Mohammad Gheshlaghi Azar
email: m.azar@science.ru.nl

Remi Munos
email: r.munos@inria.fr

Mohammad Ghavamzadeh
email: m.ghavamzadeh@inria.fr

Hilbert J Kappen
email: b.kappen@science.ru.nl

Speedy Q-Learning

We introduce a new convergent variant of Q-learning, called speedy Q-learning, to address the problem of slow convergence in the standard form of the Q-learning algorithm. We prove a PAC bound on the performance of SQL, which shows that for an MDP with n state-action pairs and the discount factor γ only T = O log(n)/(ǫ 2 (1 -γ) 4) steps are required for the SQL algorithm to converge to an ǫ-optimal action-value function with high probability. This bound has a better dependency on 1/ǫ and 1/(1 -γ), and thus, is tighter than the best available result for Q-learning. Our bound is also superior to the existing results for both modelfree and model-based instances of batch Q-value iteration that are considered to be more efficient than the incremental methods like Q-learning.

Introduction

Q-learning [START_REF] Watkins | Learning from Delayed Rewards[END_REF] is a well-known model-free reinforcement learning (RL) algorithm that finds an estimate of the optimal action-value function. Q-learning is a combination of dynamic programming, more specifically the value iteration algorithm, and stochastic approximation. In finite state-action problems, it has been shown that Q-learning converges to the optimal action-value function [START_REF] Bertsekas | Neuro-Dynamic Programming[END_REF][START_REF] Jaakkola | On the convergence of stochastic iterative dynamic programming[END_REF]. However, it suffers from slow convergence, especially when the discount factor γ is close to one [START_REF] Even-Dar | Learning rates for Q-learning[END_REF][START_REF] Cs | The asymptotic convergence-rate of Q-learning[END_REF]. The main reason for the slow convergence of Q-learning is the combination of the sample-based stochastic approximation (that makes use of a decaying learning rate) and the fact that the Bellman operator propagates information throughout the whole space (specially when γ is close to 1).

In this paper, we focus on RL problems that are formulated as finite state-action discounted infinite horizon Markov decision processes (MDPs), and propose an algorithm, called speedy Q-learning (SQL), that addresses the problem of slow convergence of Q-learning. At each time step, SQL uses two successive estimates of the action-value function that makes its space complexity twice as the standard Q-learning. However, this allows SQL to use a more aggressive learning rate for one of the terms in its update rule and eventually achieves a faster convergence rate than the standard Qlearning (see Section 3.1 for a more detailed discussion). We prove a PAC bound on the performance of SQL, which shows that only T = O log(n)/((1 -γ) 4 ǫ 2) number of samples are required for SQL in order to guarantee an ǫ-optimal action-value function with high probability. This is superior to the best result for the standard Q-learning by [START_REF] Even-Dar | Learning rates for Q-learning[END_REF], both in terms of 1/ǫ and 1/(1 -γ). The rate for SQL is even better than that for the Phased Q-learning algorithm, a model-free batch Q-value iteration algorithm proposed and analyzed by [START_REF] Kearns | Finite-sample convergence rates for Q-learning and indirect algorithms[END_REF]. In addition, SQL's rate is slightly better than the rate of the model-based batch Q-value iteration algorithm in [START_REF] Kearns | Finite-sample convergence rates for Q-learning and indirect algorithms[END_REF] and has a better computational and memory requirement (computational and space complexity), see Section 3.3.2 for more detailed comparisons. Similar to Q-learning, SQL may be implemented in synchronous and asynchronous fashions. For the sake of simplicity in the analysis, we only report and analyze its synchronous version in this paper. However, it can easily be implemented in an asynchronous fashion and our theoretical results can also be extended to this setting by following the same path as [START_REF] Even-Dar | Learning rates for Q-learning[END_REF].

