

Improving adaptive feedforward vibration compensation by using "Integral+Proportional" adaptation

Tudor-Bogdan Airimitoaie, Ioan Doré Landau

▶ To cite this version:

Tudor-Bogdan Airimitoaie, Ioan Doré Landau. Improving adaptive feedforward vibration compensation by using "Integral+Proportional" adaptation. Automatica, 2013, 49 (5), pp.1501-1505. 10.1016/j.automatica.2013.01.025 . hal-00830023

HAL Id: hal-00830023 https://hal.science/hal-00830023

Submitted on 8 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Improving adaptive feedforward vibration compensation by using "Integral + Proportional" adaptation $\stackrel{\Leftrightarrow}{}$

Tudor-Bogdan Airimiţoaie^{a,b}, Ioan Doré Landau^{a,*}

^aControl systems department of GIPSA-lab, CNRS, St. Martin d'Héres, 38402 FRANCE ^bFaculty of Automatic Control and Computers, University "Politehnica" of Bucharest, Bucharest, 060042 ROMANIA

Abstract

Analysis of various adaptive feedforward vibration compensation schemes has shown that a strictly positive real (SPR) condition has to be satisfied in order to guarantee the stability of the whole system [1–4]. Filters have to be implemented in order to satisfy this condition. The problem becomes even more crucial in the presence of the internal mechanical coupling between the compensator system and the reference source (a correlated measurement with the disturbance) since some information is not available when adaptation starts (see [3]). It is therefore very important to relax the SPR condition at least in the initial phase and in the same time to improve the adaptation transients. It is shown, in this paper, that adding a proportional adaptation to the standard integral type parametric adaptation, the SPR condition can be relaxed and the adaptation transients are improved. Theoretical developments are enhanced by real time experimental results obtained on an active vibration control (AVC) system.

Keywords: active vibration control, adaptive feedforward compensation, adaptive control, stability, parameter estimation

1. Introduction

An important issue in adaptive feedforward compensation is the design of filters either on the observed variables of the feedforward compensator ([3]) or on the residual acceleration ([5]) in order to satisfy positive realness conditions on some transfer functions required by the stability analysis. The problem becomes even more crucial in the presence of the internal mechanical coupling between the compensator system and the reference source (a correlated measurement with the disturbance) since some information is not available when adaptation starts (see [3]). In [3], based on work done in [6], it was shown that for small adaptation gains (slow adaptation) violation of the SPR condition in some frequency regions is acceptable provided that in the average the input-output product associated with this transfer function is positive. However, the performances are degraded with respect to the case when the SPR condition is satisfied. It is in fact a signal dependent condition.

The problem of removing or relaxing the positive real condition can be also approached by adding a proportional adaptation to the widely used integral adaptation. While this approach is known in adaptive control ([7, 8]) apparently it has not been used in the context of adaptive feedforward compensation. Furthermore, it was observed in adaptive control, that adding positive proportional adaptation will speed up the adaption transients ([8, 9]).

"Integral + Proportional" (IP) adaptation has been discussed from a stability point of view in [8, 9] for the case of constant integral adaptation gain. A stable IP adaptation with time varying integral adaptation gain has been introduced in [10]. The objective of this paper is to explore the advantages of adding proportional adaptation in the context of the adaptive feedforward compensation of vibrations both from the theoretical and applications points of view.

The main contributions of the present paper are: (i) development and stability analysis of IP adaptation algorithms for adaptive feedforward compensation in the presence (or not) of an internal positive feedback, (ii) relaxation of the SPR condition in the context of adaptive feedforward compensation using IP adaptation, and (iii) application of the IP adaptation algorithms to an AVC system featuring internal positive mechanical coupling and comparison with existing algorithms.

2. Development and Analysis of the Algorithms

Figure 1: Feedforward AVC with adaptive feedforward compensator.

The block diagram of the adaptive feedforward compensator in the presence of an internal positive feedback associated

 $^{^{\}diamond}$ A preliminary version of this paper has been submitted to the 51st IEEE Conference on Decision and Control, 2012.

