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Abstract

Analysis of various adaptive feedforward vibration compensation schemes has shown that a strictly positive real (SPR) condition
has to be satisfied in order to guarantee the stability of the whole system [1-4]. Filters have to be implemented in order to satisfy this
condition. The problem becomes even more crucial in the presence of the internal mechanical coupling between the compensator
system and the reference source (a correlated measurement with the disturbance) since some information is not available when
adaptation starts (see [3]). It is therefore very important to relax the SPR condition at least in the initial phase and in the same time
to improve the adaptation transients. It is shown, in this paper, that adding a proportional adaptation to the standard integral type
parametric adaptation, the SPR condition can be relaxed and the adaptation transients are improved. Theoretical developments are
enhanced by real time experimental results obtained on an active vibration control (AVC) system.
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1. Introduction

An important issue in adaptive feedforward compensation
is the design of filters either on the observed variables of the
feedforward compensator ([3]) or on the residual acceleration
([5]) in order to satisfy positive realness conditions on some
transfer functions required by the stability analysis. The prob-
lem becomes even more crucial in the presence of the inter-
nal mechanical coupling between the compensator system and
the reference source (a correlated measurement with the distur-
bance) since some information is not available when adaptation
starts (see [3]). In [3], based on work done in [6], it was shown
that for small adaptation gains (slow adaptation) violation of
the SPR condition in some frequency regions is acceptable pro-
vided that in the average the input-output product associated
with this transfer function is positive. However, the perfor-
mances are degraded with respect to the case when the SPR
condition is satisfied. It is in fact a signal dependent condition.

The problem of removing or relaxing the positive real con-
dition can be also approached by adding a proportional adap-
tation to the widely used integral adaptation. While this ap-
proach is known in adaptive control ([7, 8]) apparently it has
not been used in the context of adaptive feedforward compen-
sation. Furthermore, it was observed in adaptive control, that
adding positive proportional adaptation will speed up the adap-
tion transients ([8, 9]).

“Integral + Proportional” (IP) adaptation has been discussed
from a stability point of view in [8, 9] for the case of constant
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integral adaptation gain. A stable IP adaptation with time vary-
ing integral adaptation gain has been introduced in [10]. The
objective of this paper is to explore the advantages of adding
proportional adaptation in the context of the adaptive feedfor-
ward compensation of vibrations both from the theoretical and
applications points of view.

The main contributions of the present paper are: (i) devel-
opment and stability analysis of IP adaptation algorithms for
adaptive feedforward compensation in the presence (or not) of
an internal positive feedback, (ii) relaxation of the SPR condi-
tion in the context of adaptive feedforward compensation using
IP adaptation, and (iii) application of the IP adaptation algo-
rithms to an AVC system featuring internal positive mechanical
coupling and comparison with existing algorithms.

2. Development and Analysis of the Algorithms
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Figure 1: Feedforward AVC with adaptive feedforward compensator.

The block diagram of the adaptive feedforward compen-
sator in the presence of an internal positive feedback associated
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with an AVC system is shown in Fig. (1). D = %, G= %’
and M = f—% represent the transfer operators associated with

the primary, secondary, and reverse (positive coupling) paths.
The optimal feedforward filter (unknown) is defined by

~1y _ R(@YH _ rotetrapg "R . .
Ng = ST = Timg Trootongg ™S The estimated filter will

be denoted by N(t,q') during estimation (adaptation) of its
parameters and by N(¢~!) when it is a linear filter with constant
coefficients.

The parameters of the optimal filter and of the estimated
filter are respectively given by the vectors

BT:[sl,...snS, ro,...rnR]:[OST, 6,{], )

07 (1) =[81(1),.-Sug (1), Fo(0),... P (1)] = [65 (1), bg (1),

while the observations vector is given by

T (1) =[-9(t),... =9t —ns+1), 4t +1),...4(t —ng +1)]
=9y (1), 9i (1)), 3)

where #4(¢) and §(¢) are the input and output of the estimated
feedforward filter. £(¢) is a measurable signal satisfying (see

Fig. (1))
ﬁ(t+1):d(t+1)+%

and §(¢) denotes the a posteriori output

(1) “

PE+1) =P+ 118(t+1)) =0T (t+1)(r). 5)

Similarly to (5), the a priori output is obtained by taking the
parameters’ estimates from the previous time step: $°(¢ + 1) =
I+ 116(2)).

The measurable residual error satisfies

20+ =x+1100) =L@+ 1) +x(t+1),  (6)

where 2%(¢) is the output of the secondary path and x(t) is the
output of the primary path. 2°(¢) and x(t) can not be mea-
sured when the feedforward compensator is active. The pre-
vious equation can be used to immediately obtain the a priori
adaptation error as

VOe+1) =20+ 1) = —x(e+ 1) =20 +1). (D

Using Lemma 4.1 and eqs. (26) through (30) from [3], it
results that the a posteriori adaptation error, v(r+ 1) = v(r +
1|6(¢ + 1)), which is computed, satisfies:

Aulg )G(g™")

—6 T,
Pl il 0TIl ®

vit+1)=

where
97(t) =L(g )9 (1) ©)

Eq. (8) has the standard form for an a posteriori adaptation
error ([8]). The following “Integral + Proportional” parameter

adaptation algorithm (IP-PAA) is proposed:

