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Finite-Sample Analysis of Lasso-TD

In this paper, we analyze the performance of Lasso-TD, a modification of LSTD in which the projection operator is defined as a Lasso problem. We first show that Lasso-TD is guaranteed to have a unique fixed point and its algorithmic implementation coincides with the recently presented LARS-TD and LC-TD methods. We then derive two bounds on the prediction error of Lasso-TD in the Markov design setting, i.e., when the performance is evaluated on the same states used by the method. The first bound makes no assumption, but has a slow rate w.r.t. the number of samples. The second bound is under an assumption on the empirical Gram matrix, called the compatibility condition, but has an improved rate and directly relates the prediction error to the sparsity of the value function in the feature space at hand.

Introduction

Least-squares temporal difference (LSTD) learning [START_REF] Bradtke | Linear least-squares algorithms for temporal difference learning[END_REF][START_REF] Boyan | Least-squares temporal difference learning[END_REF] is a widely used reinforcement learning (RL) algorithm for learning the value function V π of a policy π. More precisely, LSTD tries to compute the fixed point of the operator ΠT π , where T π is the Bellman operator of policy π and Π is the projection operator onto a linear function space spanned by a set of d features {φ i } d i=1 . The choice of these features has a major impact on the accuracy of the value function estimated by LSTD. The problem of finding the right space, or in other words the problem of feature selection, is an important challenge in many areas of machine learning including RL.

In many situations, however, there may be no a priori way of selecting features in order to guarantee good performance. Recent approaches to value function approximation in RL instead propose to solve the problem in very high-dimensional feature spaces F in the hope that a good set of features lies somewhere in this basis. In practice, the fact that the number of features is often larger than the number of samples n ≤ d leads to the problem of overfitting and poor prediction performance. In order to learn from a small number of data, one should be able to select a small number of features (from the large collection of features) that are the most relevant in approximating the value function. In regression, a commonly used technique to address this issue is to solve an ℓ 1 or ℓ 2 penalized least-squares problem, called Lasso or ridge, respectively (see e.g. [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF], which provides a way to regularize the objective function in order to overcome the overfitting problem. Among these two methods, Lasso is of particular interest, because the geometric properties of the ℓ 1 -penalty encourage sparse solutions, i.e., solutions that can be expressed in terms of the linear combination of a small number of features. This is exactly the type of solution we would hope for when moving to high-dimensional spaces.

In value function approximation in RL, however, the objective is not to recover a target function given its noisy observations, but is instead to approximate the fixed-point of the Bellman operator given sample trajectories. This creates some difficulties in applying Lasso and ridge to this problem. Despite these difficulties, both ℓ 1 and ℓ 2 regularizations have been previously studied in value function approximation in RL. Farahmand et al. presented several such algorithms wherein ℓ 2 -regularization was added to LSTD and modified Bellman residual minimization [START_REF] Farahmand | Regularized policy iteration[END_REF], to fitted Q-iteration [START_REF] Farahmand | Regularized fitted Q-iteration for planning in continuous-space Markovian decision problems[END_REF], and finite-sample performance bounds for these algorithms were proved. There has also been al-gorithmic work on adding ℓ 1 -penalties to the TD [START_REF] Loth | Sparse temporal difference learning using lasso[END_REF], LSTD [START_REF] Kolter | Regularization and feature selection in least-squares temporal difference learning[END_REF][START_REF] Johns | Linear complementarity for regularized policy evaluation and improvement[END_REF], and linear programming [START_REF] Petrik | Feature selection using regularization in approximate linear programs for Markov decision processes[END_REF] algorithms.

