot be represented in
a computer, we first simplify the class of policies that wesidar here to be defined over a finite
dimensional space dfelief-featuresf : M(X) — R¥ which represents relevant statistics of the
filtering distribution. We writey, (f.) for the value of the:-th feature (amond) (where we use the

usual notatiorb(f) of Jx f(x)b(dz) for any functionf defined onX and measuré € M (X)),

and denoté;(f) the vector (of sizé() with components,( fi.). Examples of features ar¢(z) = «

(mean value)f(x) = 2’z (for the covariance matrix). Other more complex featureg. (entropy
measure) could be used as well. Such a paticyR* — A selects an actiod; = m(b;(f)), which

in turn, yields a new stat&; ;.

Except for simple cases, such as in finite-state finite-ofasi@in processes (where a Viterbi algo-
rithm could be applied (Rabiner, 1989)), and the case o&lidgnamics and Gaussian noise (where
a Kalman filter could be used), there is no closed-form repriegion of the belief state. Thibg
must be approximated in our general setting. A popular ntefbo approximating the filtering
distribution is known a®article Filters (PF) (also calledinteracting Particle Systemsor Sequen-
tial Monte-Carlo). Such particle-based approaches have been used in maligatipps (see e.g.
(Doucet et al., 2001) and (Del Moral, 2004) for a Feynman-Kamework) for example for pa-
rameter estimation in Hidden Markov Models and control (Aew et al., 2004) and mobile robot
localization (Fox et al., 2001). An PF approximates thedfedtateb, € M (X) by a set of parti-
cles(z}*V) (points of X), which are updated sequentially at each new observatiantgnsition-

selection procedure. In particular, the belief feathilef) is approximated by;- Zﬁvzl f(xi), and

the policy is thus a function that takes as input the activatif the featuref at the position of

the particles:4;, = n(+ Zfil f(x%)). For such methods, the general scheme for POMDPs using
Particle Filter-based policies is described in Figure ght).

In this paper, we consider a class of policigsparameterized by a (multi-dimensional) parameter
6 and we search for the value éfthat maximizes the resulting criteriof(my), now written.J(6)

for simplicity. We focus on a policy gradient approach: tl@\NFDP is replaced by an optimization
problem on the space of policy parameters, and a (stochgstidient ascent osi(6) is considered.
For that purpose (and this is the object of this work) we itigase the estimation d¥ .J(6) (where
the gradienv refers to the derivative w.r.®), with an emphasis on Finite-Difference techniques.
There are many works about such policy gradient approadteifiéld of Reinforcement Learning,
see e.g. (Baxter & Bartlett, 1999), but the policies congdeare generally not based on the result of
an PF. Here, we explicitly consider a class of policies thabtased on a belief state constructed by a
PF. Our motivations for investigating this case are basemvorfacts: (1) the belief state represents
sufficient statistics for optimality, as mentioned abo&).RFs are a very popular and efficient tool
for constructing the belief state in continuous domains.



After recalling the general approach for evaluating théqrerance of a PF-based policy (Section 2),
we describe (in Section 3.1) a naive Finite-Difference (Bpproach (defined by a step sizgefor
estimatingV.J(#). We discuss the bias and variance tradeoff and explain thtegm of variance
explosion wherh is small. This problem is a consequence of the discontirafithe resampling
operation w.r.t. the parametér Our contribution is detailed in Section 3.2: We propose difiexd
FD estimate foV.J (6) which (along the random sample path) has B&s*) and varianc€(1/N),
thus overcomes the drawback of the previous naive methodlgmithm is described and illustrated
in Section 4 on a simple problem where the optimal policy bitbia tradeoff between greedy reward
optimization and localization.
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Figure 1. Left figure: Causal and temporal dependencies iORIPP. Right figure: PF-based
scheme for POMDPs where the belief featbirgf) is approximated by Zf;l fah).

