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Abstract

We introduce a new convergent variant of Q-learning, calledspeedy Q-learning, to
address the problem of slow convergence in the standard formof the Q-learning
algorithm. We prove a PAC bound on the performance of SQL, which shows
that for an MDP withn state-action pairs and the discount factorγ only T =
O
(

log(n)/(ǫ2(1− γ)4)
)

steps are required for the SQL algorithm to converge to
anǫ-optimal action-value function with high probability. This bound has a better
dependency on1/ǫ and1/(1−γ), and thus, is tighter than the best available result
for Q-learning. Our bound is also superior to the existing results for both model-
free and model-based instances of batch Q-value iteration that are considered to
be more efficient than the incremental methods like Q-learning.

1 Introduction

Q-learning [20] is a well-known model-free reinforcement learning (RL) algorithm that finds an
estimate of the optimal action-value function. Q-learningis a combination of dynamic programming,
more specifically the value iteration algorithm, and stochastic approximation. In finite state-action
problems, it has been shown that Q-learning converges to theoptimal action-value function [5, 10].
However, it suffers from slow convergence, especially whenthe discount factorγ is close to one [8,
17]. The main reason for the slow convergence of Q-learning is the combination of the sample-based
stochastic approximation (that makes use of a decaying learning rate) and the fact that the Bellman
operator propagates information throughout the whole space (specially whenγ is close to1).

In this paper, we focus on RL problems that are formulated as finite state-action discounted infinite
horizon Markov decision processes (MDPs), and propose an algorithm, calledspeedy Q-learning
(SQL), that addresses the problem of slow convergence of Q-learning. At each time step, SQL uses
two successive estimates of the action-value function thatmakes its space complexity twice as the
standard Q-learning. However, this allows SQL to use a more aggressive learning rate for one of
the terms in its update rule and eventually achieves a fasterconvergence rate than the standard Q-
learning (see Section 3.1 for a more detailed discussion). We prove a PAC bound on the performance
of SQL, which shows that onlyT = O

(

log(n)/((1 − γ)4ǫ2)
)

number of samples are required for
SQL in order to guarantee anǫ-optimal action-value function with high probability. This is superior
to the best result for the standard Q-learning by [8], both interms of1/ǫ and1/(1 − γ). The rate
for SQL is even better than that for thePhased Q-learningalgorithm, a model-free batch Q-value

1



iteration algorithm proposed and analyzed by [12]. In addition, SQL’s rate is slightly better than
the rate of the model-based batch Q-value iteration algorithm in [12] and has a better computational
and memory requirement (computational and space complexity), see Section 3.3.2 for more detailed
comparisons. Similar to Q-learning, SQL may be implementedin synchronous and asynchronous
fashions. For the sake of simplicity in the analysis, we onlyreport and analyze its synchronous
version in this paper. However, it can easily be implementedin an asynchronous fashion and our
theoretical results can also be extended to this setting by following the same path as [8].

The idea of using previous estimates of the action-values has already been used to improve the per-
formance of Q-learning. A popular algorithm of this kind is Q(λ) [14, 20], which incorporates the
concept of eligibility traces in Q-learning, and has been empirically shown to have a better perfor-
mance than Q-learning, i.e., Q(0), for suitable values ofλ. Another recent work in this direction
is Double Q-learning[19], which uses two estimators for the action-value function to alleviate the
over-estimation of action-values in Q-learning. This over-estimation is caused by a positive bias in-
troduced by using the maximum action value as an approximation for the expected action value [19].

The rest of the paper is organized as follows. After introducing the notations used in the paper
in Section 2, we present ourSpeedy Q-learningalgorithm in Section 3. We first describe the al-
gorithm in Section 3.1, then state our main theoretical result, i.e., a high-probability bound on the
performance of SQL, in Section 3.2, and finally compare our bound with the previous results on
Q-learning in Section 3.3. Section 4 contains the detailed proof of the performance bound of the
SQL algorithm. Finally, we conclude the paper and discuss some future directions in Section 5.