The idea of using previous estimates of the action-values has already been used to improve the performance of Q-learning. A popular algorithm of this kind is Q(λ) [START_REF] Peng | Incremental multi-step Q-learning[END_REF][START_REF] Watkins | Learning from Delayed Rewards[END_REF], which incorporates the concept of eligibility traces in Q-learning, and has been empirically shown to have a better performance than Q-learning, i.e., Q(0), for suitable values of λ. Another recent work in this direction is Double Q-learning [START_REF] Van Hasselt | Double Q-learning[END_REF], which uses two estimators for the action-value function to alleviate the over-estimation of action-values in Q-learning. This over-estimation is caused by a positive bias introduced by using the maximum action value as an approximation for the expected action value [START_REF] Van Hasselt | Double Q-learning[END_REF].

The rest of the paper is organized as follows. After introducing the notations used in the paper in Section 2, we present our Speedy Q-learning algorithm in Section 3. We first describe the algorithm in Section 3.1, then state our main theoretical result, i.e., a high-probability bound on the performance of SQL, in Section 3.2, and finally compare our bound with the previous results on Q-learning in Section 3.3. Section 4 contains the detailed proof of the performance bound of the SQL algorithm. Finally, we conclude the paper and discuss some future directions in Section 5.

Preliminaries

In this section, we introduce some concepts and definitions from the theory of Markov decision processes (MDPs) that are used throughout the paper. We start by the definition of supremum norm. For a real-valued function g : Y → R, where Y is a finite set, the supremum norm of g is defined as g max y∈Y |g(y)|.

We consider the standard reinforcement learning (RL) framework [START_REF] Bertsekas | Neuro-Dynamic Programming[END_REF][START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF] in which a learning agent interacts with a stochastic environment and this interaction is modeled as a discrete-time discounted MDP. A discounted MDP is a quintuple (X, A, P, R, γ), where X and A are the set of states and actions, P is the state transition distribution, R is the reward function, and γ ∈ (0, 1) is a discount factor. We denote by P (•|x, a) and r(x, a) the probability distribution over the next state and the immediate reward of taking action a at state x, respectively. To keep the representation succinct, we use Z for the joint state-action space X × A.

Assumption 1 (MDP Regularity). We assume Z and, subsequently, X and A are finite sets with cardinalities n, |X| and |A|, respectively. We also assume that the immediate rewards r(x, a) are uniformly bounded by R max and define the horizon of the MDP β 1/(1 -γ) and V max βR max .

A stationary Markov policy π(•|x) is the distribution over the control actions given the current state x. It is deterministic if this distribution concentrates over a single action. The value and the action-value functions of a policy π, denoted respectively by V π : X → R and Q π : Z → R, are defined as the expected sum of discounted rewards that are encountered when the policy π is executed. Given a MDP, the goal is to find a policy that attains the best possible values, V * (x) sup π V π (x), ∀x ∈ X. Function V * is called the optimal value function. Similarly the optimal action-value function is defined as

Q * (x, a) = sup π Q π (x, a), ∀(x, a) ∈ Z.
The optimal action-value function Q * is the unique fixed-point of the Bellman optimality operator T defined as (TQ)(x, a) r(x, a) + γ y∈X P (y|x, a) max b∈A Q(y, b), ∀(x, a) ∈ Z. It is important to note that T is a contraction with factor γ, i.e., for any pair of action-value functions Q and Q ′ , we have

TQ -TQ ′ ≤ γ Q -Q ′ [4, Chap. 1].
Finally for the sake of readability, we define the max operator M over action-value functions as (MQ)(x) = max a∈A Q(x, a), ∀x ∈ X.

Speedy Q-Learning

In this section, we introduce our RL algorithm, called speedy Q-Learning (SQL), derive a performance bound for this algorithm, and compare this bound with similar results on standard Q-learning.

The derived performance bound shows that SQL has a rate of convergence of order O(1/T), which is better than all the existing results for Q-learning.