^{*}Corresponding author. Tel. +33-4-7682-6391. Fax +33-4-7682-6382. Email: Ioan-Dore.Landau@gipsa-lab.grenoble-inp.fr.

with an AVC system is shown in Fig. (1). $D = \frac{B_D}{A_D}$, $G = \frac{B_G}{A_G}$, and $M = \frac{B_M}{A_M}$ represent the transfer operators associated with the primary, secondary, and reverse (positive coupling) paths.

The optimal feedforward filter (unknown) is defined by $N(q^{-1}) = \frac{R(q^{-1})}{S(q^{-1})} = \frac{r_0 + \ldots + r_{n_R}q^{-n_R}}{1 + s_1q^{-1} + \ldots + s_{n_S}q^{-n_S}}$. The estimated filter will be denoted by $\hat{N}(t, q^{-1})$ during estimation (adaptation) of its parameters and by $\hat{N}(q^{-1})$ when it is a linear filter with constant coefficients.

The parameters of the optimal filter and of the estimated filter are respectively given by the vectors

$$\boldsymbol{\theta}^T = [s_1, \dots s_{n_S}, r_0, \dots r_{n_R}] = [\boldsymbol{\theta}^T_S, \boldsymbol{\theta}^T_R], \tag{1}$$

$$\hat{\theta}^{T}(t) = [\hat{s}_{1}(t), \dots \hat{s}_{n_{S}}(t), \hat{r}_{0}(t), \dots \hat{r}_{n_{R}}(t)] = [\hat{\theta}^{T}_{S}(t), \hat{\theta}^{T}_{R}(t)],$$
(2)

while the observations vector is given by

$$\phi^{T}(t) = [-\hat{y}(t), \dots - \hat{y}(t - n_{S} + 1), \ \hat{u}(t + 1), \dots \hat{u}(t - n_{R} + 1)]$$

= $[\phi_{\hat{y}}^{T}(t), \ \phi_{\hat{u}}^{T}(t)],$ (3)

where $\hat{u}(t)$ and $\hat{y}(t)$ are the input and output of the estimated feedforward filter. $\hat{u}(t)$ is a measurable signal satisfying (see Fig. (1))

$$\hat{u}(t+1) = d(t+1) + \frac{B_M^*(q^{-1})}{A_M(q^{-1})}\hat{y}(t)$$
(4)

and $\hat{y}(t)$ denotes the *a posteriori* output

$$\hat{y}(t+1) = \hat{y}(t+1|\hat{\theta}(t+1)) = \hat{\theta}^{T}(t+1)\phi(t).$$
 (5)

Similarly to (5), the *a priori* output is obtained by taking the parameters' estimates from the previous time step: $\hat{y}^0(t+1) = \hat{y}(t+1|\hat{\theta}(t))$.

The measurable residual error satisfies

$$\chi^{0}(t+1) = \chi(t+1|\hat{\theta}(t)) = \hat{z}^{0}(t+1) + x(t+1), \quad (6)$$

where $\hat{z}^0(t)$ is the output of the secondary path and x(t) is the output of the primary path. $\hat{z}^0(t)$ and x(t) can not be measured when the feedforward compensator is active. The previous equation can be used to immediately obtain the *a priori* adaptation error as

$$\mathbf{v}^{0}(t+1) = -\chi^{0}(t+1) = -x(t+1) - \hat{z}^{0}(t+1).$$
 (7)

Using Lemma 4.1 and eqs. (26) through (30) from [3], it results that the *a posteriori* adaptation error, $v(t + 1) = v(t + 1|\hat{\theta}(t+1))$, which is computed, satisfies:

$$\mathbf{v}(t+1) = \frac{A_M(q^{-1})G(q^{-1})}{P(q^{-1})L(q^{-1})} [\mathbf{\theta} - \hat{\mathbf{\theta}}(t+1)]^T \phi_f(t), \quad (8)$$

where

$$\phi_f(t) = L(q^{-1})\phi(t). \tag{9}$$

Eq. (8) has the standard form for an *a posteriori* adaptation error ([8]). The following "Integral + Proportional" parameter

adaptation algorithm (IP-PAA) is proposed:

$$\hat{\theta}_I(t+1) = \hat{\theta}_I(t) + \xi(t)F_I(t)\Phi(t)\mathbf{v}(t+1),$$
(10a)