2 Preliminaries

In this section, we introduce some concepts and definitions from the theory of Markov decision
processes (MDPs) that are used throughout the paper. We start by the definition of supremum norm.
For a real-valued functiong : Y 7→ R, whereY is a finite set, the supremum norm ofg is defined as
‖g‖ , maxy∈Y |g(y)|.

We consider the standard reinforcement learning (RL) framework [5, 16] in which a learning agent
interacts with a stochastic environment and this interaction is modeled as a discrete-time discounted
MDP. A discounted MDP is a quintuple(X,A, P,R, γ), whereX andA are the set of states and
actions,P is the state transition distribution,R is the reward function, andγ ∈ (0, 1) is a discount
factor. We denote byP (·|x, a) andr(x, a) the probability distribution over the next state and the
immediate reward of taking actiona at statex, respectively. To keep the representation succinct, we
useZ for the joint state-action spaceX×A.

Assumption 1 (MDP Regularity). We assumeZ and, subsequently,X andA are finite sets with
cardinalities n,|X| and |A|, respectively. We also assume that the immediate rewardsr(x, a) are
uniformly bounded byRmax and define the horizon of the MDPβ , 1/(1−γ) andVmax , βRmax.

A stationary Markov policyπ(·|x) is the distribution over the control actions given the current
statex. It is deterministic if this distribution concentrates over a single action. Thevalueand the
action-value functionsof a policy π, denoted respectively byV π : X 7→ R andQπ : Z 7→ R,
are defined as the expected sum of discounted rewards that areencountered when the policyπ
is executed. Given a MDP, the goal is to find a policy that attains the best possible values,
V ∗(x) , supπ V

π(x), ∀x ∈ X. FunctionV ∗ is called theoptimal value function. Similarly
theoptimal action-value functionis defined asQ∗(x, a) = supπ Q

π(x, a), ∀(x, a) ∈ Z. The opti-
mal action-value functionQ∗ is the unique fixed-point of theBellman optimality operatorT defined
as(TQ)(x, a) , r(x, a) + γ

∑

y∈X
P (y|x, a)maxb∈A Q(y, b), ∀(x, a) ∈ Z. It is important to note

thatT is a contraction with factorγ, i.e., for any pair of action-value functionsQ andQ′, we have
‖TQ− TQ′‖ ≤ γ ‖Q−Q′‖ [4, Chap. 1]. Finally for the sake of readability, we define the max
operatorM over action-value functions as(MQ)(x) = maxa∈A Q(x, a), ∀x ∈ X.

3 Speedy Q-Learning

In this section, we introduce our RL algorithm, called speedy Q-Learning (SQL), derive a perfor-
mance bound for this algorithm, and compare this bound with similar results on standard Q-learning.
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The derived performance bound shows that SQL has a rate of convergence of orderO(
√

1/T ),
which is better than all the existing results for Q-learning.

3.1 Speedy Q-Learning Algorithm

The pseudo-code of the SQL algorithm is shown in Algorithm 1.As it can be seen, this is the
synchronous version of the algorithm, which will be analyzed in the paper. Similar to the standard
Q-learning, SQL may be implemented either synchronously orasynchronously. In the asynchronous
version, at each time step, the action-value of the observedstate-action pair is updated, while the
rest of the state-action pairs remain unchanged. For the convergence of this instance of the algo-
rithm, it is required that all the states and actions are visited infinitely many times, which makes
the analysis slightly more complicated. On the other hand, given a generative model, the algo-
rithm may be also formulated in a synchronous fashion, in which we first generate a next state
y ∼ P (·|x, a) for each state-action pair(x, a), and then update the action-values of all the state-
action pairs using these samples. We chose to include only the synchronous version of SQL in
the paper just for the sake of simplicity in the analysis. However, the algorithm can be imple-
mented in an asynchronous fashion (similar to the more familiar instance of Q-learning) and our
theoretical results can also be extended to the asynchronous case under some mild assumptions.1