In the work by [START_REF] Kolter | Regularization and feature selection in least-squares temporal difference learning[END_REF] and [START_REF] Johns | Linear complementarity for regularized policy evaluation and improvement[END_REF], the idea is to find a fixed point solution to an ℓ 1 -penalized LSTD problem. The experimental results reported in these papers are interesting and ask for theoretical analysis. In this paper, we consider a modification of LSTD, which incorporates an ℓ 1 -penalty in its projection operator. We call this problem Lasso-TD and analyze it in the setting of pathwise LSTD [START_REF] Lazaric | Finitesample analysis of LSTD[END_REF]. Our analysis may apply to any method which solves for the underlying fixed-point, including the recently proposed LARS-TD [START_REF] Kolter | Regularization and feature selection in least-squares temporal difference learning[END_REF] and LC-TD [START_REF] Johns | Linear complementarity for regularized policy evaluation and improvement[END_REF] algorithms. In this work, we show that a Lasso-TD solution α always exists and its corresponding value function approximation ṽ = f α is unique. Beyond this, the main objective of this paper is to investigate which "nice" properties of the ℓ 1 -penalized regression carry forward into the fixed-point setting. As a result, we also provide two bounds on the approximation error v -f α n , where v is the true value function and • n denotes the empirical norm at the states used by the algorithm. The first of these bounds makes no assumptions and has estimation error which scales with the ℓ 1 -norm of the best approximation at a rate of n -1/4 . Under the compatibility condition [START_REF] Van De Geer | On the conditions used to prove oracle results for the Lasso[END_REF] on the features (more precisely on the empirical Gram matrix 1 n Φ ⊤ Φ), we prove a more refined bound which scales with the ℓ 0 -norm of the best approximation (i.e., the actual sparsity) and with a better rate n -1/2 . Our results indicate that if the value function can be well approximated with a small number of relevant features, then the number of samples n required to learn a good approximation of it only scales with the number of relevant features.

Preliminaries

For a measurable space with domain X , we let S(X ) and B(X ; L) denote the set of probability measures over X , and the space of bounded measurable functions with domain X and bound 0 < L < ∞, respectively. For a measure ρ ∈ S(X ) and a measurable function f : X → R, we define the ℓ 2 (ρ)-norm of f , ||f || ρ , and for a set of n states X 1 , . . . , X n ∈ X , we define the empirical norm ||f || n as

||f || 2 ρ = f (x) 2 ρ(dx) and ||f || 2 n = 1 n n t=1 f (Xt) 2 .
We consider the standard RL framework [START_REF] Sutton | An Introduction to Reinforcement Learning[END_REF] in which a learning agent interacts with a stochastic environment by following a policy π and this interaction is modeled as a discrete-time discounted Markov chain (MC). A discounted MC is a tuple M π = X , R π , P π , γ , where the state space X is a subset of a Euclidean space, the reward function R π : X → R is uniformly bounded by R max , the transition kernel P π is such that for all x ∈ X , P π (•|x) is a distribution over X , and γ ∈ (0, 1) is a discount factor. The value function of a policy π, V π , is the unique fixed-point of the Bellman operator T π : B(X ;

V max = Rmax 1-γ ) → B(X ; V max ) defined by 1 (T π V )(x) = R π (x) + γ X P π (dy|x)V (y).
To approximate the value function V π , we use a linear approximation architecture with parameter α ∈ R d and basis functions ϕ j ∈ B(X ; L), j = 1, . . . , d. We denote by φ :

X → R d , φ(•) = ϕ 1 (•), . . . , ϕ d (•)
⊤ the feature vector, and by F the linear function space spanned by the basis functions ϕ j .

Let (X 1 , . . . , X n ) be a sample path (or trajectory) of size n generated by the Markov chain M. Let v ∈ R n and r ∈ R n such that v t = V π (X t ) and r t = R(X t ) be the value vector and the reward vector, respectively. Also, let Φ = [φ(X 1 ) ⊤ ; . . . ; φ(X n ) ⊤ ] be the feature matrix defined at the states, and

F n = {f α = Φα : α ∈ R d } ⊂
R n be the corresponding vector space.

Lasso-TD

Lasso-TD takes a single trajectory {X t } n t=1 of size n generated by the Markov chain and the observed rewards {R(X t )} n t=1 as input, and computes the fixed point ṽ = Π λ T ṽ similar to LSTD. As in LSTD, T : R n → R n is the pathwise emperical Bellman operator [START_REF] Lazaric | Finitesample analysis of LSTD[END_REF] defined as

( T y)t = rt + γyt+1 1 ≤ t < n, rt t = n.
Lasso-TD departs from LSTD in the definition of the projection operator. Here Π λ : R n → F n is the ℓ 1penalized projection defined as

Π λ y = Φ α such that α = arg min α∈R d ||y -fα|| 2 n + λ||α||1 .
In order to show the existence and uniqueness of the fixed point ṽ, we show that Π λ T is a γ-contraction w.r.t. the ℓ 2 -norm. [START_REF] Lazaric | Finitesample analysis of LSTD[END_REF] showed that T is a γ-contraction mapping in ℓ 2 -norm, and Lemma 1 below proves that Π λ is a non-expansive mapping in the same norm. As a consequence, Π λ T is a contraction mapping and from the Banach fixed point theorem, there exists a unique fixed point ṽ ∈ F n of Π λ T . We define the Lasso-TD solution α as α = arg min