$$\hat{\theta}_P(t+1) = F_P(t)\Phi(t)\nu(t+1), \tag{10b}$$

$$v(t+1) = \frac{v^{0}(t+1)}{1 + \Phi^{T}(t)(\xi(t)F_{I}(t) + F_{P}(t))\Phi(t)},$$
(10c)

$$F_{I}(t+1) = \frac{1}{\lambda_{1}(t)} \left[F_{I}(t) - \frac{F_{I}(t)\Phi(t)\Phi^{T}(t)F_{I}(t)}{\frac{\lambda_{1}(t)}{\lambda_{2}(t)} + \Phi^{T}(t)F_{I}(t)\Phi(t)} \right], \quad (10d)$$

$$F_P(t) = \alpha(t)F_I(t); \ \alpha(t) > -0.5,$$
 (10e)

$$F(t) = \xi(t)F_I(t) + F_P(t), \qquad (10f)$$

$$\xi(t) = 1 + \frac{\kappa_2(t)}{\lambda_1(t)} \Phi^T(t) F_P(t) \Phi(t),$$
(10g)

$$\theta(t+1) = \theta_I(t+1) + \theta_P(t+1),$$
(10h)
0 < 2 (t) < 1 0 < 2 (t) < 2 (0) > 0 (10i)

$$0 < \lambda_1(t) \le 1, \ 0 \le \lambda_2(t) < 2, \ F_I(0) > 0, \tag{101}$$

$$\Phi(t) = \phi_f(t), \tag{10j}$$

where v(t + 1) is the filtered adaptation error, $\lambda_1(t)$ and $\lambda_2(t)$ allow to obtain various profiles for the matrix adaptation gain $F_I(t)$ (see [8] for more details). By taking $\lambda_2(t) \equiv 0$ one obtains a constant adaptation gain matrix (and choosing $F_I = \gamma I$, $\gamma > 0$ one gets a scalar adaptation gain). For $\alpha(t) \equiv 0$, one obtains the algorithm with integral adaptation gain introduced in [3]¹.

Three choices for the filter L will be considered, leading to three different algorithms:

Algorithm I
$$L = G$$
Algorithm II $L = \hat{G}$ Algorithm III $L = \frac{\hat{A}_M}{\hat{P}}\hat{G}$

where

$$\hat{P} = \hat{A}_M \hat{S} - \hat{B}_M \hat{R} \tag{12}$$

is an estimation of the characteristic polynomial of the internal feedback loop computed on the basis of available estimates for the parameters of the filter \hat{N} . To use Algorithm *III* one has to start with Algorithm *II* where the SPR condition is in general not satisfied. Therefore, relaxing the SPR condition for Algorithm *II* is very important.

2.1. Analysis of the Algorithms

For Algorithms *I*, *II*, and *III*, using (8) and (9), the equation for the *a posteriori* adaptation error has the form

$$\mathbf{v}(t+1) = H(q^{-1})[\mathbf{\theta} - \hat{\mathbf{\theta}}(t+1)]^T \Phi(t),$$
 (13)

where

$$H(q^{-1}) = \frac{A_M(q^{-1})G(q^{-1})}{P(q^{-1})L(q^{-1})}, \ \Phi = \phi_f = L(q^{-1})\phi.$$
(14)

¹The present algorithm is a generalization of the algorithms given in columns 1 and 2 of Table 1 of [3].

Thus for Algorithm II one has $H(q^{-1}) = \frac{A_M G}{P\hat{G}}$ and for Algorithm III one obtains $H(q^{-1}) = \frac{A_M G\hat{P}}{P\hat{A}_M \hat{G}}$. Note that in this last case the SPR condition is always satisfied provided that one has good estimations of A_M , G, and P (for more details see [3]).

Neglecting the non-commutativity of time varying operators, one has the following result:

Lemma 2.1. Assuming that eq. (13) represents the evolution of the a posteriori adaptation error and that the IP-PAA (10) is used, one has:

$$\lim_{t \to \infty} v(t+1) = 0, \tag{15}$$

$$\lim_{t \to \infty} \frac{[v^0(t+1)^2]}{1 + \Phi(t)^T F(t) \Phi(t)} = 0, \tag{16}$$

$$||\Phi(t)|| is bounded \tag{17}$$

$$\lim v^0(t+1) = 0,$$
 (18)

for any initial conditions $\hat{\theta}(0), v^0(0), F(0)$, provided that

$$H'(q^{-1}) = H(q^{-1}) - \frac{\lambda_2}{2}, \ \max_t \lambda_2(t) \le \lambda_2 < 2.$$
 (19)

is a SPR transfer function.

