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Abstract—We propose an online planning algorithm for finite-
action, sparsely stochastic Markov decision processes, in which
the random state transitions can only end up in a small number
of possible next states. The algorithm builds a planning tree
by iteratively expanding states, where each expansion exploits
sparsity to add all possible successor states. Each state to expand
is actively chosen to improve the knowledge about action quality,
and this allows the algorithm to return a good action after a
strictly limited number of expansions. More specifically, the active
selection method is optimistic in that it chooses the most promising
states first, so the novel algorithm is called optimistic planning
for sparsely stochastic systems. We note that the new algorithm
can also be seen as model-predictive (receding-horizon) control.
The algorithm obtains promising numerical results, including
the successful online control of a simulated HIV infection with
stochastic drug effectiveness.

Index Terms—online planning, optimistic planning, Markov
decision processes, stochastic systems, model-predictive control.

I. INTRODUCTION

This paper concerns problems in which a nonlinear stochas-

tic system must be optimally controlled in discrete time, so that

a cumulative reward signal (the return) is maximized. Such

problems arise in many fields, including artificial intelligence,

automatic control, computer science, operations research, eco-

nomics, medicine, etc. They can be modeled as Markov

decision processes (MDPs), and due to the generality of this

formulation, algorithms that solve MDPs are an extremely

important field of research.

In particular, we consider a class of online model-based

algorithms that, at each step, look at the current system state

and employ the model to predict the system’s response to

various sequences of actions. Exploiting these predictions, an

action that is as good as possible is applied, which results

in a new state. The entire cycle then repeats. In computer

science such algorithms belong to the planning class [1] and

are known as online planning [2], [3] or sometimes lazy

planning [4]. While in this paper we use the name ‘online

planning’ and mainly refer to the computer science literature,

it must be emphasized that such algorithms are also widely

studied in systems and control, where they are known as

model-predictive or receding-horizon control [5], [6].

We propose an online planning algorithm that works in

finite-action, sparsely stochastic MDPs, in which the random
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organized by Lucian Buşoniu, Damien Ernst, and Robert Babuška at the SSCI
Symposium “Adaptive Dynamic Programming and Reinforcement Learning”.

state transitions can only end up in a small number N of pos-

sible next states. The algorithm builds a planning (lookahead)

tree by taking the current state as the root node and expanding

a new state at each iteration. Each state expansion exploits the

sparsity of the transitions to add all the possible next states,

for all the M discrete actions, as children to the tree. Because

the algorithm works online, strict limits on its computational

expense are imposed: it must perform at most n expansions.

Therefore, each state to expand must be chosen in an active

way, so as to improve the knowledge about action quality. An

optimistic active planning procedure is adopted that expands

the most promising states first – i.e., states corresponding

to larger upper bounds on the possible returns. We call the

resulting algorithm optimistic planning for sparsely stochastic

systems (OPSS).

OPSS is evaluated numerically in two problems: a sparsely

stochastic variant of the classical inverted pendulum, where

OPSS is also compared to alternative planning algorithms; and

a highly challenging problem involving the control of an HIV

infection, for the case when the effectiveness of the applied

drugs is stochastic.

Many other systems of interest are sparsely stochastic. Such

systems usually arise by combining deterministic dynamics

with discrete random variables, which could be an intrinsic

part of the system, such as failure modes, job arrivals into a

resource management system (e.g., elevator scheduling, traffic

signal control), etc., or could represent external conditions

(disturbances) such as user input, discrete actions of other

agents in a multiagent system, etc.

The optimistic principle at the core of our approach is

widely used in so-called ‘bandit’ methods, where it has strong

theoretical foundations [7]–[9]. Bandits can be understood as

a way of solving the exploration-exploitation dillemma, or

alternatively as optimizing a stochastic function by taking as

few suboptimal samples as possible. The application of bandits

to tree exploration is especially relevant to online planning [8].

Such methods could be used directly to plan in MDPs, but they

would not exploit the specific structure arising in this context.