α∈R d || T ṽ -f α || 2 n + λ||α|| 1 . (1)
From the definition of the projection Π λ we have that f α = Φα = Π λ T ṽ, and from the fact that ṽ is the fixed point of Π λ T , we deduce that α is solution to the ℓ 1 -penalized fixed-point equation:

α = arg min α∈R d T f α -f α 2 n + λ α 1 . (2) 
This latter formulation is the one used in [START_REF] Kolter | Regularization and feature selection in least-squares temporal difference learning[END_REF] and [START_REF] Johns | Linear complementarity for regularized policy evaluation and improvement[END_REF]. By introducing a contraction mapping in the function space F n we are able to prove the existence of the fixed-point ṽ ∈ F n , and deduce that the parameter α (as defined by Eq. 1) is the solution to Eq. 2, which is an ℓ 1 -penalized fixed-point formulation in the parameter space. Note that although ṽ is unique, the solution α of Eq. 2 may not be unique (if there are several minimizers to the problem in Eq. 1), but any solution α to Eq. 2 is such that Φα is a fixed point of Π λ T , thus Φα = ṽ. From an algorithmic perspective, one may use the formulation in Eq. 2 in order to compute α (see e.g. [START_REF] Kolter | Regularization and feature selection in least-squares temporal difference learning[END_REF][START_REF] Johns | Linear complementarity for regularized policy evaluation and improvement[END_REF]. We will now prove that the projection operator is a non-expansion.

Lemma 1. For any x, y ∈ R n , Π λ satisfies

Π λ x -Π λ y 2 n ≤ x -y 2 n -x -y -( Π λ x -Π λ y) 2 n . (3)
Proof. We prove the result for a general proximal operator. Let g : R d → R be any convex function (e.g., g(α) = λ α 1 ). For any y ∈ R n , we define

αy = arg min α∈R d Φα -y 2 n + g(α),
and write Π λ y = Φα y . Since α y is a minimum,

0 ∈ ∂ y -Φ • 2 n + g(•) (αy) = - 2 n Φ ⊤ (y -Φαy) + ∂g(αy),
and thus 2 n Φ ⊤ (y -Φα y ) ∈ ∂g(α y ). From the definition of sub-gradient, for any z ∈ R d , we have

z -αy, 2 n Φ ⊤ (y -Φαy) ≤ g(z) -g(αy)
.

By choosing z = α x , we obtain α x -α y , 2 n Φ ⊤ (y -Φα y ) ≤ g(α x ) -g(α y ), which may be rewritten as

2 n Π λ x -Π λ y, y -Π λ y ≤ g(αx) -g(αy).
With a similar reasoning, we may deduce

2 n Π λ y -Π λ x, x -Π λ x ≤ g(αy) -g(αx).
By adding these inequalities, we obtain

Π λ x -Π λ y 2 n ≤ Π λ x -Π λ y, x -y .
The claim follows using the fact that

x -y -( Π λ x -Π λ y) 2 n = x -y 2 n + Π λ x -Π λ y 2 n -2 Π λ x -Π λ y, x -y .
From Lemma 1, we deduce that Π λ T is a contraction mapping w.r.t. the ℓ 2 -norm, which guarantees the existence and uniqueness of the fixed point ṽ of Π λ T . Note that we did not require any assumptions in order to show the existence and uniqueness of this solution, however, additional assumptions may be necessary in order to find these solutions algorithmically [START_REF] Kolter | Regularization and feature selection in least-squares temporal difference learning[END_REF][START_REF] Johns | Linear complementarity for regularized policy evaluation and improvement[END_REF].

Markov Design Bounds

In Section 3, we defined Lasso-TD and showed that the operator Π λ T always has a unique fixed point Φ α.

In this section, we derive two bounds for the performance of Φ α, i.e., the performance of f α evaluated at the states of the trajectory used by the algorithm. In Section 4.1, we derive a performance bound that has an estimation error with the rate O(||α|| 1 n -1/4 ). Although this bound has a poor rate, it does not require any assumption on the empirical Gram matrix 1 n Φ ⊤ Φ. In Section 4.2, we derive a bound with a better rate O(||α|| 0 n -1/2 ), where this improvement is at the cost of introducing an additional assumption on the empirical Gram matrix, called the compatibility condition.