Algorithm 1: Synchronous Speedy Q-Learning (SQL)
Input: Initial action-value functionQ0, discount factorγ, and number of iterationT
Q−1 := Q0; // Initialization
for k := 0, 1, 2, 3, . . . , T − 1 do // Main loop

αk := 1
k+1 ;

for each(x, a) ∈ Z do
Generate the next state sampleyk ∼ P (·|x, a);
TkQk−1(x, a) := r(x, a) + γMQk−1(yk);
TkQk(x, a) := r(x, a) + γMQk(yk); // Empirical Bellman operator

Qk+1(x, a) := Qk(x, a)+αk

(

TkQk−1(x, a)−Qk(x, a)
)

+(1−αk)
(

TkQk(x, a)−TkQk−1(x, a)
)

;
// SQL update rule

end
end
return QT

As it can be seen from Algorithm 1, at each time stepk, SQL keeps track of the action-value
functions of the two time-stepsk andk − 1, and its main update rule is of the following form:

Qk+1(x, a) = Qk(x, a)+αk

(

TkQk−1(x, a)−Qk(x, a)
)

+(1−αk)
(

TkQk(x, a)−TkQk−1(x, a)
)

,
(1)

whereTkQ(x, a) = r(x, a) + γMQ(yk) is the empirical Bellman optimality operator for the sam-
pled next stateyk ∼ P (·|x, a). At each time stepk and for state-action pair(x, a), SQL works as
follows: (i) it generates a next stateyk by drawing a sample fromP (·|x, a), (ii) it calculates two
sample estimatesTkQk−1(x, a) andTkQk(x, a) of the Bellman optimality operator (for state-action
pair(x, a) using the next stateyk) applied to the estimatesQk−1 andQk of the action-value function
at the previous and current time steps, and finally(iii) it updates the action-value function of(x, a),
generatesQk+1(x, a), using the update rule of Eq. 1. Moreover, we letαk decays linearly with
time, i.e.,αk = 1/(k + 1), in the SQL algorithm.2The update rule of Eq. 1 may be rewritten in the
following more compact form:

Qk+1(x, a) = (1− αk)Qk(x, a) + αkDk[Qk, Qk−1](x, a), (2)

whereDk[Qk, Qk−1](x, a) , kTkQk(x, a)− (k− 1)TkQk−1(x, a). This compact form will come
specifically handy in the analysis of the algorithm in Section 4.

Let us consider the update rule of Q-learning

Qk+1(x, a) = Qk(x, a) + αk

(

TkQk(x, a)−Qk(x, a)
)

,

1See [2] for the convergence analysis of the asynchronous variant ofSQL.
2Note that other (polynomial) learning steps can also be used with speedy Q-learning. However one can

show that the rate of convergence of SQL is optimized forαk = 1
/

(k + 1). This is in contrast to the standard
Q-learning algorithm for which the rate of convergence is optimized for a polynomial learning step [8].
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which may be rewritten as

Qk+1(x, a) = Qk(x, a)+αk

(

TkQk−1(x, a)−Qk(x, a)
)

+αk

(

TkQk(x, a)−TkQk−1(x, a)
)

. (3)

Comparing the Q-learning update rule of Eq. 3 with the one forSQL in Eq. 1, we first notice that
the same terms:TkQk−1 −Qk andTkQk − TkQk−1 appear on the RHS of the update rules of both
algorithms. However, while Q-learning uses the same conservative learning rateαk for both these
terms, SQL usesαk for the first term and a bigger learning step1− αk = k/(k + 1) for the second
one. Since the termTkQk − TkQk−1 goes to zero asQk approaches its optimal valueQ∗, it is not
necessary that its learning rate approaches zero. As a result, using the learning rateαk, which goes
to zero withk, is too conservative for this term. This might be a reason whySQL that uses a more
aggressive learning rate1− αk for this term has a faster convergence rate than Q-learning.