Instead, planning methods have been developed specifically

for MDPs [2], [4], [10]–[14], see [3] for a review. Among

these, [10] exploits a different notion of sparse stochasticity, in

which only some of the states lead to stochastic outcomes. Our

novel OPSS method is closest to the optimistic planning (OP)

algorithms of [12], [14]. The OP algorithm of [12] is geared

for deterministic systems, and in fact OPSS reduces to this

algorithm in the deterministic case. Of course, OPSS is more



general as it is also applicable to stochastic systems. Compared

to the open-loop OP (OLOP) of [14], which is designed for

nonsparsely stochastic systems, our approach takes advantage

of the sparse stochasticity to find deterministic upper bounds

on the returns, rather than upper confidence bounds in high

probability, as is done in OLOP.

The online planning approach is different from the value-

function and policy search methods usually considered in

dynamic programming and reinforcement learning [15]–[19];

the latter methods usually seek a global solution, whereas

online planning finds actions on demand, locally for each state

where they are needed. Online planning is therefore much

less dependent on the state space size. It is also generally

suboptimal, while global methods do achieve optimality in

some restricted settings. In realistic problems, however, global

methods must also use approximation, thereby sacrificing

optimality [19].

Next, Section II introduces MDPs and online planning algo-

rithms in more detail. Section III introduces the novel OPSS

algorithm, and Section IV presents numerical experiments

validating it. Section V summarizes the paper and outlines

our future plans for the algorithm.

II. PRELIMINARIES

This section briefly introduces the optimal control problem

and the class of algorithms considered in this paper, in

the framework of Markov decision processes (MDPs). More

details about MDPs and methods to solve them can be found

in [15]–[19].

A. Markov decision processes

Consider an MDP with state space X and action space U .

Assume for the simplicity of notation that X is countable. The

probability that next state x′ is reached after action u is taken

in state x is f(x, u, x′), where f : X × U × X → [0, 1] is

the transition probability function. After the transition to x′, a

reward r′ = ρ(x, u, x′) is received, where ρ : X×U×X → R

is the reward function.

A control policy h : X → U indicates how actions should

be chosen given the state. Denoting by k the discrete time

index, the expected infinite-horizon discounted return (for

short, value) of state x under a policy h is:

V h(x) = Exk+1∼f(xk,h(xk),·)

{

∞
∑

k=0

γkrk+1

}

(1)

where x0 = x, rk+1 = ρ(xk, h(xk), xk+1), γ ∈ (0, 1) is

the discount factor, and the notation xk+1 ∼ f(xk, h(xk), ·)
means that xk+1 is drawn from the distribution f(xk, h(xk), ·).
Other types of return can also be used, such as finite-horizon or

averaged over time. We call V h : X → R a ‘value function’.

The goal is to control the system using an optimal policy h∗,

so that the value function is maximized for every x ∈ X . This

maximal (optimal) value function, denoted by V ∗, is unique,

so it does not depend on the particular optimal policy.

It is also helpful to consider the values of state-action pairs,

rather than just states. For instance, the Q-function of a policy

h is the expected value of starting in a given state, applying

a given action, and following h thereafter:

Qh(x, u) = Ex′∼f(x,u,·)

{

ρ(x, u, x′) + γV h(x′)
}

If the optimal Q-function Q∗ (defined as the Q-function of

any optimal policy) is available, an optimal policy h∗ can

immediately be found by the so-called greedy action selection:

h∗(x) ∈ arg max
u∈U

Q∗(x, u) (2)

Our algorithm is geared towards problems that satisfy the

following assumptions.

Assumption 1: There is a small finite number M of actions,

i.e., |U | = M . Moreover, after applying any action in any state,

the number of reachable next states is at most a small finite

N , i.e., |{x′ | f(x, u, x′) > 0}| ≤ N for any x, u, where |·|
denotes set cardinality.

Assumption 2: The rewards are bounded in the interval

[0, 1], i.e., ρ(x, u, x′) ∈ [0, 1] for any x, u, x′.