Speedy Q-Learning Algorithm

The pseudo-code of the SQL algorithm is shown in Algorithm 1. As it can be seen, this is the synchronous version of the algorithm, which will be analyzed in the paper. Similar to the standard Q-learning, SQL may be implemented either synchronously or asynchronously. In the asynchronous version, at each time step, the action-value of the observed state-action pair is updated, while the rest of the state-action pairs remain unchanged. For the convergence of this instance of the algorithm, it is required that all the states and actions are visited infinitely many times, which makes the analysis slightly more complicated. On the other hand, given a generative model, the algorithm may be also formulated in a synchronous fashion, in which we first generate a next state y ∼ P (•|x, a) for each state-action pair (x, a), and then update the action-values of all the stateaction pairs using these samples. We chose to include only the synchronous version of SQL in the paper just for the sake of simplicity in the analysis. However, the algorithm can be implemented in an asynchronous fashion (similar to the more familiar instance of Q-learning) and our theoretical results can also be extended to the asynchronous case under some mild assumptions.1 Algorithm 1: Synchronous Speedy Q-Learning (SQL) Input: Initial action-value function Q 0 , discount factor γ, and number of iteration T Q

-1 := Q 0 ; // Initialization for k := 0, 1, 2, 3, . . . , T -1 do // Main loop α k := 1 k+1 ; for each (x, a) ∈ Z do Generate the next state sample y k ∼ P (•|x, a); T k Q k-1 (x, a) := r(x, a) + γMQ k-1 (y k); T k Q k (x, a) := r(x, a) + γMQ k (y k); // Empirical Bellman operator Q k+1 (x, a) := Q k (x, a)+α k T k Q k-1 (x, a)-Q k (x, a) +(1-α k) T k Q k (x, a)-T k Q k-1 (x, a) ;
// SQL update rule end end return Q T As it can be seen from Algorithm 1, at each time step k, SQL keeps track of the action-value functions of the two time-steps k and k -1, and its main update rule is of the following form:

Q k+1 (x, a) = Q k (x, a)+α k T k Q k-1 (x, a)-Q k (x, a) +(1-α k) T k Q k (x, a)-T k Q k-1 (x, a) , (1)
where T k Q(x, a) = r(x, a) + γMQ(y k) is the empirical Bellman optimality operator for the sampled next state y k ∼ P (•|x, a). At each time step k and for state-action pair (x, a), SQL works as follows: (i) it generates a next state y k by drawing a sample from P (•|x, a), (ii) it calculates two sample estimates T k Q k-1 (x, a) and T k Q k (x, a) of the Bellman optimality operator (for state-action pair (x, a) using the next state y k) applied to the estimates Q k-1 and Q k of the action-value function at the previous and current time steps, and finally (iii) it updates the action-value function of (x, a), generates Q k+1 (x, a), using the update rule of Eq. 1. Moreover, we let α k decays linearly with time, i.e., α k = 1/(k + 1), in the SQL algorithm. 2 The update rule of Eq. 1 may be rewritten in the following more compact form:

Q k+1 (x, a) = (1 -α k)Q k (x, a) + α k D k [Q k , Q k-1](x, a), (2)
where

D k [Q k , Q k-1](x, a) kT k Q k (x, a) -(k -1)T k Q k-1 (x, a)
. This compact form will come specifically handy in the analysis of the algorithm in Section 4.