ℓ 1 -Oracle Inequality

The main theorem of this section shows a natural connection between the prediction performance of Lasso-TD (which is an ℓ 1 -regularized fixed point problem) and the ℓ 1 -norm of the best approximation of v in F n . Theorem 1. Let δ > 0. Let {X t } n t=1 be a trajectory generated by the Markov chain, and let v, Φ α ∈ R n be vectors whose components are the value function and the Lasso-TD prediction at {X t } n t=1 , respectively. Then, with probability 1 -δ (w.r.t. the trajectory), we have

||v -f α|| n ≤ 1 1 -γ inf α∈R d ||v -f α || n (4) + 12γV max L||α|| 1 2 log(2d/δ) n 1/4 + 1 √ 2n .
Remark 1. We should first emphasize that this bound makes no assumption on either the state distribution or the empirical Gram matrix (related to the correlation of the features). The bound consists of an approximation error term (i.e., the ℓ 2 distance between v and the function f α ) and an estimation error term that scales with the ℓ 1 -norm α 1 at the rate n -1/4 . Intuitively, this means that if there exists a good approximation f ᾱ ∈ F n of the value function that has small ℓ 1 -norm, i.e., || ᾱ|| 1 is small, then the approximation f α obtained by Lasso-TD will perform almost as well as f ᾱ. For this reason, we refer to this bound as an ℓ 1 -oracle inequality. This result perfectly matches the results for ℓ 1 -regularized methods for regression in the deterministic design setting where the prediction error of the Lasso solution is related to the ℓ 1 -norm of the best approximation of the target function in F n (see e.g., [START_REF] Massart | An l1-oracle inequality for Lasso[END_REF]. Finally, although the properties of the ℓ 1 -penalty tend to produce "sparse" solutions and often behave similar to the ℓ 0 -penalty, we may not deduce such behavior from this bound. However in Section 4.2, we will show that under suitable conditions the Lasso-TD solution has a strong connection with the sparsity of the functions that approximate v in F n .

Remark 2. (Lasso-TD vs. LSTD) We may also compare the Lasso-TD bound to the Markov design LSTD bound reported in [START_REF] Lazaric | Finitesample analysis of LSTD[END_REF]. To ease the comparison, we report simplified versions of both bounds where Õ hides constants, logarithmic terms in δ, and dominated terms. Let α * = arg min α∈R d ||vf α || n and let α L be the LSTD solution. The Lasso-TD bound in Eq. 4 may be written as

||v -fα||n ≤ 1 1 -γ ||v -fα * ||n + Õ ||α * || 2 1 log d n 1 4
, while the performance of LSTD can be bounded as

||v -fα L ||n ≤ 1 1 -γ 2 ||v -fα * ||n + γ 1 -γ Õ d nνn ,
where ν n is the smallest strictly positive eigenvalue of the empirical Gram matrix. Although in Lasso-TD the constant (1 -γ) -1 in front of the approximation error is larger than (1 -γ 2 ) -1/2 , both bounds share the same dependency on the accuracy of f α * , the best approximation of the value function in the vector space F n . On the other hand, the estimation errors display significantly different behaviors. The estimation error of LSTD has a better rate n -1/2 compared to the rate n -1/4 for Lasso-TD. However, Lasso-TD attains a much smaller estimation error whenever the dimensionality d is of the same order as (or larger than) the number of samples. Similar to regression, in this case LSTD tends to overfit the noise in the data, while Lasso-TD performs better as a regularization method. In fact, in LSTD the estimation error increases as d 1/2 , while Lasso-TD has a milder dependency of order ||α * || 1 log d. Finally, we note that the bound for LSTD reported in [START_REF] Lazaric | Finitesample analysis of LSTD[END_REF] has an additional dependency on ν -1/2 n which does not appear in the bound for Lasso-TD.

Remark 3. (Lasso-TD vs. LSTD-RP) Another interesting comparison is to the LSTD with random projections (LSTD-RP) algorithm introduced in [START_REF] Ghavamzadeh | LSTD with random projections[END_REF]. LSTD-RP first generates a new function space G spanned by d ′ (with d ′ ≪ d) features obtained as linear random combinations of the features ϕ i of F and then runs standard LSTD on it. Let α RP be the solution returned by LSTD-RP. After optimizing the dimensionality d ′ of the randomly generated linear space as suggested in [START_REF] Ghavamzadeh | LSTD with random projections[END_REF], LSTD-RP achieves the following performance bound