The first, finite-action part of Assumption 1, while restric-

tive, is commonly used when solving MDPs, so our algorithm

is not unusually restrictive in this way. We call systems that

satisfy the second-part of Assumption 1 ‘sparsely stochastic’,

since if we were to represent for any fixed x, u the transition

probabilities f(x, u, ·) as a vector of length |X|, this vector

would be generally be sparse (because X will generally be

large, leading to |X| ≫ N ). Assumption 2 is not restrictive,

as any bounded reward function can be normalized to [0, 1] by

translation and scaling, without changing the optimal policies.

B. Online planning control

The planning algorithms considered in this paper work

online and employ a model of the MDP, in the form of the

functions f and ρ. At each step k, the model is employed

to predict the possible behavior of the system starting from

the current state xk and responding to various sequences

of actions. Using these predictions, the algorithm returns an

action uk that is as close to optimal as possible. This action is

applied, the system transits to xk+1, and the cycle repeats. The

planning algorithm can be identified with a policy h(xk) = uk

(assuming it chooses actions deterministically, otherwise a

stochastic policy must be used).

An important concern in these algorithms is the computa-

tional expense at each step, especially if the algorithm must be

applied in a real-time fashion. Therefore, following [12], [14],

we consider a setting in which this expense must be at most

n units, where the exact units will be specified later for our

algorithm, but can generally be number of evaluations of the

model functions, computation time, number of basic arithmetic

operations, etc.

To measure the quality of a planning algorithm h, the so-

called ‘simple regret’ can be used, which at every state x is

defined by:

Rh(x) = Q∗(x, h∗(x)) − Q∗(x, h(x))

= max
u∈U

Q∗(x, u) − Q∗(x, h(x))
(3)



i.e., the loss incurred by choosing h(x) and then acting

optimally, with respect to acting optimally from the first step.

Note the regret is always nonnegative, and an optimal policy

achieves a regret of 0. Using R is motivated by the following

result [12]:

∥

∥V ∗ − V h
∥

∥

∞
≤

∥

∥Rh
∥

∥

∞

1 − γ

which says that if h has a small regret Rh, then the actual

values V h it obtains are close to the optimal values V ∗.

III. OPTIMISTIC PLANNING FOR SPARSELY STOCHASTIC

SYSTEMS

In this paper, we introduce a novel algorithm called opti-

mistic planning for sparsely stochastic systems (OPSS). OPSS

builds a planning (lookahead) tree starting from a root node

that contains the state where an action must be chosen. At each

iteration, the algorithm actively selects a leaf node (a state)

and expands it, by exploiting the sparsity of the dynamics

to generate all the one-step successor states for all possible

actions. The computational unit consists of using the model

functions f , ρ to generate these successors for a single state.

Due to Assumption 1, there are at most NM successors. The

algorithm stops growing the tree after n expansions and returns

an action chosen on the basis of the final tree.

The procedure to select nodes for expansion is crucial: it

should efficiently exploit the available computational budget

n to obtain a regret (3) that is as small as possible. To this

end, we design an selection procedure that is optimistic, in the

sense of assuming the best possible optimal values compatible

with the planning tree generated so far.

To formalize the criteria by which nodes are expanded and

the final action is chosen, let us first introduce some notation:

• The entire tree is denoted by T , and the set of leaf

(unexpanded) nodes by S.

• A node of the tree is identified with its associated state x.

A child node is denoted x′, and also has the meaning of

next state. When leaf nodes must be distinguished, they

are denoted by s. In the remainder of this section, we

will prefer saying nodes rather than states.

• Because everything happens at the current time step, the

time index k is dropped and the subscript of x and u
is reused to indicate the depth d of a node in the tree,

whenever this depth must be considered explicitly. So,

x0 is the root node, where an action must eventually

be chosen, and xd is a node at depth d. Of course,

d still retains the meaning of time, since a node at

depth d occurs after d transitions along a simulated

trajectory starting from the root node. A function D(x)
is introduced that finds the depth of a node x.