Let us consider the update rule of Q-learning

Q k+1 (x, a) = Q k (x, a) + α k T k Q k (x, a) -Q k (x, a) ,
which may be rewritten as

Q k+1 (x, a) = Q k (x, a) + α k T k Q k-1 (x, a) -Q k (x, a) + α k T k Q k (x, a) -T k Q k-1 (x, a) . (3)
Comparing the Q-learning update rule of Eq. 3 with the one for SQL in Eq. 1, we first notice that the same terms:

T k Q k-1 -Q k and T k Q k -T k Q k-1
appear on the RHS of the update rules of both algorithms. However, while Q-learning uses the same conservative learning rate α k for both these terms, SQL uses α k for the first term and a bigger learning step 1 -α k = k/(k + 1) for the second one. Since the term

T k Q k -T k Q k-1
goes to zero as Q k approaches its optimal value Q * , it is not necessary that its learning rate approaches zero. As a result, using the learning rate α k , which goes to zero with k, is too conservative for this term. This might be a reason why SQL that uses a more aggressive learning rate 1 -α k for this term has a faster convergence rate than Q-learning.

Main Theoretical Result

The main theoretical result of the paper is expressed as a high-probability bound over the performance of the SQL algorithm. Theorem 1. Let Assumption 1 holds and T be a positive integer. Then, at iteration T of SQL with probability at least 1 -δ, we have

Q * -Q T ≤ 2β 2 R max   γ T + 2 log 2n δ T   .
We report the proof of Theorem 1 in Section 4. This result, combined with Borel-Cantelli lemma [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF], guarantees that Q T converges almost surely to Q * with the rate 1/T . Further, the following result which quantifies the number of steps T required to reach the error ǫ > 0 in estimating the optimal action-value function, w.p. 1 -δ, is an immediate consequence of Theorem 1. Corollary 1 (Finite-time PAC ("probably approximately correct") performance bound for SQL).

Under Assumption 1, for any ǫ > 0, after

T = 11.66β 4 R 2 max log 2n δ ǫ 2
steps of SQL, the uniform approximation error Q * -Q T ≤ ǫ, with probability at least 1 -δ.

Relation to Existing Results

In this section, we first compare our results for SQL with the existing results on the convergence of standard Q-learning. This comparison indicates that SQL accelerates the convergence of Q-learning, especially for γ close to 1 and small ǫ. We then compare SQL with batch Q-value iteration (QI) in terms of sample and computational complexities, i.e., the number of samples and the computational cost required to achieve an ǫ-optimal solution w.p. 1 -δ, as well as space complexity, i.e., the memory required at each step of the algorithm.

A Comparison with the Convergence Rate of Standard Q-Learning

There are not many studies in the literature concerning the convergence rate of incremental modelfree RL algorithms such as Q-learning. [START_REF] Cs | The asymptotic convergence-rate of Q-learning[END_REF] has provided the asymptotic convergence rate for Qlearning under the assumption that all the states have the same next state distribution. This result shows that the asymptotic convergence rate of Q-learning has exponential dependency on 1 -γ, i.e., the rate of convergence is of Õ(1/t 1-γ) for γ ≥ 1/2.

The finite time behavior of Q-learning have been throughly investigated in [START_REF] Even-Dar | Learning rates for Q-learning[END_REF] for different time scales. Their main result indicates that by using the polynomial learning step α k = 1 (k + 1) ω , 0.5 < ω < 1, Q-learning achieves ǫ-optimal performance w.p. at least 1 -δ after

T = O   β 4 R 2 max log nβRmax δǫ ǫ 2 1 w + β log βR max ǫ 1 1-ω   (4)
steps. When γ ≈ 1, one can argue that β = 1/(1 -γ) becomes the dominant term in the bound of Eq. 4, and thus, the optimized bound w.r.t. ω is obtained for ω = 4/5 and is of Õ β5 /ǫ 2.5 . On the other hand, SQL is guaranteed to achieve the same precision in only O β4 /ǫ 2 steps. The difference between these two bounds is significant for large values of β, i.e., γ's close to 1.

