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Abstract

We introduce a new convergent variant of Q-learning, cafgeedy Q-learning, to
address the problem of slow convergence in the standarddbthe Q-learning
algorithm. We prove a PAC bound on the performance of SQLckvishows
that for an MDP withn state-action pairs and the discount factoonly 7' =
O(log(n)/(e*(1 —~)*)) steps are required for the SQL algorithm to converge to
ane-optimal action-value function with high probability. Bhbound has a better
dependency oit/e and1/(1 —), and thus, is tighter than the best available result
for Q-learning. Our bound is also superior to the existirgutes for both model-
free and model-based instances of batch Q-value iterdtiaminare considered to
be more efficient than the incremental methods like Q-leayni

1 Introduction

Q-learning [20] is a well-known model-free reinforcemeeatning (RL) algorithm that finds an
estimate of the optimal action-value function. Q-learrisng combination of dynamic programming,
more specifically the value iteration algorithm, and staticaapproximation. In finite state-action
problems, it has been shown that Q-learning converges toptimal action-value function [5, 10].
However, it suffers from slow convergence, especially wiendiscount factoy is close to one [8,
17]. The main reason for the slow convergence of Q-learrsiigsd combination of the sample-based
stochastic approximation (that makes use of a decayingilearate) and the fact that the Bellman
operator propagates information throughout the wholeesgsmecially wheny is close tol).

In this paper, we focus on RL problems that are formulatednéi® fstate-action discounted infinite
horizon Markov decision processes (MDPs), and proposegoritim, calledspeedy Q-learning
(SQL), that addresses the problem of slow convergence eb@iing. At each time step, SQL uses
two successive estimates of the action-value functionrtiates its space complexity twice as the
standard Q-learning. However, this allows SQL to use a mggeesssive learning rate for one of
the terms in its update rule and eventually achieves a fastarergence rate than the standard Q-
learning (see Section 3.1 for a more detailed discussior)pie a PAC bound on the performance
of SQL, which shows that onl§" = O(log(n)/((1 — 7)*€?)) number of samples are required for
SQL in order to guarantee aroptimal action-value function with high probability. Ehis superior

to the best result for the standard Q-learning by [8], botteims of1/e and1/(1 — ). The rate
for SQL is even better than that for tiRhased Q-learninglgorithm, a model-free batch Q-value



iteration algorithm proposed and analyzed by [12]. In addjtSQL's rate is slightly better than
the rate of the model-based batch Q-value iteration algworin [12] and has a better computational
and memory requirement (computational and space comp)esée Section 3.3.2 for more detailed
comparisons. Similar to Q-learning, SQL may be implemeinesl/nchronous and asynchronous
fashions. For the sake of simplicity in the analysis, we amlgort and analyze its synchronous
version in this paper. However, it can easily be implemeimmeah asynchronous fashion and our
theoretical results can also be extended to this settingllynfing the same path as [8].

The idea of using previous estimates of the action-valueshready been used to improve the per-
formance of Q-learning. A popular algorithm of this kind i$X) [14, 20], which incorporates the
concept of eligibility traces in Q-learning, and has beepieically shown to have a better perfor-
mance than Q-learning, i.e., @Q( for suitable values oA. Another recent work in this direction
is Double Q-learning19], which uses two estimators for the action-value fumttio alleviate the
over-estimation of action-values in Q-learning. This egstimation is caused by a positive bias in-
troduced by using the maximum action value as an approxamé#br the expected action value [19].

The rest of the paper is organized as follows. After intradgdhe notations used in the paper
in Section 2, we present o@peedy Q-learninglgorithm in Section 3. We first describe the al-
gorithm in Section 3.1, then state our main theoreticalltesa., a high-probability bound on the
performance of SQL, in Section 3.2, and finally compare oumdowith the previous results on
Q-learning in Section 3.3. Section 4 contains the detailedfpof the performance bound of the
SQL algorithm. Finally, we conclude the paper and discussesfuture directions in Section 5.

2 Preliminaries

In this section, we introduce some concepts and definitiom® fthe theory of Markov decision
processes (MDPs) that are used throughout the paper. Wégtae definition of supremum norm.
For a real-valued function : Y — R, whereY is a finite set, the supremum normgfs defined as

gl £ maxyey [g(y)]-

We consider the standard reinforcement learning (RL) fraonk [5, 16] in which a learning agent
interacts with a stochastic environment and this inteoads modeled as a discrete-time discounted
MDP. A discounted MDP is a quintupleX, A, P, R, v), whereX and A are the set of states and
actions,P is the state transition distributiof® is the reward function, angl € (0, 1) is a discount
factor. We denote by (-|z,a) andr(z,a) the probability distribution over the next state and the
immediate reward of taking actianat stater, respectively. To keep the representation succinct, we
useZ for the joint state-action spacé x A.