2 Particle Filters (PF)

We first describe a generic PF for estimating the belief dtated on past observations. In Sub-
section 2.1 we detail how to control a real-world POMDP an&ibsection 2.2 how to estimate
the performance of a given policy in simulation. In both casge assume that the models of the
dynamics (state, observation) are known. The basic Pec8botstrap Filter, see (Doucet et al.,

2001) for details, approximates the belief stgteby an empirical distribution’” def Zf;l wi%‘l

(where§ denotes a Dirac distribution) made f particlesz1 V. It consists in iterating the two
following steps: at time, given observation,,

e Transition step: (also calledimportance sampling or mutation) a successor particles
populationz}*"V is generated according to the state dynamics from the preyiopulation
LN i i ; N def 9@ ye)
x4 N. The (importance sampling) weightg ¥ = L7t % __ are evaluated,
Zj:l g(mtﬂyt)
e Selection step:Resample (with replacemen) particlesr; ™ from the ser}*" according

N def k1N : o
N E wherek N are the selection indices.

to the weightsv} V. We writez}
Resampling is used to avoid the problem of degeneracy ofdglogithm, i.e. that most of the weights
decreases to zero. It consists in selecting new particlgigas such as to preserve a consistency
property (i.e. 2N | wip(3l) = El+ SV ¢(zh)])). The simplest version introduced in (Gordon
et al., 1993) chooses the selection indié¢s’ by an independent sampling from the set NV
according to a multinomial distribution with parameters”, i.e. P(k! = j) = w/, forall 1 <
1 < N. The idea s to replicate the particles in proportion torthedights. Many variants have been
proposed in the literature, among which the stratified rgdiaign method (Kitagawa, 1996) which is
optimal in terms of variance, see e.g. (Cappé et al., 2005).

Convergence issues b (f) to b, (f) (e.g. Law of Large Numbers or Central Limit Theorems) are
discussed in (Del Moral, 2004) or (Douc & Moulines, 2008).r Bar purpose we note that under
weak conditions on the featuife we have the consistency property® (f) — b(f), almost surely.



2.1 Control of a real system by an PF-based policy

We describe in Algorithm 1 how one may use an PF-based polidgr the control of a real-world
system. Note that from our definition &f,, the particles are initialized withi} v “d I

Algorithm 1 Control of a real-world POMDP
for t =1tondo
Observe: y;,
Particle transition step:

~1:N
Setz} N = F(apN, a;—1,ur) with u ]\{ . Setw} N = M,
>ie 9@ ye)

Particle resamphng step:
Setr} N = xf ~ wherek}*" are given by the selection step according to the weight¥ .

Select action: a; = mo(& SN | (1)),
end for

2.2 Estimation of J(#) in simulation

Now, for the purpose of policy optimization, one should bpatzle of evaluating the performance
of a policy in simulation. J(#), defined by (1), may be estimated in simulation provided that
the dynamics of the state and observation are known. Makiptici the dependency w.r.t. the
random sample path, written (which accounts for the state and observation stochastiamy

ics and the random numbers used in the PF-based policy), we wiite¢ = E,[J,(0)], where

Jw(6) def Yo, (X1 (0)), making the dependency of the state ww.andd explicit.

Algorithm 2 describes how to evaluate an PF-based policyntulgtion. The function returns an
estimate, written/Y (), of J,(9). Using previously mentioned asymptotic convergence tesul
for PF, one hasimy .., JY (0) = J,(6), aimost surely (a.s.). In order to approximat@), one
would perform several caIIs to the algorithm, receivifgﬁn (0) (for 1 < m < M), and calculate

their empirical mean’; SM_JN (6), which tends to/ (0) a.s., whem\l, N — cc.

m=1“wm

Algorithm 2 Estimation of.J,, (#) in simulation

fort=1tondo
Define state:
= F(2i_1, a1, up—1) With w1 ~ v,
Define observation:
yr = G(x¢,ve) With vy ~ v,
Particle transition step:

~1: iid T,y
Setz}V = F(a!lN, a;_q,ur ) with u}y < v. Setw} N = m
J

Particle resamplmg step:

Setx}V = xf ~ wherek}* are given by the selection step according to the weight¥,

Select action: a; = mg(+ SV fad),
end for
Return J2Y (9) & Yoy ().