3.2 Main Theoretical Result

The main theoretical result of the paper is expressed as a high-probability bound over the perfor-
mance of the SQL algorithm.

Theorem 1. Let Assumption 1 holds andT be a positive integer. Then, at iterationT of SQL with
probability at least1− δ, we have

‖Q∗ −QT ‖ ≤ 2β2Rmax





γ

T
+

√

2 log 2n
δ

T



 .

We report the proof of Theorem 1 in Section 4. This result, combined with Borel-Cantelli lemma [9],
guarantees thatQT converges almost surely toQ∗ with the rate

√

1/T . Further, the following result
which quantifies the number of stepsT required to reach the errorǫ > 0 in estimating the optimal
action-value function, w.p.1− δ, is an immediate consequence of Theorem 1.

Corollary 1 (Finite-time PAC (“probably approximately correct”) performance bound for SQL).
Under Assumption 1, for anyǫ > 0, after

T =
11.66β4R2

max log
2n
δ

ǫ2

steps of SQL, the uniform approximation error‖Q∗ −QT ‖ ≤ ǫ, with probability at least1− δ.

3.3 Relation to Existing Results

In this section, we first compare our results for SQL with the existing results on the convergence of
standard Q-learning. This comparison indicates that SQL accelerates the convergence of Q-learning,
especially forγ close to1 and smallǫ. We then compare SQL with batch Q-value iteration (QI) in
terms of sample and computational complexities, i.e., the number of samples and the computational
cost required to achieve anǫ-optimal solution w.p.1 − δ, as well as space complexity, i.e., the
memory required at each step of the algorithm.

3.3.1 A Comparison with the Convergence Rate of Standard Q-Learning

There are not many studies in the literature concerning the convergence rate of incremental model-
free RL algorithms such as Q-learning. [17] has provided theasymptotic convergence rate for Q-
learning under the assumption that all the states have the same next state distribution. This result
shows that the asymptotic convergence rate of Q-learning has exponential dependency on1−γ, i.e.,
the rate of convergence is of̃O(1/t1−γ) for γ ≥ 1/2.

The finite time behavior of Q-learning have been throughly investigated in [8] for different
time scales. Their main result indicates that by using the polynomial learning stepαk =
1
/

(k + 1)
ω
, 0.5 < ω < 1, Q-learning achievesǫ-optimal performance w.p. at least1− δ after

T = O





[

β4R2
max log

nβRmax

δǫ

ǫ2

]
1

w

+

[

β log
βRmax

ǫ

]
1

1−ω



 (4)
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steps. Whenγ ≈ 1, one can argue thatβ = 1/(1 − γ) becomes the dominant term in the bound of
Eq. 4, and thus, the optimized bound w.r.t.ω is obtained forω = 4/5 and is ofÕ

(

β5/ǫ2.5
)

. On the
other hand, SQL is guaranteed to achieve the same precision in onlyO

(

β4/ǫ2
)

steps. The difference
between these two bounds is significant for large values ofβ, i.e.,γ’s close to1.

3.3.2 SQL vs. Q-Value Iteration

Finite sample bounds for both model-based and model-free (Phased Q-learning) QI have been de-
rived in [12] and [7]. These algorithms can be considered as the batch version of Q-learning.
They show that to quantifyǫ-optimal action-value functions with high probability, weneed
O
(

nβ5/ǫ2 log(1/ǫ)
(

log(nβ) + log log 1
/

ǫ
))

andO
(

nβ4/ǫ2(log(nβ) + log log 1
/

ǫ)
)

samples in
model-free and model-based QI, respectively. A comparisonbetween their results and the main re-
sult of this paper suggests that the sample complexity of SQL, which is of orderO

(

nβ4/ǫ2 log n
)