Assumption 1 (MDP Regularity) We assumé&. and, subsequently¥ and A are finite sets with
cardinalities n,|X| and |A|, respectively. We also assume that the immediate rewdrds:) are

uniformly bounded by?,,... and define the horizon of the MDP2 1/(1 — ) and Viax = BRmax-

A stationary Markov policyr(-|x) is the distribution over the control actions given the cotre
statex. It is deterministic if this distribution concentrates oweesingle action. Thealueand the
action-value functionsf a policy 7, denoted respectively by™ : X — R andQ™ : Z — R,
are defined as the expected sum of discounted rewards thanaoeintered when the policy
is executed. Given a MDP, the goal is to find a policy that astahe best possible values,
V*(z) £ sup, V™(z), Vo € X. FunctionV* is called theoptimal value function Similarly
the optimal action-value functiors defined a)*(x, a) = sup, Q™ (z,a), ¥(x,a) € Z. The opti-
mal action-value functio)* is the unique fixed-point of thBellman optimality operatof defined
as(T7Q)(z,a) £ r(z,a) +92  ex P(ylz, a) maxpen Qy,b), V(z,a) € Z. Itis important to note
thatJ is a contraction with factos, i.e., for any pair of action-value functiodg and@’, we have
I7Q — TQ'|| < v1|Q — Q'|| [4, Chap. 1]. Finally for the sake of readability, we define thax
operatorM over action-value functions d31Q)(x) = max,c 4 Q(z,a), Yz € X.

3 Speedy Q-Learning

In this section, we introduce our RL algorithm, called spe@dLearning (SQL), derive a perfor-
mance bound for this algorithm, and compare this bound witilar results on standard Q-learning.



The derived performance bound shows that SQL has a rate eeence of ordeO(,/1/T),
which is better than all the existing results for Q-learning

3.1 Speedy Q-Learning Algorithm

The pseudo-code of the SQL algorithm is shown in AlgorithmAls it can be seen, this is the
synchronous version of the algorithm, which will be anatyaethe paper. Similar to the standard
Q-learning, SQL may be implemented either synchronousisgnchronously. In the asynchronous
version, at each time step, the action-value of the obsestatd-action pair is updated, while the
rest of the state-action pairs remain unchanged. For theecgence of this instance of the algo-
rithm, it is required that all the states and actions argedsinfinitely many times, which makes
the analysis slightly more complicated. On the other haimgknga generative model, the algo-
rithm may be also formulated in a synchronous fashion, inctvhie first generate a next state
y ~ P(:|z,a) for each state-action pafr;, a), and then update the action-values of all the state-
action pairs using these samples. We chose to include oalgyhchronous version of SQL in
the paper just for the sake of simplicity in the analysis. Hasvethe algorithm can be imple-
mented in an asynchronous fashion (similar to the more famiilstance of Q-learning) and our
theoretical results can also be extended to the asynchsorase under some mild assumptiéns.

Algorithm 1: Synchronous Speedy Q-Learning (SQL)
Input: Initial action-value functior)y, discount factory, and number of iteratiofi’

Q-1 := Qo; /] Initialization
for k:=0,1,2,3,..., T —1do /1 Main | oop
ak:%ﬂ;

for each(z,a) € Z do
Generate the next state sample~ P(-|z, a);
TeQr—1(z,a) = r(z,a) + YMQr—1(yx);
TeQr(z,a) :==1r(z,a) + YMQr(yr); // Enpirical Bellman operator
Qri1(w,a) := Qr(z, a)+ar(ThQr—1(z,a) —Qr(x, a)) +(1—ax) (ThQk(z, a) =Tk Qr—1(x, a));
/1 SQ update rule

end
end
return Qr

As it can be seen from Algorithm 1, at each time stepSQL keeps track of the action-value
functions of the two time-stegsandk — 1, and its main update rule is of the following form:

Qit1(z,a) = Qp(w, a) + g (TuQr-1(x,a) — Qr(z, a)) + (1 — ap) (TeQr(z, a) = Ty Qr—-1(, az%
whereT,Q(z,a) = r(z,a) + YMQ(yx) is the empirical Bellman optimality operator for the sam-
pled next statgy, ~ P(-|z,a). At each time stef: and for state-action paitz, a), SQL works as
follows: (i) it generates a next statg by drawing a sample fron®(-|x, a), (ii) it calculates two
sample estimate®, Qr—1 (z, a) andT, Qx (x, a) of the Bellman optimality operator (for state-action
pair (x, a) using the next statg,) applied to the estimat&g,_, and@,, of the action-value function
at the previous and current time steps, and fin@ly it updates the action-value function @f, a),
generate€),+1(x, a), using the update rule of Eq. 1. Moreover, we dgt decays linearly with
time, i.e.,ay = 1/(k + 1), in the SQL algorithm?The update rule of Eq. 1 may be rewritten in the
following more compact form:

Qrr1(r,a) = (1 — ) Qx(z,a) + ax D [Qr, Qr—1](z, a), 2)
whereDy [Qr, Qr_1](x,a) £ kT, Qr(z,a) — (k — 1)TQr_1(z, a). This compact form will come
specifically handy in the analysis of the algorithm in Settdo

Let us consider the update rule of Q-learning
Qr1(x,a) = Qr(x, a) + ap (TeQr(z, a) — Qr(z,a)),

See [2] for the convergence analysis of the asynchronous vari&@bf

2Note that other (polynomial) learning steps can also be used with speéeri@rg. However one can
show that the rate of convergence of SQL is optimizechfipr=1/(k + 1). This is in contrast to the standard
Q-learning algorithm for which the rate of convergence is optimized falayomial learning step [8].




which may be rewritten as

Qir1(z,a) = Qr(w,a) + o (TeQr—1(, a) — Qi (x, ) + ar (TuQr (2, a) = ThQr—1(z,a)). (3)

Comparing the Q-learning update rule of Eqg. 3 with the oneSIQL in Eq. 1, we first notice that
the same termsI Qr_1 — Qr andT, Q. — T Q1 appear on the RHS of the update rules of both
algorithms. However, while Q-learning uses the same ceatiee learning ratey; for both these
terms, SQL useg, for the first term and a bigger learning step- ay, = k/(k + 1) for the second
one. Since the terr,Qx — T Qr_1 goes to zero ag, approaches its optimal valug*, it is not
necessary that its learning rate approaches zero. As a,nesinlg the learning rate;, which goes

to zero withk, is too conservative for this term. This might be a reason &y that uses a more
aggressive learning rale— «, for this term has a faster convergence rate than Q-learning.

3.2 Main Theoretical Result

The main theoretical result of the paper is expressed ashagnihability bound over the perfor-
mance of the SQL algorithm.

Theorem 1. Let Assumption 1 holds aril be a positive integer. Then, at iteratidhof SQL with
probability at leastl — §, we have

l+ 210g27”
T T

||Q* - QTH < 2B2Rmax

We report the proof of Theorem 1 in Section 4. This result, lsiored with Borel-Cantelli lemma [9],
guarantees th&), converges almost surely &* with the rate\/1/T. Further, the following result
which quantifies the number of stefpsrequired to reach the errer> 0 in estimating the optimal
action-value function, w.pl. — 4, is an immediate consequence of Theorem 1.

Corallary 1 (Finite-time PAC (“probably approximately correct”) perfnance bound for SQL)
Under Assumption 1, for any> 0, after
11.663*R2 ,, log 22

max
T = 2

steps of SQL, the uniform approximation erf@d* — Q| < e, with probability at least — 4.

3.3 Relation to Existing Results

In this section, we first compare our results for SQL with tRisting results on the convergence of
standard Q-learning. This comparison indicates that S@klacates the convergence of Q-learning,
especially fory close tol and smalk. We then compare SQL with batch Q-value iteration (Ql) in
terms of sample and computational complexities, i.e., thaber of samples and the computational
cost required to achieve anoptimal solution w.p.1 — 9, as well as space complexity, i.e., the
memory required at each step of the algorithm.

3.3.1 A Comparison with the Convergence Rate of Standard Q-Learning

There are not many studies in the literature concerning @éhgergence rate of incremental model-
free RL algorithms such as Q-learning. [17] has providedaemptotic convergence rate for Q-
learning under the assumption that all the states have the sext state distribution. This result
shows that the asymptotic convergence rate of Q-learnisgk@onential dependency or-~, i.e.,
the rate of convergence is 6f(1/t'=7) fory > 1/2.