3 A policy gradient approach

Now we want to optimize the value of the parameétesimulation Then, once a “good” parameter
0* is found, we would use Algorithm 1 to control the real systesing the corresponding PF-based
policy my-. Gradient approaches have been studied in the field of aenigispace Hidden Markov
Models in (Fichoud et al., 2003; Cérou et al., 2001; Doucetatlic, 2003). The authors have
used alikelihood ratio approach to evaluat€ J(6). Such methods suffer from high variance, in
particular for problems with small noise. In order to redtive variance, it has been proposed in



(Poyadiis et al., 2005) to use a marginal particle filtereastof a simple path-based particle filter.
This approach is efficient in terms of variance reductionitsittomputational complexity i©(N?).

Here we investigate a pathwise (i.e. along the random sapgtlev) sensitivity analysis of,,(6)
(w.r.t. ) for the purpose of (stochastic) gradient optimization.3téet with a naive Finite Difference
(FD) approach and show the problem of variance explosioene provide an alternative, called
common indices FQ which overcomes this problem.

In the sequel, we make the assumptions that all relevantian(F', g, f, m) are continuously
differentiable w.r.t. their respective variables. Notattalthough this is not explicitly mentioned, all
such functions may depend on time.

3.1 Naive Finite-Difference (FD) method

Let us consider the derivative df¢) component-wisely, writing.J (¢) the derivative of/ (6) w.r.t. a
one-dimensional parameter. If the paramétsrmulti-dimensional, the derivative will be calculated

in each direction. Fok > 0 we define the centered finite-difference quotu‘:mii of M
SinceJ(#) is differentiable thedim;,_,o I, = dJ(#). Consequently, a method for approxmatmg
0J(#) would consist in estimating, for a sufficiently smalk. We know that/(#) can be numeri-

cally estimated byl > JX (). Thus, it seems natural to estimdigby

e Y ZJN (0+h) MZ 1)

where we used independent random numbers to evall@te- ») and.J(6 — h). From the con-
sistency of the PF, we deduce thaty, o limy v oo I, = 8J(6). This naive FD estimate
exhibits the following bias-variance tradebff

Proposition 1 (Bias-variance trade-off)Assume thaf (#) is three times continuously differentiable
in a small neighborhood o, then the asymptotic (whel — oo) bias of the naive FD estimate

1M is of orderO(h?) and its variance i€) (N ' M ~1h~2).

In order to reduce the bias, one should choose a smalut then the variance would blow up.
Additional computational resource (larger number of géat N) will help controlling the vari-
ance. However, in practice, e.g. for stochastic optimirgtthis leads to an intractable amount of
computational effort since any consistent FD-based optition algorithm (e.g. such as the Kiefer-
Wolfowitz algorithm) will need to consider a sequence opste that decreases with the number of
gradient iterations. But if the number of particles is boethcthe variance term will diverge, which
may prevent the stochastic gradient algorithm from coringrtp a local optimum.

In order to reduce the variance of the previous estimatomwhi small, one may useommon
random numberso estimate bot/ (6 + h) and J (¢ — h) (i.e. wy, = wn). The variance then
reduces t@)(N M ~1h~1) (see e.g. (Glasserman, 2003)), which still explodes folllsma

Now, under the additional assumption that along almostaaltiom sample patf, the function

6 — JXY(9) is a.s. continuous, then the variance would reduce(tty ~' M ') (see Section (7.1)
of (Glasserman, 2003)). Unfortunately, this is not the dam® because of the discontinuity of the
PF resampling operation w.rd. Indeed, for a fixed, the selection indicek} " (taking values in

a finite setl : N) are usually a non-smooth function of the weigh{s" , which depend o#.

Therefore the naive FD method using PF cannot be appliednargebecause of variance explosion
of the estimate wheh is small, even when using common random number.

3.2 Common-indices Finite-Difference method

Let us considey,, () = >_;—, 7(X;..(#)) making explicit the dependency of the state wérand a
random sample path. Under our assumptions, the gradiémt, () is well defined. Nowlet us fix
w. For clarity, we now omit to write the dependency when no confusion is possible. The function
0 — X.(0) (for anyl < ¢ < n) is smooth because all transition functions are smoothpdiey is

The proof of this Proposition is provided in the Appendix A



smooth, and the belief stabgis smooth w.r.t.8. Underlying the belief featurg ¢(f) dependency
w.r.t. 6, we write:

0 1% b, o(f) 3" X, (0) 13", (6).