Figure 1 shows an example of a planning tree.
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Fig. 1. A planning tree example for the case N = M = 2, after 4
expansions. Each node (state) is represented by an encircled number, black
edges correspond to transitions resulting from the first action u1, and gray
edges to u2. It is useful to label each edge by the transition probability
from the parent to the child and by the associated reward (exemplified for
the first level only). The dashed line encloses an optimistic subtree example
(see Section III-A below), for the case in which b(1, u1) > b(1, u2) and
b(3, u1) < b(3, u2).

A. Expansion criterion

For each x ∈ T and u ∈ U , define the b-values b(x, u)
recursively, starting from the leaf nodes, as follows:

b(s, u) =
1

1 − γ
, ∀s ∈ S, u ∈ U

b(x, u) =
∑

x′

f(x, u, x′)

[

ρ(x, u, x′) + γ max
u′∈U

b(x′, u′)

]

,

∀s ∈ T \ S, u ∈ U

where x′ ranges through all the children of x which are

reachable by taking action u. Each b-value b(x, u) is an upper

bound for the optimal Q-value Q∗(x, u). This is immediately

clear at the leaves, where the value 1
1−γ

is an upper bound for

any Q-value, because the rewards are in [0, 1] and a discount

factor γ < 1 is used. By backward induction, it is true at any

inner node: since the b-values of the node’s children are upper

bounds on their Q-values, the resulting b-values of this node

are upper bounds on its own Q-values. Note that although the

bounds are loose at the leaves, they improve higher in the tree,

which is what will matter for the algorithm’s performance.

To obtain a set of candidate nodes for expansion, first an

optimistic subtree is recursively built by starting from the root

and selecting at each node x only its children associated to an

optimistic action, i.e., a greedy action (2) in the b-values:

u†(x) ∈ arg max
u∈U

b(x, u)

Ties can be broken in any way, but to make the algorithm

predictable, they should prefeably be broken deterministically,

e.g., always in favor of the first node that was added to the

tree. This procedure is optimistic because it uses b-values

(upper bounds) as if they were optimal Q-values. Denote the



optimistic subtree by T †, and its leaves by S†. All these leaves

are candidates for expansion. See Figure 1 for an example of

an optimistic subtree.

To choose one leaf node to expand among the candidates

S†, we propose to maximize the potential decrease of the b-

value b(x0, u
†(x0)), i.e., of the upper bound on the optimal

value of the root state. So, the criterion strives to maximally

improve the knowledge about this optimal value.

The b-value considered can be written more explicitly as an

expected optimistic return obtained along the paths from the

root to all the leaf nodes in the optimistic subtree:

b(x0, u
†(x0)) =

∑

s∈S†

P(s)

[

R̄(s) +
γD(s)

1 − γ

]

(4)

where P(s) is the probability to reach s and R̄(s) is the

discounted sum of rewards accumulated along the path. Denote

the path by xs
0, x

s
1, . . . , x

s
D(s) for a given s; of course, xs

0 is

always x0 and xs
D(s) is s itself. Then:

P(s) =

D(s)−1
∏

d=0

f(xs
d, u

†(xs
d), x

s
d+1)

R̄(s) =

D(s)−1
∑

d=0

γdρ(xs
d, u

†(xs
d), x

s
d+1)

Consider the contribution of a single leaf node s to (4):

P(s) [R̄(s)+γD(s)/(1−γ)]. If this leaf node were expanded, its

contribution would decrease the most if the rewards along the

transitions to all the new children nodes were 0. In that case, its

updated contribution would be P(s) [R̄(s)+γD(s)+1/(1−γ)],
and its contribution would have decreased by:

P(s)

[

R̄(s) +
γD(s)

1 − γ
− R̄(s) −

γD(s)+1

1 − γ

]

= P(s) γD(s)

So, finally, the rule for selecting a node to expand maxi-

mizes this potential decrease over the optimistic leaves:

arg max
s∈S†

P(s) γD(s) (5)

preferably breaking ties deterministically, for the same reason

as above.