The finite time behavior of Q-learning have been throughlyestigated in [8] for different
time scales. Their main result indicates that by using thiyrnmonial learning stepa, =
1/ (k+1)“, 0.5 < w < 1, Q-learning achievesoptimal performance w.p. at least- § after

4 p2 nBRmax
B Rmax IOg de
2

T=0

€




steps. Wheny ~ 1, one can argue that = 1/(1 — v) becomes the dominant term in the bound of
Eq. 4, and thus, the optimized bound watis obtained forw = 4/5 and is ofO(3° /¢2-%). On the

other hand, SQL is guaranteed to achieve the same preaisioyiO (5*/¢?) steps. The difference
between these two bounds is significant for large valugg o€.,~'’s close tol.

3.3.2 SQL vs Q-Valuelteration

Finite sample bounds for both model-based and model-freas@l Q-learning) QI have been de-
rived in [12] and [7]. These algorithms can be consideredhashbatch version of Q-learning.
They show that to quantify¥-optimal action-value functions with high probability, weeed
O(nB®/€e?log(1/€)(log(nB) + loglog 1/€)) andO(nB* /e (log(npB) + loglog1/¢)) samples in
model-free and model-based QlI, respectively. A compaiimiween their results and the main re-
sult of this paper suggests that the sample complexity of, $®ich is of orderO (n3*/e? logn)

is better than model-free QI in terms Bfandlog(1/¢). Although the sample complexities of SQL
is only slightly tighter than the model-based QI, SQL hasgmificantly better computational and
space complexity than model-based QI: SQL needs ®nlyjnemory space, while the space com-
plexity of model-based QI is given by eithé(n/(3*€?)) or n(|X| + 1), depending on whether the
learned state transition matrix is sparse or not [12]. ABQL improves the computational com-
plexity by a factor ofO(3) compared to both model-free and model-based Qible 1 summarizes
the comparisons between SQL and the other RL methods distirsshis section.

Table 1: Comparison between SQL, Q-learning, model-basddhadel-free Q-value iteration in
terms of sample complexity (SC), computational comple§@¢), and space complexity (SPC).

Method SQL Q-learning (optimized) Model-based QI ModeeQl
~ nﬁ4 ~ 77'65 ~ nﬁ4 ~ n65

s o(%F)  o(%) o() ()
~ nﬁ4 ~ nﬂg) ~ ’/7,55 ~ HBE’

cc o(F) o) o(%x) o)

SPC O(n) O(n) o} ("54> O(n)

4 Analysis
In this section, we give some intuition about the convergesfcSQL and provide the full proof of
the finite-time analysis reported in Theorem 1. We start lip@ucing some notations.

Let ¥ be the filtration generated by the sequence of all random lesnip;, yo, . .., yx} drawn
from the distributionP(-|z,a), for all state actionz,a) up to roundk. We define the operator
D[Qk, Qr—1] as the expected value of the empirical oper&grconditioned ordFy, _;:

D(Qk, Qr—1](z, a) £ E(Dy[Qk, Qr—1)(z, a) |[Fr_1)
= kTQk(‘ra a) - (k - 1){J‘Qk,1($7 CL).

Thus the update rule of SQL writes
Qr+1(r,a) = (1 — o) Qr(z,a) + ar (D[Qk, Qr—1](x,a) — ex(z,a)), (%)

3Note that at each round of SQLnew samples are generated. This combined with the result of Corollary 1
deduces the sample complexity of ord@fn3*/e* log(n/s)).

4SQL has the sample and computational complexity of a same order sineddtrps only one Q-value
update per sample, whereas, in the case of model-based QI, the algne#tds to iterate the action-value
function of all state-action pairs at lead{(3) times using Bellman operator, which leads to a computational
complexity bound of orde©(n°/¢?) given that onlyO(n3*/€?) entries of the estimated transition matrix
are non-zero [12].



where the estimation errey, is defined as the difference between the oper®{o},, Q1] and its
sample estimat®; [Qy, Qr_1] for all (z,a) € Z:

ex(z,a) £ D[Qk, Qr—1](7,a) — Di[Qr, Qr—1](x, a).
We have the property th&it[e; (z, a)|F;x—1] = 0 which means that for allz, a) € Z the sequence

of estimation errofe;(z,a), ea(x, a), ..., ex(z,a)} is a martingale difference sequence w.r.t. the
filtration F. Let us define the martingalg, (z, a) to be the sum of the estimation errors:

k
Ey(z,a) = Zej(a:,a), V(z,a) € Z. (6)

3=0
The proof of Theorem 1 follows the following stef§) Lemma 1 shows the stability of the algorithm
(i.e., the sequence @}, stays bounded)ii) Lemma 2 states the key property that the SQL iterate
Q11 is very close to the Bellman operatdrapplied to the previous iterat@; plus an estimation
error term of orde®y, /k. (iii) By induction, Lemma 3 provides a performance boljat — Q||
in terms of a discounted sum of the cumulative estimatioors{(E; }j—o..—1. Finally (iv) we use
a maximal Azuma's inequality (see Lemma 4) to boufdand deduce the finite time performance
for SQL.