,3

is better than model-free QI in terms ofβ andlog(1/ǫ). Although the sample complexities of SQL
is only slightly tighter than the model-based QI, SQL has a significantly better computational and
space complexity than model-based QI: SQL needs only2n memory space, while the space com-
plexity of model-based QI is given by either̃O(n/(β4ǫ2)) or n(|X|+ 1), depending on whether the
learned state transition matrix is sparse or not [12]. Also,SQL improves the computational com-
plexity by a factor ofÕ(β) compared to both model-free and model-based QI.4 Table 1 summarizes
the comparisons between SQL and the other RL methods discussed in this section.

Table 1: Comparison between SQL, Q-learning, model-based and model-free Q-value iteration in
terms of sample complexity (SC), computational complexity(CC), and space complexity (SPC).

Method SQL Q-learning (optimized) Model-based QI Model-free QI

SC Õ

(

nβ4

ǫ2

)

Õ

(

nβ5

ǫ2.5

)

Õ

(

nβ4

ǫ2

)

Õ

(

nβ5

ǫ2

)

CC Õ

(

nβ4

ǫ2

)

Õ

(

nβ5

ǫ2.5

)

Õ

(

nβ5

ǫ2

)

Õ

(

nβ5

ǫ2

)

SPC Θ(n) Θ(n) Õ

(

nβ4

ǫ2

)

Θ(n)

4 Analysis

In this section, we give some intuition about the convergence of SQL and provide the full proof of
the finite-time analysis reported in Theorem 1. We start by introducing some notations.

Let Fk be the filtration generated by the sequence of all random samples {y1, y2, . . . , yk} drawn
from the distributionP (·|x, a), for all state action(x, a) up to roundk. We define the operator
D[Qk, Qk−1] as the expected value of the empirical operatorDk conditioned onFk−1:

D[Qk, Qk−1](x, a) , E(Dk[Qk, Qk−1](x, a) |Fk−1 )

= kTQk(x, a)− (k − 1)TQk−1(x, a).

Thus the update rule of SQL writes

Qk+1(x, a) = (1− αk)Qk(x, a) + αk (D[Qk, Qk−1](x, a)− ǫk(x, a)) , (5)

3Note that at each round of SQLn new samples are generated. This combined with the result of Corollary 1
deduces the sample complexity of orderO(nβ4/ǫ2 log(n/δ)).

4SQL has the sample and computational complexity of a same order since it performs only one Q-value
update per sample, whereas, in the case of model-based QI, the algorithmneeds to iterate the action-value
function of all state-action pairs at leastÕ(β) times using Bellman operator, which leads to a computational
complexity bound of order̃O(nβ5/ǫ2) given that onlyÕ(nβ4/ǫ2) entries of the estimated transition matrix
are non-zero [12].
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where the estimation errorǫk is defined as the difference between the operatorD[Qk, Qk−1] and its
sample estimateDk[Qk, Qk−1] for all (x, a) ∈ Z:

ǫk(x, a) , D[Qk, Qk−1](x, a)−Dk[Qk, Qk−1](x, a).

We have the property thatE[ǫk(x, a)|Fk−1] = 0 which means that for all(x, a) ∈ Z the sequence
of estimation error{ǫ1(x, a), ǫ2(x, a), . . . , ǫk(x, a)} is a martingale difference sequence w.r.t. the
filtrationFk. Let us define the martingaleEk(x, a) to be the sum of the estimation errors:

Ek(x, a) ,
k
∑

j=0

ǫj(x, a), ∀(x, a) ∈ Z. (6)

The proof of Theorem 1 follows the following steps:(i) Lemma 1 shows the stability of the algorithm
(i.e., the sequence ofQk stays bounded).(ii) Lemma 2 states the key property that the SQL iterate
Qk+1 is very close to the Bellman operatorT applied to the previous iterateQk plus an estimation
error term of orderEk/k. (iii) By induction, Lemma 3 provides a performance bound‖Q∗ − Qk‖
in terms of a discounted sum of the cumulative estimation errors{Ej}j=0:k−1. Finally (iv) we use
a maximal Azuma’s inequality (see Lemma 4) to boundEk and deduce the finite time performance
for SQL.