B. Action selection at the root

Similarly to the b-values, define the ν-values ν(x, u):

ν(s, u) = 0, ∀s ∈ S, u ∈ U

ν(x, u) =
∑

x′

f(x, u, x′)

[

ρ(x, u, x′) + γ max
u′∈U

ν(x′, u′)

]

,

∀s ∈ T \ S, u ∈ U

The difference from the b-values is that ν-values start with 0
at the leaves. Then, the root action, which is the final result

of the algorithm, is selected with:

u0 ∈ arg max
u∈U

ν(x0, u) (6)

breaking ties deterministically as before.

C. OPSS algorithm

The complete OPSS algorithm is shown in high-level pseu-

docode as Algorithm 1. Note that b-values, ν-values, path

probabilities P(s), and partial returns R̄(s) do not have to

be recomputed from scratch at each iteration, but can all be

efficiently updated as new nodes are added.

Algorithm 1 OP for sparsely stochastic systems

Input: state x0, model f, ρ, computational budget n
1: T1 = {x0}
2: for ℓ = 1, . . . , n do

3: build T †
ℓ , the optimistic subtree of Tℓ

4: select node to expand: sℓ ∈ arg max
s∈S

†

ℓ

P(s) γD(s)

5: expand sℓ, obtaining Tℓ+1

6: end for

Output: u0 ∈ arg maxu∈U ν(x0, u)

As previously mentioned, optimistic algorithms for MDPs

have been developed before. The most closely related algo-

rithms are OP for deterministic systems [12] and open-loop OP

(OLOP) [14], which works in stochastic systems. When the

system is deterministic, OPSS reduces to OP for deterministic

systems. Indeed, in that case the optimistic subtree reduces

to a single path, since at every node x there is a single,

deterministic successor for the optimistic action u†(x). The

node at the end of this path is the one selected for expansion by

both OPSS and OP for deterministic systems, and the problem

of selecting between candidate optimistic nodes does not arise

in the deterministic case. In the stochastic case, we solve this

problem using the expansion criterion (5). Note that the b-

values and ν-values in OPSS have counterparts with similar

meanings in OP for deterministic systems.

OLOP works for general, nonsparsely stochastic systems

with finitely many actions, but plans in ‘open loop’, using

only sequences of actions. At each iteration, such a sequence

is applied in simulation, using a generative model (i.e., one

that only generates random transitions without offering access

to their distribution). The resulting random rewards are used

to update upper confidence bounds in high probability on

the returns, for every subsequence belonging to the chosen

sequence. At the next iteration, the bounds are used to choose

a promising next sequence to simulate, see [14] for details.

The actual underlying sequences of states are never explicitly

considered.1 In contrast, OPSS does consider the state tran-

sitions. In fact, taking advantage of the sparse nature of the

MDP, OPSS uses all possible transitions from each expanded

node to find deterministic (exact) upper bounds: the b-values.

Of course, to compute all the transitions OPSS requires access

to their probability distribution.

OPSS can also be seen as a type of branch-and-bound

optimization over action sequences; more precisely, over a

space H consisting of all the action assignments to states

1Note the actual interaction with the system happens in closed loop for
OLOP as well as OPSS, since both algorithms take into account the state at
each time step.



along all possible random trajectories starting in x0. Each

node expansion corresponds to splitting a subset of H with

the largest upper bound into M sets, and the criterion (5)

selects for splitting the ‘longest edge’ of this set.

D. A uniform planning algorithm

As a baseline algorithm against which to compare, we will

use the strategy of always expanding a leaf node with the

smallest depth [12]. The resulting uniform planning procedure

is shown in Algorithm 2.

Algorithm 2 Uniform planning for sparsely stochastic systems

Input: state x0, model f, ρ, computational budget n
1: T1 = {x0}
2: for ℓ = 1, . . . , n do

3: select node to expand: sℓ ∈ arg mins∈Sℓ
D(s)

4: expand sℓ, obtaining Tℓ+1

5: end for

Output: u0 ∈ arg maxu∈U ν(x0, u)

IV. EXPERIMENTAL STUDY

We report the results of numerical experiments validating

OPSS. First, the behavior of OPSS is studied in a relatively

simple inverted pendulum problem. Then, OPSS is applied to

the highly challenging problem of controlling an infection with

the human immunodeficiency virus (HIV).