The proof² of (15) is given in Appendix A. For (16), (17), and (18), the proof follows [3, 11] and it is omitted. The proof of [10] for IP adaptation with time varying integral adaptation gain is given for $\xi(t) = \frac{1}{\lambda_1(t)} + \frac{\lambda_2(t)}{\lambda_1(t)} \Phi^T(t) F_P(t) \Phi(t)$. To the knowledge of the authors, the proof for $\xi(t)$ given in eq. (10g) is presented here for the first time.

3. Relaxing the Positive Real Condition

An equivalent feedback system can be associated to the IP-PAA where the feedforward path is characterized by the transfer function $H'(z^{-1})$. There is additional "excess" of passivity in the feedback path (that depends upon the adaptation gains and the magnitude of $\Phi(t)$) which can be transferred to the linear feedforward block in order to relax the SPR condition. This idea was prompted out in the context of recursive identification by Tomizuka and results have been given for the case of integral adaptation and for the case when the equivalent linear feedforward path is characterized by an all poles (no zeros) transfer function (see [7]). These results have been extended in [8] for IP adaptation with constant adaptation gain. Taking into account the poles-zeros structure of $H(q^{-1})$, the results of [7, 8] should be extended for the situation described in this paper. One has the following result:

Lemma 3.1. Given the discrete transfer function

$$H(z^{-1}) = \frac{B(z^{-1})}{A(z^{-1})} = \frac{b_0 + b_1 z^{-1} + \dots + b_{n_B} z^{-n_B}}{1 + a_1 z^{-1} + \dots + a_{n_A} z^{-n_A}},$$
 (20)

under the hypotheses:

H1) $H(z^{-1})$ has all its zeros inside the unit circle,

H2)
$$b_0 \neq 0$$
,

there exists a positive scalar gain K such that $\frac{H}{1+KH}$ is SPR.

The proof of this lemma is presented in Appendix B.

Using the above property, for the IP-PAA given by the eqs. (10) and eq. (13) for $\lambda_2(t) \equiv 0$, $\lambda_1(t) \equiv 1$ (constant adaptation gain), and choosing K such that $\frac{H}{1+KH}$ is SPR, one gets the equivalent feedback system:

$$\mathbf{v}(t+1) = -\frac{H(z^{-1})}{1 + KH(z^{-1})} y_{e2}(t), \tag{21}$$

$$\tilde{\theta}_I(t+1) = \tilde{\theta}_I(t) + \xi(t)F_I\Phi(t)v(t+1), \qquad (22)$$

$$\tilde{\theta}_I(t) = \hat{\theta}_I(t) - \theta, \qquad (23)$$

$$y_{e2}(t) = \Phi^T(t)\tilde{\theta}_I(t) + (\Phi^T(t)F(t)\Phi(t) + K)v(t+1).$$
 (24)

Fig. 2 shows the equivalent feedback system associated with the I+P adaptation algorithm of eqs. (10) and eq. (13). The introduction of the scalar gain K does not change the characteristics of the feedback loop but it allows to show how passivity can be passed from the feedback path to the feedforward path.

To prove the stability it remains to show that the new feedback path given by (24) is weakly passive, *i.e.*, it satisfies the Popov inequality

$$\sum_{t=0}^{t_1} y_{e2}(t) u_{e2}(t) \ge -\gamma_0^2.$$
⁽²⁵⁾

The following theorem provides the necessary result.

Figure 2: Equivalent feedback representation of the PAA with "Integral + Proportional" adaptation and scalar gain K.