For simplicity of the notations, we remove the dependence on(x, a) (e.g., writingQ for Q(x, a),
Ek for Ek(x, a)) when there is no possible confusion.
Lemma 1 (Stability of SQL). Let Assumption 1 hold and assume that the initial action-value func-
tionQ0 = Q−1 is uniformly bounded byVmax, then we have, for allk ≥ 0,

‖Qk‖ ≤ Vmax, ‖ǫk‖ ≤ 2Vmax, and ‖Dk[Qk, Qk−1]‖ ≤ Vmax.

Proof. We first prove that‖Dk[Qk, Qk−1]‖ ≤ Vmax by induction. Fork = 0 we have:

‖D0[Q0, Q−1]‖ ≤ ‖r‖ + γ‖MQ−1‖ ≤ Rmax + γVmax = Vmax.

Now for anyk ≥ 0, let us assume that the bound‖Dk[Qk, Qk−1]‖ ≤ Vmax holds. Thus

‖Dk+1[Qk+1, Qk]‖ ≤ ‖r‖ + γ ‖(k + 1)MQk+1 − kMQk‖

= ‖r‖ + γ

∥

∥

∥

∥

(k + 1)M

(

k

k + 1
Qk +

1

k + 1
Dk[Qk, Qk−1]

)

− kMQk

∥

∥

∥

∥

≤ ‖r‖ + γ ‖M(kQk +Dk[Qk, Qk−1]− kQk)‖

≤ ‖r‖ + γ ‖Dk[Qk, Qk−1]‖ ≤ Rmax + γVmax = Vmax,

and by induction, we deduce that for allk ≥ 0, ‖Dk[Qk, Qk−1]‖ ≤ Vmax.

Now the bound onǫk follows from‖ǫk‖ = ‖E(Dk[Qk, Qk−1]|Fk−1)−Dk[Qk, Qk−1]‖ ≤ 2Vmax,
and the bound‖Qk‖ ≤ Vmax is deduced by noticing thatQk = 1/k

∑k−1
j=0 Dj [Qj , Qj−1].

The next lemma shows thatQk is close toTQk−1, up to aO(1/k) term plus the average cumulative
estimation error1

k
Ek−1.

Lemma 2. Under Assumption 1, for anyk ≥ 1:

Qk =
1

k
(TQ0 + (k − 1)TQk−1 − Ek−1) . (7)

Proof. We prove this result by induction. The result holds fork = 1, where (7) reduces to (5). We
now show that if the property (7) holds fork then it also holds fork + 1. Assume that (7) holds for
k. Then, from (5) we have:

Qk+1 =
k

k + 1
Qk +

1

k + 1
(kTQk − (k − 1)TQk−1 − ǫk)

=
k

k + 1

(

1

k
(TQ0 + (k − 1)TQk−1 − Ek−1)

)

+
1

k + 1
(kTQk − (k − 1)TQk−1 − ǫk)

=
1

k + 1
(TQ0 + kTQk − Ek−1 − ǫk) =

1

k + 1
(TQ0 + kTQk − Ek).

Thus (7) holds fork + 1, and is thus true for allk ≥ 1.