SQL vs. Q-Value Iteration

Finite sample bounds for both model-based and model-free (Phased Q-learning) QI have been derived in [START_REF] Kearns | Finite-sample convergence rates for Q-learning and indirect algorithms[END_REF] and [START_REF] Even-Dar | PAC bounds for multi-armed bandit and Markov decision processes[END_REF]. These algorithms can be considered as the batch version of Q-learning. They show that to quantify ǫ-optimal action-value functions with high probability, we need O nβ 5 /ǫ 2 log(1/ǫ) log(nβ) + log log 1 ǫ and O nβ 4 /ǫ 2 (log(nβ) + log log 1 ǫ) samples in model-free and model-based QI, respectively. A comparison between their results and the main result of this paper suggests that the sample complexity of SQL, which is of order O nβ 4 /ǫ 2 log n , 3is better than QI in terms of β and log(1/ǫ). Although the sample complexities of SQL is only slightly tighter than the model-based QI, SQL has a significantly better computational and space complexity than model-based QI: SQL needs only 2n memory space, while the space complexity of model-based QI is given by either Õ(n/(β 4 ǫ 2)) or n(|X| + 1), depending on whether the learned state transition matrix is sparse or not [START_REF] Kearns | Finite-sample convergence rates for Q-learning and indirect algorithms[END_REF]. Also, SQL improves the computational complexity by a factor of Õ(β) compared to both model-free and model-based QI. 4 1 summarizes the comparisons between SQL and the other RL methods discussed in this section.

Table 1: Comparison between SQL, Q-learning, model-based and model-free Q-value iteration in terms of sample complexity (SC), computational complexity (CC), and space complexity (SPC).

Method SQL Q-learning (optimized) Model-based QI Model-free QI SC Õ nβ 4 ǫ 2 Õ nβ 5 ǫ 2.5 Õ nβ 4 ǫ 2 Õ nβ 5 ǫ 2 CC Õ nβ 4 ǫ 2 Õ nβ 5 ǫ 2.5 Õ nβ 5 ǫ 2 Õ nβ 5 ǫ 2 SPC Θ(n) Θ(n) Õ nβ 4 ǫ 2 Θ(n)

Analysis

In this section, we give some intuition about the convergence of SQL and provide the full proof of the finite-time analysis reported in Theorem 1. We start by introducing some notations.

Let F k be the filtration generated by the sequence of all random samples {y 1 , y 2 , . . . , y k } drawn from the distribution P (•|x, a), for all state action (x, a) up to round k. We define the operator

D[Q k , Q k-1]
as the expected value of the empirical operator D k conditioned on F k-1 :

D[Q k , Q k-1](x, a) E(D k [Q k , Q k-1](x, a) |F k-1) = kTQ k (x, a) -(k -1)TQ k-1 (x, a).
Thus the update rule of SQL writes

Q k+1 (x, a) = (1 -α k)Q k (x, a) + α k (D[Q k , Q k-1](x, a) -ǫ k (x, a)) , (5)
where the estimation error ǫ k is defined as the difference between the operator

D[Q k , Q k-1] and its sample estimate D k [Q k , Q k-1] for all (x, a) ∈ Z: ǫ k (x, a) D[Q k , Q k-1](x, a) -D k [Q k , Q k-1](x, a).
We have the property that E[ǫ k (x, a)|F k-1] = 0 which means that for all (x, a) ∈ Z the sequence of estimation error {ǫ 1 (x, a), ǫ 2 (x, a), . . . , ǫ k (x, a)} is a martingale difference sequence w.r.t. the filtration F k . Let us define the martingale E k (x, a) to be the sum of the estimation errors:

E k (x, a) k j=0 ǫ j (x, a), ∀(x, a) ∈ Z. (6)
The proof of Theorem 1 follows the following steps: (i) Lemma 1 shows the stability of the algorithm (i.e., the sequence of Q k stays bounded). (ii) Lemma 2 states the key property that the SQL iterate Q k+1 is very close to the Bellman operator T applied to the previous iterate Q k plus an estimation error term of order E k /k. (iii) By induction, Lemma 3 provides a performance bound Q * -Q k in terms of a discounted sum of the cumulative estimation errors {E j } j=0:k-1 . Finally (iv) we use a maximal Azuma's inequality (see Lemma 4) to bound E k and deduce the finite time performance for SQL.