Theorem 3.1. The adaptive system described by eq. (8) and eqs. (10) for $\lambda_2(t) \equiv 0$ and $\lambda_1(t) \equiv 1$ is asymptotically stable provided that:

- T1) It exists a gain K such that $\frac{H}{1+KH}$ is SPR,
- *T2)* The adaptation gains F_I and $F_P(t)$ and the observation vector $\Phi(t)$ satisfy

$$\sum_{t=0}^{t_1} \left[\Phi^T(t-1) \left(\frac{1}{2} F_I + F_P(t-1) \right) \Phi(t-1) - K \right] \mathbf{v}^2(t) \ge 0$$
(26)

 $^{{}^{2}}v^{0}(t+1)$ is computed using $\hat{\theta}(t) = \hat{\theta}_{I}(t)$.

for all
$$t_1 \ge 0$$
 or

$$\Phi^T(t) \left(\frac{1}{2}F_I + F_P(t)\right) \Phi(t) > K > 0, \quad (27)$$
for all $t \ge 0$.

The proof is similar to that of Theorem 3.3 (p. 109) in [8] where Lemma 3.3 (p.110) is replaced by Lemma 3.1 of this paper.

It is interesting to note that condition (26) implies that the regressor vector has the property

$$\sum_{t=0}^{t_1} \left[\Phi^T(t-1)\Phi(t-1) \right] > \varepsilon > 0, \tag{28}$$

which means that the trace of the covariance matrix of the regressor vector is positive, *i.e.*, that the energy of the signal is greater than zero (a milder condition than "persistence of excitation"). The magnitude of the proportional gain will depend on how far the transfer function is from a SPR transfer function (level of *K*) and what is the energy of the regressor (which depends upon the disturbance).

4. Experimental Results

The same AVC system as in [3] has been used to carry on the experiments. Description of the system and the characteristics of the various identified paths can be found in [3].

4.1. Broadband Disturbance Rejection Using Scalar Adaptation Gain

The adaptive feedforward filter structure for all of the experiments has been $n_R = 3$, $n_S = 4$ (total of 8 parameters). This complexity does not allow to verify the "perfect matching condition" (not enough parameters). A PRBS excitation on the global primary path will be considered as the disturbance.

For the *adaptive* operation the Algorithm II has been used with scalar adaptation gain $(\lambda_1(t) = 1, \lambda_2(t) = 0)^3$. The experiments have been carried out by first applying the disturbance in open loop during 50s and after that closing the loop with the adaptive feedforward algorithms.

Figure 3: Real time results obtained with Algorithm II using "Integral" scalar adaptation gain (left) and "Integral + Proportional" scalar adaptation gain (right).

Figure 5: Real time results obtained with Algorithm II using "Integral" scalar adaptation gain (left) and "Integral + Proportional" scalar adaptation gain (right) over 1500s.

Time domain results obtained on the AVC system are shown in Fig. 3. The advantage of using an IP-PAA is an overall improvement of the transient behavior despite that the SPR condition on $H(q^{-1}) = \frac{A_M G}{p \hat{C}}$ is not satisfied (the SPR condition is not satisfied around 83 H_z and around 116 H_z as shown in Fig. 4). The improvement of performance can be explained by the relaxation of the SPR condition when using I+P adaptation. A variable $\alpha(t)$ in the IP-PAA has been chosen, starting with an initial value of 200 and linearly decreasing to 100 (over a horizon of 25s).

Fig. 5 shows the comparison between "Integral" and "Integral + Proportional" adaptation over an horizon of 1500s (Fig. 3 is a zoom of Fig. 5 covering only the first 30s after the introduction of the adaptive feedforward compensator). It is clear that IP adaptation gives better results even on a long run.

5. Conclusions

idual

The paper has shown that the "Integral + Proportional" adaptation algorithms presented are useful in the context of adaptive feedforward vibration compensation. Theoretical development shows that the SPR condition can be relaxed and an improvement of the adaptation transients is obtained.

Appendix A. Proof of Result (15) - Lemma 2.1

Proof. This result can be directly obtained by applying Theorem 1 of [10]. Consider the equivalent feedback system associated with the I+P adaptation algorithm of eqs. (10) and eq. (13) shown in Fig. A.6. The same feedback system is represented in an alternate form in Fig. A.7, where the scalar gains $\frac{\lambda_2(t)}{2}$ and $\frac{\lambda_2}{2}$ are introduced to better understand the two classes of systems, $L(\lambda_2)$ and $N(\gamma)$, that will be used next (see also [10]). The class

³Note that Algorithm II uses the same filtering as the FuLMS algorithm.

Figure A.6: Equivalent feedback representation of the PAA with "Integral + Proportional" adaptation.