||v -fα RP ||n ≤ 1 1 -γ 2 ||v -fα * ||n + γ 1 -γ Õ ||α * || 2 2 log n nνn 1/4 .
Unlike LSTD, the estimation error in both Lasso-TD and LSTD-RP has the same decreasing rate w.r.t. the number of samples n. The main difference here is that Lasso-TD scales with ||α * || 1 , while ||α * || 2 appears in the LSTD-RP bound. This difference is consistent with the definition of the two algorithms as ℓ 1 and ℓ 2 regularization methods. Since ||α * || 2 ≤ ||α * || 1 , LSTD-RP bound is in general tighter than Lasso-TD's. However, in Thm. 2 we show that under certain assumptions, the Lasso-TD bound may be refined and its estimation error would depend on the ℓ 0 -norm of α * (the sparsity of α * ) and would have a better rate n -1/2 . In order to prove Thm. 1, we first state and prove a Lemma about the Markov design model [START_REF] Lazaric | Finitesample analysis of LSTD[END_REF]. The model of regression with Markov design is a regression problem where the data {(X t , Y t )} n t=1 are generated such that {X t } n t=1 is a trajectory sampled from a Markov chain, Y t = f (X t ) + ξ t consists of noisy function evaluations, and f is the target function. Each noise term ξ t is bounded and adapted to the filtration generated by X 1:t+1 , and have zero-mean conditioned on X 1:t , i.e.,

|ξ t | ≤ C and E[ξ t |X 1 , . . . , X t ] = 0 , (5) 
The following lemma provides a bound on the performance of Lasso for the Markov design setting that has a slow rate, but does not require any assumptions. Lemma 2. We consider the model of regression with Markov design. Let f α ∈ F n be the Lasso prediction of the (noisy) values Y = {Y t } n 1 , i.e., f α = Φα = Π λ Y . For any δ > 0, with probability at least 1 -δ, we have

||f -f α|| 2 n ≤ ||f -f α || 2 n + 6CL||α|| 1 2 log(2d/δ) n ,
for any Φα ∈ F n .

Proof of Lemma 2. We define ξ ∈ R n to be the vector with components ξ t . From the definition of α we have

||Y -f α|| 2 n + λ|| α||1 ≤ ||Y -fα|| 2 n + λ||α||1 . (6) 
We may write ||Y -

f α|| 2 n -||Y -f α || 2 n as ||Y -f α|| 2 n -||Y -fα|| 2 n = ||Y -f || 2 n + 2 Y -f, f -f α n+ ||f -f α|| 2 n -||Y -f || 2 n + 2 Y -f, f -fα n + ||f -fα|| 2 n = ||f -f α|| 2 n -||f -fα|| 2 n + 2 ξ, fα -f α n ,
and thus, Eq. 6 may be written as

||f -f α|| 2 n + λ|| α||1 ≤ ||f -fα|| 2 n + λ||α||1 + 2 ξ, f α -fα n . (7) 
The term 2 ξ, f α -f α n in Eq. 7 may be bounded as

2 ξ, f α -fα n ≤ 2 n max i=1,...,d n t=1 ξtϕi(Xt) || α -α||1 .
We now define the event

E1 = 2 n max i=1,...,d n t=1 ξtϕi(Xt) ≤ λ0 . ( 8 
)
Under E 1 we have

2 ξ, f α -fα n ≤ λ0|| α -α||1 ≤ λ0|| α||1 + λ0||α||1 ,
and thus using Eq. 7, we obtain

||f -f α|| 2 n +(λ-λ0)|| α||1 ≤ ||f -fα|| 2 n +(λ+λ0)||α||1 . (9)
For any λ ≥ 2λ 0 , Eq. 9 may be written as

||f -f α|| 2 n + λ 2 || α||1 ≤ ||f -fα|| 2 n + 3λ 2 ||α||1 . ( 10 
)
From the conditions on the noise in the Markov design setting, we have that for any i = 1, . . . , d The result follows by setting λ 0 = 2CL 2 log(2d/δ) n , λ = 2λ 0 , and plugging this value of λ in Eq. 10.

Proof of Theorem 1.

Step 1: Using the triangle inequality, we have

||v -fα||n ≤ ||v -Π λ T v||n + || Π λ T v -fα||n . ( 12 
)
From the γ-contraction of Π λ T , and the fact that f α is its unique fixed point, we obtain

|| Π λ T v -fα||n = || Π λ T v -Π λ T fα||n ≤ γ||v -fα||n . (13)
Thus from Eq. 12 and 13, we have