For simplicity of the notations, we remove the dependence on (x, a) (e.g., writing Q for Q(x, a), E k for E k (x, a)) when there is no possible confusion.

Lemma 1 (Stability of SQL). Let Assumption 1 hold and assume that the initial action-value function

Q 0 = Q -1 is uniformly bounded by V max , then we have, for all k ≥ 0, Q k ≤ V max , ǫ k ≤ 2V max , and D k [Q k , Q k-1] ≤ V max . Proof. We first prove that D k [Q k , Q k-1] ≤ V max by induction. For k = 0 we have: D 0 [Q 0 , Q -1] ≤ r + γ MQ -1 ≤ R max + γV max = V max . Now for any k ≥ 0, let us assume that the bound D k [Q k , Q k-1] ≤ V max holds. Thus D k+1 [Q k+1 , Q k] ≤ r + γ (k + 1)MQ k+1 -kMQ k = r + γ (k + 1)M k k + 1 Q k + 1 k + 1 D k [Q k , Q k-1] -kMQ k ≤ r + γ M(kQ k + D k [Q k , Q k-1] -kQ k) ≤ r + γ D k [Q k , Q k-1] ≤ R max + γV max = V max ,
and by induction, we deduce that for all k ≥ 0,

D k [Q k , Q k-1] ≤ V max . Now the bound on ǫ k follows from ǫ k = E(D k [Q k , Q k-1]|F k-1) -D k [Q k , Q k-1] ≤ 2V max , and the bound Q k ≤ V max is deduced by noticing that Q k = 1/k k-1 j=0 D j [Q j , Q j-1].
The next lemma shows that Q k is close to TQ k-1 , up to a O(1/k) term plus the average cumulative estimation error 1 k E k-1 . Lemma 2. Under Assumption 1, for any k ≥ 1:

Q k = 1 k (TQ 0 + (k -1)TQ k-1 -E k-1) . (7)
Proof. We prove this result by induction. The result holds for k = 1, where (7) reduces to [START_REF] Bertsekas | Neuro-Dynamic Programming[END_REF]. We now show that if the property [START_REF] Even-Dar | PAC bounds for multi-armed bandit and Markov decision processes[END_REF] holds for k then it also holds for k + 1. Assume that (7) holds for k. Then, from (5) we have:

Q k+1 = k k + 1 Q k + 1 k + 1 (kTQ k -(k -1)TQ k-1 -ǫ k) = k k + 1 1 k (TQ 0 + (k -1)TQ k-1 -E k-1) + 1 k + 1 (kTQ k -(k -1)TQ k-1 -ǫ k) = 1 k + 1 (TQ 0 + kTQ k -E k-1 -ǫ k) = 1 k + 1 (TQ 0 + kTQ k -E k).
Thus [START_REF] Even-Dar | PAC bounds for multi-armed bandit and Markov decision processes[END_REF] holds for k + 1, and is thus true for all k ≥ 1.

Now we bound the difference between Q * and Q k in terms of the discounted sum of cumulative estimation errors {E 0 , E 1 , . . . , E k-1 }. Lemma 3 (Error Propagation of SQL). Let Assumption 1 hold and assume that the initial actionvalue function Q 0 = Q -1 is uniformly bounded by V max , then for all k ≥ 1, we have

Q * -Q k ≤ 2γβV max k + 1 k k j=1 γ k-j E j-1 . (8)
Proof. Again we prove this lemma by induction. The result holds for k = 1 as:

Q * -Q 1 = TQ * -T 0 Q 0 = ||TQ * -TQ 0 + ǫ 0 || ≤ ||TQ * -TQ 0 || + ||ǫ 0 || ≤ 2γV max + ||ǫ 0 || ≤ 2γβV max + E 0
We now show that if the bound holds for k, then it also holds for k + 1. Thus, assume that (8) holds for k. By using Lemma 2:

Q * -Q k+1 = Q * - 1 k + 1 (TQ 0 + kTQ k -E k) = 1 k + 1 (TQ * -TQ 0) + k k + 1 (TQ * -TQ k) + 1 k + 1 E k ≤ γ k + 1 Q * -Q 0 + kγ k + 1 Q * -Q k + 1 k + 1 E k ≤ 2γ k + 1 V max + kγ k + 1   2γβV max k + 1 k k j=1 γ k-j E j-1   + 1 k + 1 E k = 2γβV max k + 1 + 1 k + 1 k+1 j=1 γ k+1-j E j-1 .
Thus (8) holds for k + 1 thus for all k ≥ 1 by induction. Now, based on Lemmas 3 and 1, we prove the main theorem of this paper.

Proof of Theorem 1. We begin our analysis by recalling the result of Lemma 3 at round T :

Q * -Q T ≤ 2γβV max T + 1 T T k=1 γ T -k E k-1 .
Note that the difference between this bound and the result of Theorem 1 is just in the second term. So, we only need to show that the following inequality holds, with probability at least 1 -δ:

1 T T k=1 γ T -k E k-1 ≤ 2βV max 2 log 2n δ T . (9)
We first notice that:

1 T T k=1 γ T -k E k-1 ≤ 1 T T k=1 γ T -k max 1≤k≤T E k-1 ≤ β max 1≤k≤T E k-1 T . (10)
Therefore, in order to prove [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] it is sufficient to bound max 1≤k≤T E k-1 = max (x,a)∈Z max 1≤k≤T |E k-1 (x, a)| in high probability. We start by providing a high probability bound for max 1≤k≤T |E k-1 (x, a)| for a given (x, a). First notice that

P max 1≤k≤T |E k-1 (x, a)| > ǫ = P max max 1≤k≤T (E k-1 (x, a)), max 1≤k≤T (-E k-1 (x, a)) > ǫ = P max 1≤k≤T (E k-1 (x, a)) > ǫ max 1≤k≤T (-E k-1 (x, a)) > ǫ ≤ P max 1≤k≤T (E k-1 (x, a)) > ǫ + P max 1≤k≤T (-E k-1 (x, a)) > ǫ , (11)
and each term is now bounded by using a maximal Azuma inequality, reminded now (see e.g., [START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF]).

Lemma 4 (Maximal Hoeffding-Azuma Inequality). Let V = {V 1 , V 2 , . . . , V T } be a martingale difference sequence w.r.t. a sequence of random variables {X 1 , X 2 , . . . , X T } (i.e., E(V k+1 |X 1 , . . . X k) = 0 for all 0 < k ≤ T) such that V is uniformly bounded by L > 0. If we define S k = k i=1 V i , then for any ǫ > 0, we have

P max 1≤k≤T S k > ǫ ≤ exp -ǫ 2 2T L 2 .
As mentioned earlier, the sequence of random variables {ǫ 0 (x, a), ǫ 1 (x, a), • • • , ǫ k (x, a)} is a martingale difference sequence w.r.t. the filtration F k (generated by the random samples {y 0 , y 1 , . . . , y k }(x, a) for all (x, a)), i.e., E[ǫ k (x, a)|F k-1] = 0. It follows from Lemma 4 that for any ǫ > 0 we have:

P max 1≤k≤T (E k-1 (x, a)) > ǫ ≤ exp -ǫ 2 8T V 2 max P max 1≤k≤T (-E k-1 (x, a)) > ǫ ≤ exp -ǫ 2 8T V 2 max . (12)
By combining [START_REF] Kearns | Finite-sample convergence rates for Q-learning and indirect algorithms[END_REF] with [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] we deduce that P (max

1≤k≤T |E k-1 (x, a)| > ǫ) ≤ 2 exp -ǫ 2 8T V 2 max ,
and by a union bound over the state-action space, we deduce that

P max 1≤k≤T E k-1 > ǫ ≤ 2n exp -ǫ 2 8T V 2 max . (13)
This bound can be rewritten as: for any δ > 0,

P max 1≤k≤T E k-1 ≤ V max 8T log 2n δ ≥ 1 -δ, (14)
which by using (10) proves (9) and Theorem 1.