Figure A.7: Equivalent feedback representation of the PAA with "Integral + Proportional" adaptation and the representation of the $L(\lambda_2)$ and $N(\gamma)$ classes.

 $L(\lambda_2)$ represents those LTI systems that in a parallel connection with a gain $-\frac{\lambda_2}{2}$ are strictly positive real (note that, from eq. (19), max_t $\lambda_2(t) \le \lambda_2$). On the other hand, the class $N(\gamma)$ denotes linear time-varying systems that in feedback connection with a block $\frac{\gamma(t)}{2}$ are passive (in this article $\gamma(t) = \lambda_2(t)$). Then considering the composite feedback block in Fig. A.7, it results that it is passive provided that $\lambda_2 \ge \lambda_2(t)$. Therefore, stability of the loop is assured since the linear equivalent feedforward path is SPR (see eq. (19)).

It remains to show that the feedback block indeed belongs to the class $N(\gamma)$, for $\gamma(t) = \lambda_2(t)$. One can verify this using Lemma 2 of [10] for the equivalent feedback path given by:

$$\tilde{\theta}_I(t) = \hat{\theta}_I(t) - \theta, \qquad (A.1)$$

$$\mathbf{v}(t+1) = -H(q^{-1})\Phi^{T}(t)\tilde{\theta}(t+1)$$
(A.2)

$$\tilde{\theta}_I(t+1) = \tilde{\theta}_I(t) + \xi(t)F_I(t)\Phi(t)\mathbf{v}(t+1), \tag{A.3}$$

$$\bar{y}_{e2}(t) = \Phi^T(t)\tilde{\theta}_I(t) + \Phi^T(t)F(t)\Phi(t)v(t+1), \quad (A.4)$$

In order to use Lemma 2 of [10], one has to consider the following change of notation from (A.3) and $(A.4)^4$:

$$A(t) = I, B(t) = \xi(t)F_I(t)\Phi(t), C(t) = \Phi^T(t), \text{ and}$$
 (A.5)

$$D(t) = \Phi^T(t)F(t)\Phi(t).$$
(A.6)

Then, eqs. (2.16)-(2.18) of Lemma 2 of [10] are satisfied for:

$$P(t) = F_I^{-1}(t), \ Q(t) = [1 - \lambda_1(t)]F_I^{-1}(t), \tag{A.7}$$

$$S(t) = [1 - \lambda_1(t)]\Phi(t), \tag{A.8}$$

$$R(t) = [2 - \lambda_1(t)] f_{F_I}(t) + \frac{\lambda_2^2(t)}{\lambda_1(t)} f_{F_I}(t) f_{F_P}^2(t) + \lambda_2(t) f_{F_P}^2(t)$$

$$\lambda_2(t) \qquad (\lambda_2(t) - \lambda_2(t)) f_{F_P}^2(t) + \lambda_2(t) + \lambda_2(t) f_{F_P}^2(t) +$$

$$+2\frac{\lambda_2(r)}{\lambda_1(t)}f_{F_I}(t)f_{F_P}(t)+2f_{F_P}(t),$$
(A.9)

$$f_{F_I}(t) \stackrel{\text{def}}{=} \Phi^T(t) F_I(t) \Phi(t), \ f_{F_P}(t) \stackrel{\text{def}}{=} \Phi^T(t) F_P(t) \Phi(t).$$
(A.10)

Finally, condition (2.21) of Theorem 1 of [10] is satisfied by the choice $\gamma(t) = \lambda_2(t)$ and the fact that the feedforward path is of the class $L(\lambda_2)$, where $\lambda_2 \ge \lambda_2(t)$ from eq. (19).

Thus the conditions of Theorem 1 from [10] are satisfied and the time-varying feedback system is asymptotically stable which implies eq. (15). \Box

Appendix B. Proof of Lemma 3.1

Proof. To analyse the strict positive realness of this transfer function, one has to check first that it's real part is strictly positive. We then have:

$$Re\left\{\frac{H(z^{-1})}{1+K\cdot H(z^{-1})}\right\} = \frac{K\cdot Re\{H\}^2 + Re\{H\} + K\cdot Im\{H\}^2}{(1+K\cdot Re\{H\})^2 + (K\cdot Im\{H\})^2}.$$
(B.1)

In eq. (B.1), the denominator is always strictly positive. Thus, the strict positive realness is satisfied if K is chosen such that the numerator of eq. (B.1) is also strictly positive. This is always true if K satisfies the relation

$$K > -\frac{Re\{H(e^{-j\omega})\}}{Re\{H(e^{-j\omega})\}^2 + Im\{H(e^{-j\omega})\}^2}, \ 0 \le \omega \le \pi \cdot f_S,$$

 f_S being the sampling frequency.