A. Inverted pendulum swingup

Using the problem of swinging up an underactuated inverted

pendulum, the behavior of OPSS is studied as a function of

the computational budget n provided. OPSS is compared to

the baseline, uniform planning algorithm, and to OLOP.

Inverted pendulum problem

The inverted pendulum consists of a weight of mass m
attached to an actuated link that rotates in a vertical plane

(see Figure 2). The available power is taken insufficient to

push the pendulum up in a single rotation from every initial

state. Instead, from certain states (e.g., pointing down), the

pendulum needs to be swung back and forth to gather energy,

prior to being pushed up and stabilized.

m

l

motor

α

Fig. 2. Inverted pendulum schematic.

A continuous-time model of the pendulum dynamics is:

α̈ = 1/J · [mgl sin(α) − bα̇ − K2α̇/R + Ku/R]

where J = 1.91 · 10−4 kgm2, m = 0.055 kg, g = 9.81 m/s2,

l = 0.042 m, b = 3 · 10−6 Nms/rad, K = 0.0536 Nm/A,

R = 9.5 Ω. The angle α varies in the interval [−π, π] rad,

with α = 0 pointing up, and ‘wraps around’ so that e.g.

a rotation of 3π/2 corresponds to α = −π/2. The state is

x = [α, α̇]
⊤

. The velocity α̇ is restricted to [−15π, 15π] rad/s,

using saturation. The sampling time is Ts = 0.05 s, and the

discrete-time transitions are obtained by numerically integrat-

ing the continuous-time dynamics between consecutive time

steps.

The control action is limited to [−3, 3] V (insufficient to

push up the pendulum in one go), and additionally an unreli-

able actuator is modeled that only applies the intended action

u with probability 0.6, and applies an action with smaller

magnitude, 0.7u, with probability 0.4 (when the intended

action is 0 it remains 0 with probability 1). This corresponds

to a sparsely stochastic MDP with N = 2. The actions are

discretized into the set U = {−3, 0, 3}, so that M = 3.

The goal is to stabilize the pendulum in the unstable

equilibrium x = 0 (pointing up), and is expressed by the

unnormalized rewards:

r = ρunnorm(x, u, x′) = −x⊤Qrewx − Rrewu2

where: Qrew = diag[5, 0.1], Rrew = 1

Here, Qrew is chosen to penalize nonzero values of the

two state variables to a similar extent, given their relative

magnitudes; and Rrew penalizes energy consumption, to a

smaller extent than the state deviations. Using the known

bounds on the state and action variables, this reward function

is normalized to the interval [0, 1]. The discount factor is

γ = 0.95, sufficiently large to lead to a good control policy.

This problem is challenging for a planning algorithm such

as OPSS, because the necessary swing-up trajectories must be

planned over a relatively long horizon, and solutions that seem

optimal over a short horizon will not work (instead, they will

just push the pendulum in one direction without being able to

swing it up).

Results and discussion

The performance of OPSS (Algorithm 1) is studied and

compared to uniform planning (Algorithm 2) and OLOP [14].

For OPSS and uniform planning, the computational budget n
varies in the set {100, 200, . . . , 1000}. OLOP has a different

computational unit, consisting of simulating a single random

transition instead of NM such transitions, so for fairness it is

allowed NM = 6n transitions.2

To obtain a global performance measure, all algorithms are

applied in an offline fashion, to find actions for the states on

the grid:

X0 =
{

−π, −150π
180 , −120π

180 , . . . , π
}

× {−15π,−14π, . . . , 15π}

Since an exact optimal solution for the inverted pendulum

problem is not known, in order to approximate the regret

2Note that instead of the theoretical OLOP algorithm of [14], we use a
variant more amenable to practical implementation, which like OPSS relies
on developing planning trees.



(3), a near-optimal solution is computed instead. To this end,

the fuzzy Q-iteration algorithm [20] is modified to work

for the sparsely stochastic systems considered in this paper,

and applied to the inverted pendulum using a very accurate

approximator over the state space.