As already mentioned, the problem with the naive FD methatias the PF estimatéﬁYe(f) =

+ Zf.vzl f(xi(0)) of by e(f) is not smooth w.r.t. 0 because it depends on the selection indices
k1N (6) which, taken as a function of (through the weights), is not continuous. We write

N
non-smoo 1 7 SMOO!
6 "N (f) = 5 2 F(@i(0) T 0).
=1

So a natural idea to recover continuity in a FD method wouldsigis in using exactly the same
selection indices for quantities relatedite- » andé — h. However, using the same indices means
using the same weights during the selection procedure fibr thaectories. But this would lead to
a wrong estimator because the weights strongly dependstiorough the observation functign
Our idea is thus to use the same selection indices but use adiihood ratio in the belief feature
estimation. More precisely, let us writé*" (9) the selection indices obtained for paraméteand
consider a parametéf in a small neighborhood @f. Then, an PF estimate for ¢/ (f) is

N i / t L '
o (7)< S O) oy with 1o, gy 4 Lsmy 92 (0),:(6)
)5 2 ! O ) e 0)0e0)

being the likelihood ratios computed along the particlénpaand where the particles: (¢') have
been generated using the same selection indit@5#) (and the same random sample pajnas
those used fof. The next result states the consistency of this estimatésand main contributiof

Proposition 2. Under weak conditions ofi (see e.g. (Moral & Miclo, 2000)), there exists a neigh
borhood off, such that for any’ in this neighborhoodbfe,(f) defined by (3) is a consistent

estimator of; ¢/(f), i.e. limy .o bi\f@,(f) = b o/ (f) almost surely.

®3)

Thus, for any perturbed valu# aroundé, we may run an PF where in the resampling step, we
use the same selection indidel$” (9) as those obtained faér Thus the mapping’ — bg\”e,(f) is
smooth. We write:

0’ % bN,, (f) defined by (3)72" 2 (9").

From the previous proposition we deduce thit(d) is a consistent estimator fof, (6).

A possible implementation for the gradient estimation isadibed by Algorithm 3. The algo-
rithm works by updatingd families of state, observation, and particle populaticenoted by
'+, 2", and '0’ for the values of the parametef + h, 6 — h, and 6 respectively. For the
performance measure defined by (1), the algorithm retur@asdimmon indices FDestimator:

OpJN & 3 2ot T(x) — r(x; ) wherezf,, anda7,, are upper and lower trajectories simulated
under the random sample path Note that although the selection indices are the same dtiele
populations '+, ’-', and '0’ are different, but very closevhenh is small). Hence the likelihood

ratios!}*V converge tal whenh — 0, which avoids a source of variance whiers small.

The resulting estimatad}? J Y def + M onJYY for J(6) would calculate an average ovif
sample paths;.,, of the return of Algorithm 3 calledV/ times. This estimator overcomes the
drawbacks of the naive FD estimate: #symptotic bias is of orderO(h?) (like any centered FD
scheme) buits variance is of order O(N~1M 1) (the Central Limit Theorem applies to the belief
feature estimator (3) thus &, /2 as well). Since the variance does not degenerate whgsmall,
one should choosk as small as possible to reduce the mean-squared estimation e

The complexity of Algorithm 3 is linear in the number of paléis N. Note that in the current
implementation we use8l populations of particles per derivative. Of course, we daudnsider a
non-centered FD scheme approximating the derivative Mﬁw which is of first order but
which only require® particle populations. If the parameter is multidimensiottee full gradient

2The proof is provided in the Appendix B



estimate could be obtained by usiAg+ 1 populations of particles. Of course, in gradient ascent
methods, such FD gradient estimate may be advantageouslyimed with clever techniques such
as simultaneous perturbation stochastic approximatipal{2000), conjugate or second-order gra-
dient approaches.

Note that wherh, — 0, our estimator converges to amfinitesimal Perturbation Analysis (IPA)
estimator (Glasserman, 1991). The same ideas as thosaaesdove could be used to derive an
IPA estimator. The advantage of IPA is that it would use ongutetion of particles only (for the
full gradient) which may be interesting when the number obpezetersk is large. However, the
main drawback is that this approach would require to comanégytically the derivatives of all the
functions w.r.t. their respective variables, which mayibeetconsuming for the programmer.