Next, the stability of H/(1+KH) is analyzed. Under hypothesis H2, the poles of H/(1+KH) are given by the roots of the polynomial

$$P(q^{-1}) = 1 + \frac{\sum_{p=1}^{n_A} a_p q^{-p} + K \sum_{m=1}^{n_B} b_m q^{-m}}{1 + K b_0}$$
(B.2)

and assuming K large enough such that $Kb_m \gg a_p$, $\forall m \in \{1, ..., n_B\}, p \in \{1, ..., n_A\}, P(q^{-1}) \cong$

$$\cong \begin{cases} 1 + \sum_{m=1}^{n_B} \frac{b_m}{b_0} q^{-m} & \text{if } n_B \ge n_A, \\ 1 + \sum_{m=1}^{n_B} \frac{b_m}{b_0} q^{-m} + \sum_{p=n_B+1}^{n_A} \frac{a_p}{1 + Kb_0} q^{-p} & \text{if } n_B < n_A. \end{cases}$$

Thus for $n_B \ge n_A$, the poles and the zeros of H/(1 + KH) become identical when $K \to \infty$. For $n_B < n_A$, in addition to the poles identical to the zeros of $B(q^{-1})$, $n_A - n_B$ poles appear that go to zero as $K \to \infty$. The hypothesis H1 has been introduced to assure the stability of the direct path when H2 is satisfied. Hypothesis H2 is necessary since if $b_0 = 0$, H/(1 + KH) becomes unstable for large K.

 $^{{}^{4}}$ In [10], $k \equiv t$.

References

- Jacobson, C., Johnson, C., Cormick, D.M., Sethares, W.. Stability of active noise control algorithms. IEEE Signal Processing letters 2001;8(3):74–76.
- [2] Wang, A., Ren, W.. Convergence analysis of the filtered-u algorithm for active noise control. Signal Processing 1999;73:255–266.
- [3] Landau, I., Alma, M., Airimiţoaie, T.. Adaptive feedforward compensation algorithms for active vibration control with mechanical coupling. Automatica 2011;47(10):2185 – 2196. doi: 10.1016/j.automatica.2011.08.015.
- [4] Landau, I., Airimiţoaie, T., Alma, M.. An iir youla-kucera parametrized adaptive feedforward compensator for active vibration control with mechanical coupling. In: Proceedings of the 50th IEEE Conference on Decision and Control, Atlanta, USA. 2011, p. 6777–6782.
- [5] Montazeri, A., Poshtan, J.. A computationally efficient adaptive iir solution to active noise and vibration control systems. IEEE Trans on Automatic Control 2010;AC-55:2671 – 2676.
- [6] Anderson, B., Bitmead, R., Johnson, C., Kokotovic, P., Kosut, R., Mareels, I., et al. Stability of adaptive systems. Cambridge Massachusetts, London, England: The M.I.T Press; 1986.
- [7] Tomizuka, M.. Parallel mras without compensation block. Automatic Control, IEEE Transactions on 1982;27(2):505 506. doi: 10.1109/TAC.1982.1102907.
- [8] Landau, I.D., Lozano, R., M'Saad, M., Karimi, A. Adaptive control. London: Springer; 2nd ed.; 2011.
- [9] Landau, I.D.. Adaptive control, The model reference approach. New York and Basel: Marcel Dekker, Inc.; 1st ed.; 1979.
- [10] Landau, I., Silveira, H.: A stability theorem with applications to adaptive control. Automatic Control, IEEE Transactions on 1979;24(2):305 – 312. doi:10.1109/TAC.1979.1102009.
- [11] Landau, I.. An extension of a stability theorem applicable to adaptive control. Automatic Control, IEEE Transactions on 1980;25(4):814 – 817. doi:10.1109/TAC.1980.1102440.