6



Now we bound the difference betweenQ∗ andQk in terms of the discounted sum of cumulative
estimation errors{E0, E1, . . . , Ek−1}.
Lemma 3 (Error Propagation of SQL). Let Assumption 1 hold and assume that the initial action-
value functionQ0 = Q−1 is uniformly bounded byVmax, then for allk ≥ 1, we have

‖Q∗ −Qk‖ ≤
2γβVmax

k
+

1

k

k
∑

j=1

γk−j ‖Ej−1‖. (8)

Proof. Again we prove this lemma by induction. The result holds fork = 1 as:
‖Q∗ −Q1‖ = ‖TQ∗ − T0Q0‖ = ||TQ∗ − TQ0 + ǫ0||

≤ ||TQ∗ − TQ0||+ ||ǫ0|| ≤ 2γVmax + ||ǫ0|| ≤ 2γβVmax + ‖E0‖

We now show that if the bound holds fork, then it also holds fork + 1. Thus, assume that (8) holds
for k. By using Lemma 2:
∥

∥Q∗ −Qk+1

∥

∥ =

∥

∥

∥

∥

Q∗ −
1

k + 1
(TQ0 + kTQk − Ek)

∥

∥

∥

∥

=

∥

∥

∥

∥

1

k + 1
(TQ∗ − TQ0) +

k

k + 1
(TQ∗ − TQk) +

1

k + 1
Ek

∥

∥

∥

∥

≤
γ

k + 1
‖Q∗ −Q0‖ +

kγ

k + 1
‖Q∗ −Qk‖ +

1

k + 1
‖Ek‖

≤
2γ

k + 1
Vmax +

kγ

k + 1





2γβVmax

k
+

1

k

k
∑

j=1

γk−j ‖Ej−1‖



+
1

k + 1
‖Ek‖

=
2γβVmax

k + 1
+

1

k + 1

k+1
∑

j=1

γk+1−j ‖Ej−1‖.

Thus (8) holds fork + 1 thus for allk ≥ 1 by induction.

Now, based on Lemmas 3 and 1, we prove the main theorem of this paper.

Proof of Theorem 1. We begin our analysis by recalling the result of Lemma 3 at roundT :

‖Q∗ −QT ‖ ≤
2γβVmax

T
+

1

T

T
∑

k=1

γT−k ‖Ek−1‖.

Note that the difference between this bound and the result ofTheorem 1 is just in the second term.
So, we only need to show that the following inequality holds,with probability at least1− δ:

1

T

T
∑

k=1

γT−k ‖Ek−1‖ ≤ 2βVmax

√

2 log 2n
δ

T
. (9)

We first notice that:

1

T

T
∑

k=1

γT−k ‖Ek−1‖ ≤
1

T

T
∑

k=1

γT−k max
1≤k≤T

‖Ek−1‖ ≤
βmax1≤k≤T ‖Ek−1‖

T
. (10)

Therefore, in order to prove (9) it is sufficient to boundmax1≤k≤T ‖Ek−1‖ =
max(x,a)∈Z max1≤k≤T |Ek−1(x, a)| in high probability. We start by providing a high probability
bound formax1≤k≤T |Ek−1(x, a)| for a given(x, a). First notice that

P

(

max
1≤k≤T

|Ek−1(x, a)| > ǫ

)

= P

(

max

[

max
1≤k≤T

(Ek−1(x, a)), max
1≤k≤T

(−Ek−1(x, a))

]

> ǫ

)

= P

({

max
1≤k≤T

(Ek−1(x, a)) > ǫ

}

⋃

{

max
1≤k≤T

(−Ek−1(x, a)) > ǫ

})

≤ P

(

max
1≤k≤T

(Ek−1(x, a)) > ǫ

)

+ P

(

max
1≤k≤T

(−Ek−1(x, a)) > ǫ

)

,

(11)
and each term is now bounded by using a maximal Azuma inequality, reminded now (see e.g., [6]).
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Lemma 4 (Maximal Hoeffding-Azuma Inequality). Let V = {V1, V2, . . . , VT } be a mar-
tingale difference sequence w.r.t. a sequence of random variables {X1, X2, . . . , XT } (i.e.,
E(Vk+1|X1, . . . Xk) = 0 for all 0 < k ≤ T ) such thatV is uniformly bounded byL > 0. If
we defineSk =

∑k
i=1 Vi, then for anyǫ > 0, we have

P

(

max
1≤k≤T

Sk > ǫ

)

≤ exp

(

−ǫ2

2TL2

)

.