||v -fα||n ≤ 1 1 -γ ||v -Π λ T v||n . ( 14 
)
Step 2: We now provide a high probability bound for ||v -Π λ T v|| n . This is a consequence of Lemma 2 applied to the vectors Y = T v and f (X t ) n t=1 = v. Since v is the value function at the points {X t } n t=1 , from the definition of the pathwise Bellman operator, we have that for 1 ≤ t ≤ n -1, ξ t = γ V (X t ) -P (dy|X t )V (y) , and ξ n = -γ P (dy|X n )V (y). Thus, Eq. 5 holds for 1 ≤ t ≤ n -1. Here we may choose C = 2γV max for a bound on {ξ t } n-1 t=1 , and C = γV max for a bound on ξ n . Azuma's inequality may be applied only to the sequence of n -1 terms, thus instead of Eq. 11, we obtain Setting λ 0 = 2γV max L 2 2 log(2d/δ) n + 1 n , λ = 2λ 0 , and plugging in this value of λ in Eq. 10, we deduce that with probability 1 -δ, we have

||v -Π λ T v|| 2 n ≤ ||v -fα|| 2 n (15) + 12γVmaxL||α||1 2 log(2d/δ) n + 1 2n .
The claim follows by taking the square-root of Eq. 15 and combining it with Eq. 14.

Sparsity Oracle Inequality

In Section 4.1, we derived a bound on the prediction performance of the Lasso-TD solution which does not require any assumption on the existence of the stationary distribution of the policy under evaluation and on the empirical Gram matrix. However, as discussed in Remark 2, the estimation error in Thm. 1 has a poor rate (compared to LSTD, n -1/4 instead of n -1/2 ) and scales with the ℓ 1 -norm of α, which is not directly related to the sparsity of α. In this section, we derive an improved bound whose estimation error depends on ||α|| 0 and decreases as n -1/2 at the cost of an extra assumption on the empirical Gram matrix 1 n Φ ⊤ Φ. Prediction bounds in the deterministic design setting for Lasso in linear models may be derived under a variety of different assumptions on the empirical Gram matrix. The most common assumption is the celebrated restricted isometry property (RIP) (see e.g., [START_REF] Candes | Decoding by linear programming[END_REF] which guarantees that the feature matrix restricted on an index set S approximately preserves the norm of any vector. Although sufficient to prove both prediction and reconstruction properties of Lasso, the RIP assumption is rarely satisfied in practice. van de Geer & Bühlmann (2009) report a thorough analysis of a number of different sufficient condition for sparsity oracle inequalities (i.e., performance bounds depending on the sparsity of the problem). The compatibility condition is one of the weakest of these assumptions, and thus, may be satisfied by a fairly general class of Gram matrices (van de [START_REF] Van De Geer | On the conditions used to prove oracle results for the Lasso[END_REF].

Before stating the main result of this section, we introduce some notations and define a condition on the empirical Gram matrix 1 n Φ ⊤ Φ. Let S ⊆ {1, . . . , d} be an index set, s = |S| be its cardinality, and S c = {1, . . . , d} -S be its complement. For a vector α ∈ R d and an index set S ⊆ {1, . . . , d}, we denote by α S ∈ R d the vector with non-zero entries in the index set S, i.e., α 

(i) S = α i I {i ∈ S}.
(K, S) = {α ∈ R d : ||α S c || 1 ≤ K||α S || 1 = 0} be a restriction set. We call ψ 2 (K, S) = min s||f α || 2 n ||α S || 2 1 : α ∈ R(K, S) (16) 
the (K, S)-restricted ℓ 1 -eigenvalue of the empirical Gram matrix. The empirical Gram matrix satisfies the (K, S)-compatibility condition if ψ(K, S) > 0.

We are now ready to derive a better bound for the prediction performance of Lasso-TD.

Theorem 2. Let {X t } n t=1 be a trajectory generated by the Markov chain, and v, Φ α ∈ R n be the vectors whose components are the value function and the Lasso-TD prediction at {X t } n t=1 , respectively. For any δ > 0, with probability 1 -δ, we have

||v -f α|| n ≤ 1 1 -γ inf α∈U ||v -f α || n (17) + 12γV max L √ s ψ 2 log(2d/δ) n + 1 2n ,
for any α ∈ R d such that the empirical Gram matrix 1 n Φ ⊤ Φ satisfies the (3, S α )-compatibility condition, where U ⊆ R d is the set of such α's.