Conclusions and Future Work

In this paper, we introduced a new Q-learning algorithm, called speedy Q-learning (SQL). We analyzed the finite time behavior of this algorithm as well as its asymptotic convergence to the optimal action-value function. Our result is in the form of high probability bound on the performance loss of SQL, which suggests that the algorithm converges to the optimal action-value function in a faster rate than the standard Q-learning. Overall, SQL is a simple, efficient and theoretically well-founded reinforcement learning algorithm, which improves on existing RL algorithms such as Q-learning and model-based value iteration.

In this work, we are only interested in the estimation of the optimal action-value function and not the problem of exploration. Therefore, we did not compare our result to the PAC-MDP methods [START_REF] Strehl | Reinforcement learning in finite MDPs: PAC analysis[END_REF][START_REF] Szita | Model-based reinforcement learning with nearly tight exploration complexity bounds[END_REF] and the upper-confidence bound based algorithms [START_REF] Bartlett | REGAL: A regularization based algorithm for reinforcement learning in weakly communicating MDPs[END_REF][START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF], in which the choice of the exploration policy impacts the behavior of the learning algorithms. However, we believe that it would be possible to gain w.r.t. the state of the art in PAC-MDPs, by combining the asynchronous version of SQL with a smart exploration strategy. This is mainly due to the fact that the bound for SQL has been proved to be tighter than the RL algorithms that have been used for estimating the value function in PAC-MDP methods, especially in the model-free case. We consider this as a subject for future research.

Another possible direction for future work is to scale up SQL to large (possibly continuous) state and action spaces where function approximation is needed. We believe that it would be possible to extend our current SQL analysis to the continuous case along the same path as in the fitted value iteration analysis by [START_REF] Munos | Finite-time bounds for fitted value iteration[END_REF] and [START_REF] Antos | Fitted Q-iteration in continuous action-space MDPs[END_REF]. This would require extending the error propagation result of Lemma 3 to a ℓ 2 -norm analysis and combining it with the standard regression bounds.

See[START_REF] Azar | Reinforcement learning with a near optimal rate of convergence[END_REF] for the convergence analysis of the asynchronous variant of SQL.

Note that other (polynomial) learning steps can also be used with speedy Q-learning. However one can show that the rate of convergence of SQL is optimized for α k = 1 (k + 1). This is in contrast to the standard Q-learning algorithm for which the rate of convergence is optimized for a polynomial learning step[START_REF] Even-Dar | Learning rates for Q-learning[END_REF].

Note that at each round of SQL n new samples are generated. This combined with the result of Corollary 1 deduces the sample complexity of order O(nβ

/ǫ 2 log(n/δ)).[START_REF] Bertsekas | Dynamic Programming and Optimal Control[END_REF] SQL has the sample and computational complexity of a same order since it performs only one Q-value update per sample, whereas, in the case of model-based QI, the algorithm needs to iterate the action-value function of all state-action pairs at least Õ(β) times using Bellman operator, which leads to a computational complexity bound of order Õ(nβ

/ǫ 2) given that only Õ(nβ 4 /ǫ 2) entries of the estimated transition matrix are non-zero[START_REF] Kearns | Finite-sample convergence rates for Q-learning and indirect algorithms[END_REF].

Acknowledgments

The authors appreciate supports from the PASCAL2 Network of Excellence Internal-Visit Programme and the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n o 231495. We also thank Peter Auer for helpful discussion and the anonymous reviewers for their valuable comments.