Figure 3, top reports the (approximate) regret of the three

algorithms, averaged over the set X0. As expected, OPSS is

better than uniform planning, since it expands the planning

trees in a smart way. As Figure 3, middle shows, this results

in much deeper trees than for uniform planning. Less expected

is that, despite its strong theoretical guarantees, OLOP works

poorly, similarly to uniform planning. This happens because

the computational budgets considered do not allow OLOP

to sufficiently decrease the upper confidence bounds on the

returns; any advantage OLOP may have can only manifest

for larger budgets. Because the algorithms simulate a sim-

ilar number of transitions, their execution times are similar

(Figure 3, bottom). Note that with these execution times the

algorithms would not yet be applicable in real-time; a faster

implementation than our proof-of-concept Matlab program is

needed for that.
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Fig. 3. Comparison between OPSS and uniform planning: average regret over
X0 (top), average tree depth over X0 (middle), execution time (bottom). As
the results of OLOP depend on particular realizations of stochastic trajectories,
this algorithm is run 10 times and mean results are reported (the 95%
confidence regions are too tight to be visible at this scale).

Figure 4 shows the actions found by the OPSS and OLOP

for X0, when n is 600. For comparison, the near-optimal pol-

icy found by fuzzy Q-iteration is also shown. OPSS provides a

much better approximation of the optimal policy than OLOP,

which e.g. shows no trace of the destabilizing actions required

for a successful swingup (these actions are visible in the fuzzy

Q-iteration policy as ‘inverted’ patches in the center-left and

center-right regions of the figure, for α ≈ −π, π and α̇ ≈ 0).
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Fig. 4. Actions found by OPSS (top) and OLOP (middle) for n = 600,
compared to a near-optimal policy (bottom). Black represents −3 V, gray 0 V,
and white 3 V.

B. HIV infection control

Next, the highly challenging problem of controlling the

treatment of a simulated HIV infection is considered.

HIV infection control problem

Prevalent HIV treatment strategies involve two types of

drugs that will generically be called here ‘drug 1’ and ‘drug 2’,

without going into details. The negative side effects of these

drugs in the long term motivate the investigation of optimal

strategies for their use. One such strategy involves so-called

structured treatment interruptions (STI), where the patient is

cycled on and off drugs, see e.g. [21]. In some remarkable

cases, STI strategies eventually allowed the patients to control

the infection in the absence of treatment [22].

The HIV infection dynamics are described by a six-

dimensional nonlinear model with the state vector x =
[T1, T2, T

t
1 , T t

2 , V, E]
⊤

, where:3

3For the model equations and parameters, see [21].



• T1 ≥ 0 and T2 ≥ 0 are the counts of healthy type 1 and

type 2 target cells [cells/ml].

• T t
1 ≥ 0 and T t

2 ≥ 0 are the counts of infected type 1 and

type 2 target cells [cells/ml].

• V ≥ 0 is the number of free virus copies [copies/ml].

• E ≥ 0 is the number of immune response cells [cells/ml].

In STI, the two drugs are independently either fully adminis-

tered (they are ‘on’), or not at all (they are ‘off’); thus there are

two binary control variables u1 and u2, leading to M = 4. Two

additional variables ǫ1 and ǫ2 represent the effectiveness of the

two drugs, and are algebraically related to u = [u1, u2]
⊤

(so

they do not enter the state signal). Because it is not clinically

feasible to change the treatment daily, the state is measured

and the drugs are switched on or off once every 5 days [21].

So, the system is controlled in discrete time with a sampling

time of 5 days – which means that plenty of time is available to

optimize each control decision, an ideal setting for the online

planning type of algorithms considered here.