Remark 1. (Sparsity Oracle Inequality) The bound of Eq. 17 shares the same structure as the bound in Eq. 4, where the prediction error is divided into an approximation error and an estimation error terms. The main difference is that the estimation error improved from Õ (||α|| 2 1 log d/n) 1/4 to Õ (s log d/ψn) 1/2 , where s = ||α|| 0 . It is interesting to note that up to a logarithmic factor log d and ignoring the dependency on ψ and ν n , this is the same performance LSTD would obtain using the features in the set S α instead of the whole function space F. This type of bounds is usually referred to as sparsity oracle inequalities. In fact, Eq. 17 shows that if there exists an s-sparse α with small approximation error (e.g., the minimizer of the RHS of the bound), Lasso-TD is able to take advantage of its sparsity and obtain a prediction performance which is approximately equivalent to the one achieved by searching directly in the space with dimensionality s. Furthermore, this performance bound also shows the effectiveness of Lasso-TD in solving high-dimensional problems where the number of features d is larger than the number of samples n. In fact, with a fixed number of samples n, as d increases, the performance of LSTD becomes worse and worse, while Lasso-TD attains an almost constant prediction accuracy ( Õ(log d)), because the number of relevant features s does not change with d. Finally, this result supports the claim that the fixed point method Lasso-TD has the same properties as Lasso in regression.

Remark 2. (Sparse Value Functions) As discussed in Remark 1, in order for Lasso-TD to be effective, a sparse approximation of the value function must exist. While in regression this assumption is natural in many domains, in RL we need to characterize the control problems which are likely to generate sparse value functions in a given feature space. Although a full analysis of this problem is beyond the scope of this paper, in the following we try to present some characteristics which are sufficient to expect Lasso-TD to perform well. Let us consider the class of continuous MDPs with finite actions, smooth dynamics (i.e., smooth stochastic transition kernel), and smooth reward function. In this case, for any policy π, the corresponding value function V π is piecewise smooth.2 From approximation theory, we know that piecewisesmooth functions can be accurately approximated by localized features, such as wavelets (see e.g., [START_REF] Mallat | A Wavelet Tour of Signal Processing: Wavelet Analysis & Its Applications[END_REF]. As a result, if we define F as the linear function space spanned by a set of d wavelets, any value function is likely to be well-approximated by functions in F with a relatively small number of non-zero coefficients. In this case, even if d is large so as to guarantee small approximation errors, we expect Lasso-TD to require few samples (i.e., n be of the same order as the sparsity of the best solution) to learn an accurate approximation of the value function at hand. Remark 3. (Lasso-TD vs. LSTD-RP) In Remark 3 of Section 4.1, we mentioned that LSTD-RP may achieve a better performance than Lasso-TD in the general no-assumption case. On the other hand, when the compatibility assumption holds, Lasso-TD achieves an estimation error of order Õ (s log d)/(ψn) which has a better decreasing rate than LSTD-RP and displays a direct connection with the sparsity s of α. On the other hand, LSTD-RP does not take advantage of the possible sparsity of α and provides bounds in terms of the ℓ 2 -norm of α, which may be larger than s.

Remark 4. As mentioned at the beginning of this section, many different assumptions have been proposed to derive sparsity oracle inequalities for prediction in regression, among which compatibility is the weakest sufficient condition. In Thm. 2, we showed that similar to regression, the compatibility condition is a sufficient assumption to prove a sparsity oracle inequality for Lasso-TD. Although verifying this condition is often infeasible (all the possible index sets S should be checked), in practice the empirical Gram matrix is likely to satisfy the compatibility condition (see van de Geer & Bühlmann 2009 for a detailed discussion and examples). Similar to Thm. 1, in order to prove Thm. 2, we first state and prove a Lemma about the Markov design model. This lemma provides a Lasso bound for the Markov design setting that has a fast rate, but requires some assumptions on the empirical Gram matrix.

Lemma 3. We consider the model of regression with Markov design. Let Φ α ∈ F n be the Lasso prediction of the (noisy) values Y = {Y t } n 1 , i.e., Φ α = Π λ Y . For any δ > 0, with probability at least 1 -δ, we have

||f -f α|| n ≤ ||f -f α || n + 6CL √ s ψ 2 log(2d/δ) n ,
for any α ∈ R d such that the empirical Gram matrix 1 n Φ ⊤ Φ satisfies the (3, S α )-compatibility condition. Note that s = s α and ψ = ψ(3, S α ).