Algorithm 3 Common-indices Finite Difference estimatecof,,

Initialize likelihood ratios:
Setly NVt = 1,15 =1,
fort =1tondo
State processesSampleu; | ~ v and
Setzf = F(x¢_1,a9_q,us_1), sete) = F(x | a |, w1), sete; = F(x; |, a; 4, u1),
Observation processesSamplev; ~ v and
Sety? = G(x9,vy), sety,” = Gz, v), sety, = Gz, ,vy),

. . . iid
Particle transition step: Draw«}*¥ " v and
Setz; 0 = F(zy N0, a9, ulh),

~1 N,+ LN+ + 1: ~1 N,— 1:N,— — 1:N
Setx = F(z,2y "y, uih), setz = F(x, 7 a0, uhy),
~1:N,0 o
Setwl N __ g(mt vgt)
LS S TGN TN
Setltl:N+ Mll N+ setltl:N"* Mll N,—

k g(@; Mo yg) L
Particle resampling step:
Let k1Y be the selection indices obtained from the weights",

g(@ Moy L

. LN ‘N LN N.— KUN
Seta:i Noo — b7, Set:ci Nt — . " Set:ci N = . ,
. LN N EUN
Setl;y Nt = T sett] N T =0T,

Actions: N
Seta?:ﬂ"g(% ZiZI f( 1 2) .
1 _ 6= i—
Seta;r = 779+h(Z£V 1 ZN l] +f( ))' Setat = WG*h(va 1 ZN lJ - f(xt ))'
end for . -
Return: gy, J < yon ) rle ),

4 Numerical Experiment

Because of space constraints, our purpose here is simplpstrate numerically the theoretical
findings of previous FD methods (in terms of bias-varianagidoutions) rather than to provide a
full example of POMDP policy optimization. We consider aywsimple navigation task for a 2d
robot. The robot is defined by its coordinatese R2. The observation is a noisy measurement

of the squared distance to the origin (the goal): e |z¢]|? + v¢, wherev, # N(0,02) (o7 is
the variance of the noise). At each time step, the agent magseha direction (with ||at|| =1),
which results in moving the state, of a st&pn the corresponding direction; 1 = x; + dag + uy,

whereu; RSS N(0,021) is an additive noise. The initial statg is drawn fromv, a uniform
distribution over the square-1, 1]2.

We consider a class of policies that depend on a single featlief: the mean of the belief state
(i.e. f(x) = z). The PF-based policy thus uses the barycenter of the leapapulationm; def

LSV i Let us writem! the +90° rotation of a vectorn. We consider policies(m) =
—(1—=8)m+om*

T=(=@)m+emI parameterized b§ € [0, 1]. The chosen action is thus = my(m.). If the robot



was well localized (i.e.m; close tox;), then the policyrg—o would move the robot towards the
direction of the goal, whereas—; would move it in an orthogonal direction.

The performance measure (to be minimized) is definet{&s= E[||x,,||?], wheren is a fixed time.
We plot in Figure 2 the performance and gradient estimatlitained when running Algorithms 2
and 3, respectively. We used the numerical valu¥s= 103, M = 10%, h = 1075, n = 10,
o, = 0.05,0, =0.05,d =0.1.

Performance estimate
o o
Gradient estimate

Figure 2: Left: Performance estimatigh ZM ) (bold curve) ofJ(¢) and confidence inter-
vals++/Var[JV (0)]/M . Right: Gradient est|mat|or4— Z L OnJYY () of 8.J(#) and confidence
intervals=++/Var[o, J (0)] /M.