Previous works using this model to derive near-optimal

STI control [21], [23], [24] assumed a one-to-one mapping

between drug application and effectiveness, so that whenever

a drug is fully applied, its effectiveness is equal to some

maximum value. This is not a realistic assumption, and here

we relax it by introducing a stochastic relationship between u
and ǫ:

ǫ1 =











0 with probability 1, if u1 = 0

0.77 with probability 0.5, if u1 = 1

0.63 with probability 0.5, if u1 = 1

ǫ2 =











0 with probability 1, if u2 = 0

0.33 with probability 0.5, if u2 = 1

0.27 with probability 0.5, if u2 = 1

So, depending on the action u, there can be up to N = 4
possible outcomes. Note that the expected values of ǫ1 and

ǫ2 when the drugs are applied are, respectively, 0.7 and 0.3,

equal to their deterministic values in [21], [23], [24].

The system has three uncontrolled equilibria. The uninfected

equilibrium xn = [1000000, 3198, 0, 0, 0, 10]
⊤

is unstable:

as soon as V becomes nonzero due to the introduction of

virus copies, the patient becomes infected and the state drifts

away from xn. More interesting are the unhealthy equilibrium

xu = [163573, 5, 11945, 46, 63919, 24]
⊤

, which is stable and

represents a patient with a very low immune response, for

whom the infection has reached dangerous levels; and the

healthy equilibrium xh = [967839, 621, 76, 6, 415, 353108]
⊤

,

which represents a patient whose immune system controls the

infection without the need of drugs. This latter equilibrium,

although stable, has a very small basin of attraction. Ideally,

an STI control strategy would drive the state into this basin of

attraction so that the patient’s immune system can take over.

We consider the problem of using STI from the initial state

xu such that the immune response of the patient is maximized

and the number of virus copies is minimized, while also

penalizing the quantity of drugs administered, to account for

their side effects. The unnormalized reward function is [21]:

ρunnorm(x, u, x′) = −QV − R1ǫ
2
1 − R2ǫ

2
2 + SE (7)

where Q = 0.1, R1 = R2 = 20000, S = 1000. The term

−QV penalizes the amount of virus copies, −R1ǫ
2
1 and −R2ǫ

2
2

penalize drug use, while SE rewards the amount of immune

response. Using some conservative bound estimates on the

state variables, this reward is normalized to the interval [0, 1].

Results and discussion

The results of applying OPSS to control the system online

starting from xu, with a computational budget of n = 3000 at

each time step, are shown in Figure 5. As it was hoped for,

the algorithm eventually stops administering drugs (u1 = u2 =
0), and the state slowly converges to the healthy equilibrium

xh, associated with a very strong immune response (E large).

This solution is better than our previous one in [24], which

keeps one drug on in steady state. It is similar in nature to

the solutions in [21], [23], but addresses the more challenging

case of stochastic drug effectiveness. We also applied uniform

planning and OLOP to this problem, with poorer results than

OPSS; graphs are not provided here due to space limitations.

The CPU time required by OPSS to plan an action for

each state was around 350 s in our Matlab implementation

– significantly smaller than the decision interval of 5 days,

which means that the algorithm would easily satisfy real-time

constraints for this problem.

V. CONCLUSIONS

This paper has introduced a novel online planning algorithm

for MDPs with sparsely stochastic transitions. The algorithm

builds a planning tree of states by actively choosing at each

iteration which state to expand, so that good knowledge

about the quality of actions is obtained after at most n
expansions. The active state selection method exploits the

optimistic planning principle [12], [14], so the novel algorithm

is called optimistic planning for sparsely stochastic systems.

The new algorithm has obtained very promising numerical

results, including the successful online control of a (simulated)

HIV infection under stochastic drug effectiveness.

The most important next step is the theoretical analysis of

the algorithm, in particular, deriving bounds on the simple

regret (3) at any state as a function of the computational

budget n, the sparsity N , and the number of discrete actions

M . On the empirical side, a comparison with other online

planning techniques for stochastic systems would be very

interesting. One important practical point of improvement is

reusing the information derived at previous time steps; this

can be done e.g. by reusing subtrees, or by developing a

global ‘approximate b-function’ that compactly represents the

existing knowledge about the upper bounds. Information reuse

should allow the decrease of the computational budget n
without sacrificing performance.
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