As mentioned earlier, the sequence of random variables{ǫ0(x, a), ǫ1(x, a), · · · , ǫk(x, a)} is
a martingale difference sequence w.r.t. the filtrationFk (generated by the random samples
{y0, y1, . . . , yk}(x, a) for all (x, a)), i.e., E[ǫk(x, a)|Fk−1] = 0. It follows from Lemma 4 that
for anyǫ > 0 we have:

P

(

max
1≤k≤T

(Ek−1(x, a)) > ǫ

)

≤ exp

(

−ǫ2

8TV 2
max

)

P

(

max
1≤k≤T

(−Ek−1(x, a)) > ǫ

)

≤ exp

(

−ǫ2

8TV 2
max

)

.

(12)

By combining (12) with (11) we deduce thatP (max1≤k≤T |Ek−1(x, a)| > ǫ) ≤ 2 exp
(

−ǫ2

8TV 2
max

)

,

and by a union bound over the state-action space, we deduce that

P

(

max
1≤k≤T

‖Ek−1‖ > ǫ

)

≤ 2n exp

(

−ǫ2

8TV 2
max

)

. (13)

This bound can be rewritten as: for anyδ > 0,

P

(

max
1≤k≤T

‖Ek−1‖ ≤ Vmax

√

8T log
2n

δ

)

≥ 1− δ, (14)

which by using (10) proves (9) and Theorem 1.

5 Conclusions and Future Work

In this paper, we introduced a new Q-learning algorithm, called speedy Q-learning (SQL). We ana-
lyzed the finite time behavior of this algorithm as well as itsasymptotic convergence to the optimal
action-value function. Our result is in the form of high probability bound on the performance loss
of SQL, which suggests that the algorithm converges to the optimal action-value function in a faster
rate than the standard Q-learning. Overall, SQL is a simple,efficient and theoretically well-founded
reinforcement learning algorithm, which improves on existing RL algorithms such as Q-learning
and model-based value iteration.

In this work, we are only interested in the estimation of the optimal action-value function and not the
problem of exploration. Therefore, we did not compare our result to the PAC-MDP methods [15,18]
and the upper-confidence bound based algorithms [3, 11], in which the choice of the exploration
policy impacts the behavior of the learning algorithms. However, we believe that it would be possible
to gain w.r.t. the state of the art in PAC-MDPs, by combining the asynchronous version of SQL with
a smart exploration strategy. This is mainly due to the fact that the bound for SQL has been proved to
be tighter than the RL algorithms that have been used for estimating the value function in PAC-MDP
methods, especially in the model-free case. We consider this as a subject for future research.

Another possible direction for future work is to scale up SQLto large (possibly continuous) state
and action spaces where function approximation is needed. We believe that it would be possible to
extend our current SQL analysis to the continuous case alongthe same path as in the fitted value
iteration analysis by [13] and [1]. This would require extending the error propagation result of
Lemma 3 to aℓ2-norm analysis and combining it with the standard regression bounds.
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[13] R. Munos and Cs. Szepesvári. Finite-time bounds for fitted value iteration.Journal of Machine
Learning Research, 9:815–857, 2008.

[14] J. Peng and R. J. Williams. Incremental multi-step Q-learning. Machine Learning, 22(1-
3):283–290, 1996.

[15] A. L. Strehl, L. Li, and M. L. Littman. Reinforcement learning in finite MDPs: PAC analysis.
Journal of Machine Learning Research, 10:2413–2444, 2009.

[16] R. S. Sutton and A. G. Barto.Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge, Massachusetts, 1998.

[17] Cs. Szepesv́ari. The asymptotic convergence-rate of Q-learning. InAdvances in Neural Infor-
mation Processing Systems 10, Denver, Colorado, USA, 1997, 1997.
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