Itis interesting to note that in this problem, the perforais optimal fol* ~ 0.3 (which is slightly
better than fof = 0). & = 0 would correspond to the best feed-back policy if the statepeafectly
known. However, moving in an direction orthogonal to thelddps improving localization. Here,
the optimal policy exhibits a tradeoff between greedy ojtation and localization.

h=10° h=10"2 h=10"1% h=10"6
Bias / Variance NFD| 0.57/6.05 x 103 0.31/0.13 unreliable 25.3 | unreliable /6980
Bias / Variance CIFD| 0.428/0.022 0.00192/0.019 | 0.00247/70.02 | 0.00162/0.0188

The table above shows the (empirically measured) bias amahez of the naive FD (NFD) (using
common random numbers) method and the common indices FID{j®hethod, for a specific value

6 = 0.5 (with N = 103, M = 500). As predicted, the variance of the NFD approach makes this
method inapplicable, whereas that of the CIFD is reasonable

A Proof of Proposition 1

Proposition 3 (Bias-variance trade-off)Assume thaf (6) is three times continuously differentiable
in a small neighborhood o, then the asymptotic (whel — oo) bias of the naive FD estimate

1™ is of orderO(h?) and its variance i€) (N~ M ~1h~2).

[VM) = LOLh I and using

Proof. Thanks to the consistency property of PE%limN_,oo
(0+h)—J(O—h) 3%J(0) n2 2

a three-order Taylor expansions.6f we have— 0J(0) + =555~ & +o(h?). We

deduce the asymptotic bias of the naive FD grad|ent estimafdimy_.. 1,""] — 0J(0) =

O(h?).

Now, since the two stochastic estimatof§ (¢ + h) and Jjjn,(e — h) are independent, the

variance of ;" is i (VarJNw, (0 + h)] + VarlJNw,, (0 — h)]). Now, an IPS satis-

fies a Central Limit Theorem (see e.g. (Del Moral, 2004; Doudvi&ulines, 2008) for de-

tails), thus VapJ (0)] ~n—oo 02(8) /N, wheres?(6) is the asymptotic variance. We deduce that
2

y o (6
Varl Ly ™) ~ (v, a1y (o0,00.0) X7 - =



B Proof of Proposition 2

Proposition 4. Under weak conditions oy (see (Moral & Miclo, 2000) for general assumptions
or (Douc & Moulines, 2008) for refined assumptions), thergsex neighborhood of, such that
for any 6’ in this neighborhoodb%,(f) defined by (3) is a consistent estimatorbf- (f), i.e.

lmy o0 by (f) = beer(f) @lmost surely.

Proof. For any®’, the belief feature is:

beor(£.Y1(0)) = E[f(Xe(6)[Y2:(6")

E[/(Xu(0) [Tizy 9:(6")]

B[, gsw')}

E[/(xu(0) LD T 9.0)]

E[ L= sCU T 0.0)]

B[ f(X(00) Bt TTL 9,0)] (B[ tlR T 0.0)]
E[[Ti- 95(6)] ( E ([T, 9.(0)] )

where we used the short notatign(6) to denoteg(X;(0),Y;(6)). Now we use the general PF
convergence properties for Feynman-Kac (FK) models (seardM8& Miclo, 2000; Del Moral,
2004) or (Douc & Moulines, 2008)) which, applied to a FK flowtevMarkov chainX.;, (random)

potential functiong)( X ), and test functior (X;.;), states that the PF estimat}é:zij\;1 H(xi,)

(X1:¢) [Tomy H(X0)]
is consistent with-. Gy S A

—1

H§:1 9(Xs (9/),)’3(9/))
[Ti—, 9(Xs(0),Ys(0))
def

with the potentialy(X;) = g(X(0),Y5(0)), we deduce that the PF

and to

Applying this result successively to the test functibin ' F(X(6h)

def TT°_, 9(X.(6"),Y:(6")
= T, 9(X.(0).Y.(0)
estimator:

= (z4(8"),ys(8") .
~ Zz  fl= HG ) L7 (zm(e),Zs(a)) _ i (0,0
1N Iig 11(9’),115(9/)) - 10,0
N Yint I ol @y, @) SIL e
is consistent withb, ¢ (f). The denominator being the product of the likelihood raifobounded
away from0 since from the smoothness assumption on all necessaryidoactthe limit of
oy 90X (09, Y, (9) when¢’ — 6 exists and equals. Thus, in a neighborhood df, the PF es-

[Ty 9(X:(0),Y:(0)
timator (3) is weII defined and is a consistent estimatdr, @f (f). O

F(i(0) = bl (f)
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