Proof of Lemma 3. To simplify the notations, we write S instead of S α . If the event E 1 defined by Eq. 8 holds, for any λ ≥ 2λ 0 , Eq. 7 may be written as

||f -f α|| 2 n +λ|| α||1 ≤ ||f -fα|| 2 n +λ||α||1+ λ 2 || α-α||1 . ( 18 
)
By reordering of Eq. 18, we obtain

||f -f α|| 2 n + λ 2 || αS c ||1 ≤ ||f -fα|| 2 n + λ 2 || αS -αS||1 + λ ||αS||1 -|| αS||1 ≤ ||f -fα|| 2 n + 3λ 2 || αS -αS||1. ( 19 
)
Since for ||f -f α || n ≥ ||f -f α|| n the statement of the lemma is true with probability one, we only consider the case where ||f -f α || n ≤ ||f -f α|| n . In this case, we may deduce from Eq. 19 that (α -α) ∈ R(3, S), and thus

|| αS -αS|| 2 1 ≤ s||f α -fα|| 2 n ψ 2 . ( 20 
)
Replacing || αS -α S || 1 in Eq. 19 from Eq. 20 and using the triangle inequality, we have

||f -f α|| 2 n ≤ ||f -fα|| 2 n + 3λ √ s 2ψ ||f -f α||n + ||f -fα||n . (21) 
Solving Eq. 21 for ||f -f α|| n , we obtain

||f -f α||n ≤ ||f -fα||n + 3 √ sλ 2ψ . ( 22 
)
The rest of the proof is similar to the end of the proof of Lemma 3, we first set λ 0 = 2CL 2 log(2d/δ) n and λ = 2λ 0 that event E 1 holds with probability 1 -δ, and then plug in λ in Eq. 22.

Proof of Theorem 2. Similar to Theorem 1, we first bound ||v -f α|| n as in Eq. 14, and then bound ||v -Π λ T v|| n using Lemma 3.

Conclusions

In this paper, we analyzed the performance of Lasso-TD, a fixed point TD method in which the projection operator is defined as a Lasso problem. We first showed that this method is guaranteed to always have a unique fixed point and that its algorithmic implementation coincides with the LARS-TD [START_REF] Kolter | Regularization and feature selection in least-squares temporal difference learning[END_REF] and LC-TD [START_REF] Johns | Linear complementarity for regularized policy evaluation and improvement[END_REF] methods. We derived bounds on the prediction error of Lasso-TD in the Markov design setting, i.e., when the performance is evaluated on the same states used to train Lasso-TD. Although the first bound holds in a very general setting where no assumption is required, its estimation error has a slow decreasing rate w.r.t. the number of samples. At the cost of an extra assumption on the empirical Gram matrix, we also derived a sparsity oracle inequality which directly relates the prediction error to the sparsity of the value function in the feature space at hand. To the best of our knowledge, this is the first analysis of ℓ 1 -regularized TD methods and is also the first result showing that Lasso-TD enjoys similar properties as Lasso in regression.

A number of open questions remains to be investigated: 1) Derivation of bounds on the estimation of α * when v = f α * . This is the case where the value function lies in the function space, also known as the high dimensional assumption. 2) Analysis of the sparsity of the Lasso-TD solution, i.e., || α|| 0 . 3) Extension to the random design setting, where the predictive performance is evaluated over the entire state space according to the stationary distribution of the policy.

  ) ≤ γVmaxL 2 2n log(2d/δ) + 1 , with probability 1 -δ.

  For a vector α ∈ R d , we denote by S α = {i : α i = 0} the set of indices of the non-zero entries, or the active set, of α, s α = |S α | the cardinality of S α or the sparsity index of α, and S c α = {i : α i = 0} the complement of S α . Note that from the definition of S α , we have α S c α = 0. Definition 1 (Compatibility Condition). Let S ⊆ {1, . . . , d} be an index set and R

  where we used the fact that |ξ t ϕ i (X t )| ≤ CL for any i and t. By union bound over all features, we have that with probability 1 -δ

		n		
	max i=1,...,d	t=1	ξtϕi(Xt) ≤ CL 2n log(2d/δ) ,	(11)
	and thus with probability 1 -δ 2 n max i=1,...,d n t=1 ξtϕi(Xt) ≤ 2CL	2 log(2d/δ) n	.
	E[ξtϕi(Xt)|X1, . . . , Xt] = ϕi(Xt)E[ξt|X1, . . . , Xt] = 0 ,			
	and since ξ t ϕ i (X t ) is adapted to the filtration gen-			
	erated by X 1 , . . . , X t+1 , it is a martingale difference			
	sequence w.r.t. that filtration. Hence by applying			
	Azuma's inequality, we may deduce that with prob-			
	ability 1 -δ			

n t=1 ξtϕi(Xt) ≤ CL 2n log(2/δ) ,

To simplify the notation, we remove the dependency to the policy π and use M, R, P , V , and T instead of M π , R π , P π , V π , and T π throughout the paper.

The value function V π is smooth in all the subsets of X where the policy π is constant, whereas its gradient is discontinuous in states where π changes.
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