For simplicity of the notations, we remove the dependencéxon) (e.g., writing@ for Q(z, a),
E}, for Ei(x, a)) when there is no possible confusion.

Lemma 1 (Stability of SQL) Let Assumption 1 hold and assume that the initial actiorediinc-
tion Qo = Q_ is uniformly bounded b¥},.«, then we have, for alt > 0,

”Qk” S Vmaxa HGkH S 2VmaX7 and HDk[Qkanfl]H S Vmax-

Proof. We first prove thaf| D [Qr, Qr—1]]| < Vimax by induction. Fork = 0 we have:
||®O[Q07 Q—l]” S HT’” + FYHMQ—lH S Rmax + 'vaax = V;nax-
Now for anyk > 0, let us assume that the boul® [Qr, Qx—1]|| < Vinax holds. Thus
[Dr41[Qrt1, Qrlll < llrll + v [[(k + DMQrr1 — kMQy||

k
= o e o3 (et o Duw ) - e

<7l + v IM(EQr + D [Qr, Qr—1] — kQ4)||

S H?"” + Y H.Dk[Q/W Qk—l”‘ S anax + fyunax - ‘/Inaxy
and by induction, we deduce that for &l>> 0, | D [Qk, Qk—1]|| < Vinax-
Now the bound or, follows from||ex|| = ||E(D[Qk, Qr—1]1Fk-1) — Dr[Qks Qr—-1]ll < 2Vinax,
and the bound|Q || < Vinax is deduced by noticing th&, = 1/k E?;& D;[Q;,Qj-1]- O

The next lemma shows thé; is close taTQy_1, up to aO(1/k) term plus the average cumulative
estimation error. F,_;.

Lemma 2. Under Assumption 1, for any > 1:

Qe =+ (TQu+ (k— V)TQi 1 — B ). @

Proof. We prove this result by induction. The result holds fo& 1, where (7) reduces to (5). We
now show that if the property (7) holds férthen it also holds fok + 1. Assume that (7) holds for
k. Then, from (5) we have:

k 1
Q1= I 1Qk + o - 1(k7Qk — (k= 1)TQu_1— €)
k
Tkl (li(TQO + (k= 1)TQk—1 - Ekl)) + kij—l(kg@k — (k= 1)TQk-1— €x)

1 1
= 7757 (TQo +ATQr — Ejo1 — 1) = 1= (TQo + kT Qi — Ei).

Thus (7) holds fok + 1, and is thus true for alt > 1. O



Now we bound the difference betweéh and @, in terms of the discounted sum of cumulative
estimation error§ Fy, 1, ..., Ex_1}.

Lemma 3 (Error Propagation of SQL)Let Assumption 1 hold and assume that the initial action-
value functionQy = @Q_ is uniformly bounded b¥/,..., then for allk > 1, we have

298Vmax | 1N gy
Q" — @y < 21 mes + 27t Il ®

Proof. Again we prove this lemma by induction. The result holdsifet 1 as:
Q" = Q1] = ITQ" — ToQol = [|TQ" — TQo + 0|
<TQ™ — TQol| + [leol| < 29Vinax + [l€ol| < 278Vinax + || Eol|

We now show that if the bound holds fbythen it also holds fok + 1. Thus, assume that (8) holds
for k. By using Lemma 2:

|QF — Quuall = HQ - m(TQo +kTQr — Ey)
—‘IQ* ‘IQ)JrL(‘IQ 7Q)+LE
k+1 R AR A R
< .
< 10" - Qoll + 725 17 = Qell + 1 1]
k
2y Ky QWBVmaX 1 —j 1
> k+1 max ]{3+1 kg HEJ*IH +— k?+1 HE]C”
k+1
_ 27BVimax 1 k4+1—j )
o +k+1j§” 125l
Thus (8) holds fo + 1 thus for allk > 1 by induction. O

Now, based on Lemmas 3 and 1, we prove the main theorem ofdperp

Proof of Theorem 1. We begin our analysis by recalling the result of Lemma 3 ahddli:

T

* 276Vmax 1 —k

Q" = Q| < 7 + T E YR Bya-
k=1

Note that the difference between this bound and the resdlhebrem 1 is just in the second term.
So, we only need to show that the following inequality holdih probability at leasi — §:

1 & 2log 2
T Z’}/Tik ||Ek—1H § 25Vmax T 0 (9)
k=1
We first notice that:
T T

1 T—k 1 T—k Bmaxi<p<r || Er—1]|

— < = < <k< )

727 1Bl < 5 > 4" max (1B | = (10)

Therefore, in order to prove (9) it is sufficient to bounthaxi<i<r ||Ex—1]] =
max(, q)ez Maxi<g<7 |Er—1(x,a)| in high probability. We start by providing a high probalyilit
bound formax; <x<7 |Ex—1(x, a)| for a given(z, a). First notice that

]P’( max_ |Ex—1(z,a)| > e) =P (max Lr<nka<XT(Ek1(m,a)),11<nka<xT(—Ek1(x,a))} > e)

=P ({lglkagcT(Ekl(x,a)) > e} U {1r<nka<xT(—Ek1(x, a)) > e}>

<P (1glka§><T(Ek_1(x, a)) > e) +P < max (—Ej_y(z,a)) > e) ,

1<k<T
(11)
and each term is now bounded by using a maximal Azuma ingguaminded now (see e.g., [6]).



Lemma 4 (Maximal Hoeffding-Azuma Inequality) Let V = {V;,V,,...,Vr} be a mar-
tingale difference sequence w.rt. a sequence of randonmblas {X;, Xo,..., X7} (i.e,
E(Vit1]X1,...Xg) = 0forall 0 < k < T) such thatV is uniformly bounded by, > 0. If

we defineS;, = Y%, V;, then for anye > 0, we have

_e2
< — .
P 50> ) <o (5773

As mentioned earlier, the sequence of random varialles$z,a),ei(z,a), - ,ex(z,a)} is
a martingale difference sequence w.r.t. the filtrattp (generated by the random samples
{Yo,v1,-- -, yr}(z,a) for all (z,a)), i.e., Elex(x,a)|Fr—1] = 0. It follows from Lemma 4 that

for anye > 0 we have:
_e2
<
P (1r<nka<xT(Ek_1(x, a)) > e) < exp (8TV2 )

max

—e2
P <1r<nka<xT( Ex_1(z,a)) > e) < exp (8TV2 )

max

12)

By combining (12) with (11) we deduce tha(max; < <7 | Ex_1(z, a)| > ¢) < 2exp (W) ,
and by a union bound over the state-action space, we dedaice th

—e2
< — ] .
P (11<nka<xT |1Ek—1| > e) < 2nexp <8TV2 ) (13)

max
This bound can be rewritten as: for afiy- 0,

2n
P <1r§nka§XT |Ex—1]] < Vinaxy/8T log 5) >1-94, (14)

which by using (10) proves (9) and Theorem 1. O

5 Conclusions and Future Work

In this paper, we introduced a new Q-learning algorithmledaspeedy Q-learning (SQL). We ana-
lyzed the finite time behavior of this algorithm as well assisgmptotic convergence to the optimal
action-value function. Our result is in the form of high pability bound on the performance loss
of SQL, which suggests that the algorithm converges to thienapaction-value function in a faster

rate than the standard Q-learning. Overall, SQL is a singffiejent and theoretically well-founded

reinforcement learning algorithm, which improves on értRL algorithms such as Q-learning
and model-based value iteration.

In this work, we are only interested in the estimation of théroal action-value function and not the
problem of exploration. Therefore, we did not compare osultdo the PAC-MDP methods [15,18]
and the upper-confidence bound based algorithms [3, 11] hichathe choice of the exploration
policy impacts the behavior of the learning algorithms. ldwer, we believe that it would be possible
to gain w.r.t. the state of the art in PAC-MDPs, by combining &synchronous version of SQL with
a smart exploration strategy. This is mainly due to the faat the bound for SQL has been proved to
be tighter than the RL algorithms that have been used fanastig the value function in PAC-MDP
methods, especially in the model-free case. We consideatha subject for future research.

Another possible direction for future work is to scale up SQllarge (possibly continuous) state
and action spaces where function approximation is neededbalieve that it would be possible to
extend our current SQL analysis to the continuous case dlegame path as in the fitted value
iteration analysis by [13] and [1]. This would require exdamy the error propagation result of
Lemma 3 to &,-norm analysis and combining it with the standard regressands.
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