Ot +1)=0;(t) +EOF(1)D(1)v(t + 1), (10a)
Op(t+1) = Fp(t)@(t)v(t + 1), (10b)
- VOt +1) .
VS e OEORO R0 %
_ b _ R(@O)®(0)@" (1)F(1)
A D=3 |0 A0 LT ()F (@) | (109
Fp(t) = a(t)F(t); a(t) > —0.5, (10e)
F(t) = E(t)Fi(t) + Fp(t), (10f)
£0) = 1+ 201 (FH()20). (10g)
6(r+1)=61(t+1)+6p(t +1), (10h)
0<Ai(t) <1,0< A(r) <2, F(0) >0, (101)
D(1) = ¢5(1), (10j)

where V(¢ + 1) is the filtered adaptation error, A;(¢) and A, (¢)
allow to obtain various profiles for the matrix adaptation gain
Fi (1) (see [8] for more details). By taking A, (¢) = 0 one obtains
a constant adaptation gain matrix (and choosing F; =yI, ¥ >0
one gets a scalar adaptation gain). For a(¢) = 0, one obtains the
algorithm with integral adaptation gain introduced in [3]".

Three choices for the filter L will be considered, leading to
three different algorithms:

Algorithm / L=G
Algorithm 17 L=G
Ay A
Algorithm 111 L= fff G an
where
P=AyS—ByR (12)

is an estimation of the characteristic polynomial of the internal
feedback loop computed on the basis of available estimates for
the parameters of the filter N. To use Algorithm III one has to
start with Algorithm /7 where the SPR condition is in general
not satisfied. Therefore, relaxing the SPR condition for Algo-
rithm /1 is very important.

2.1. Analysis of the Algorithms

For Algorithms 7, 11, and I11, using (8) and (9), the equation
for the a posteriori adaptation error has the form

v(t+1)=H(g "H)[e—-0(+1)"d@), (13)
where

Av(g")G(g™)

Pl i) =¥ =La e a4

H(g ") =

'The present algorithm is a generalization of the algorithms given in
columns 1 and 2 of Table 1 of [3].



Thus for Algorithm /I one has H(g™!) = AMP and for Algo-

rithm 17 one obtains H(g™ ') = ;‘,XGg Note that in this last

case the SPR condition is always satlsﬁed provided that one
has good estimations of Ays, G, and P (for more details see [3]).

Neglecting the non-commutativity of time varying opera-
tors, one has the following result:

Lemma 2.1. Assuming that eq. (13) represents the evolution of
the a posteriori adaptation error and that the IP-PAA (10) is
used, one has:

lim v(t+1) =0, (15)

: VOe+1)?
T STF()B0) (10
||@(t)|] is bounded, (17)
lim v0(r 41) =0, (18)

for any initial conditions 6(0),v°(0),F(0), provided that

A

H(gY)=H(qg ") - 72 max (1) < 2 < 2. (19)

is a SPR transfer function.

The proof2 of (15) is given in Appendix A. For (16), (17),
and (18), the proof follows [3, 11] and it is omitted. The proof
of [10] for IP adaptation With time varying integral adaptation

gain is given for &(zr) = () + E;qDT( VEp(t)®(r). To the
knowledge of the authors, the proof for £(¢) given in eq. (10g)

is presented here for the first time.

3. Relaxing the Positive Real Condition

An equivalent feedback system can be associated to the IP-
PA A where the feedforward path is characterized by the transfer
function H'(z~!). There is additional “excess” of passivity in
the feedback path (that depends upon the adaptation gains and
the magnitude of ®(z)) which can be transferred to the linear
feedforward block in order to relax the SPR condition. This
idea was prompted out in the context of recursive identification
by Tomizuka and results have been given for the case of integral
adaptation and for the case when the equivalent linear feedfor-
ward path is characterized by an all poles (no zeros) transfer
function (see [7]). These results have been extended in [8] for
IP adaptation with constant adaptation gain. Taking into ac-
count the poles-zeros structure of H (q’l), the results of [7, 8]
should be extended for the situation described in this paper. One
has the following result:

Lemma 3.1. Given the discrete transfer function

B(z ")
A(z )

under the hypotheses:

. b() +b1Z_1 +... +anZ_nB

H(z Y=
(Z ) 1+a1zfl_'_.__+anAzan

» 20

vO(t+ 1) is computed using 0(r) = 6;(r).

HI) H(z™") has all its zeros inside the unit circle,

H2) by #0,
there exists a positive scalar gain K such that H% is SPR.

The proof of this lemma is presented in Appendix B.

Using the above property, for the IP-PAA given by the eqs.
(10) and eq. (13) for A,(¢) =0, A;(¢t) = 1 (constant adapta-
tion gain), and choosing K such that H% is SPR, one gets the
equivalent feedback system:

—1
v(it+1) =~ HH;{(Z,()I)MU), Q21
O:(1+1) = 6,(1) + E () FP(1) v (1 + 1), (22)

6i(1) = 6,(1)— o, (23)
yer (t) = DT (1) 6y (1) + (®T (1)F (1)@ (2) + K)v(t +1). (24)

Fig. 2 shows the equivalent feedback system associated with
the I+P adaptation algorithm of eqgs. (10) and eq. (13). The in-
troduction of the scalar gain K does not change the character-
istics of the feedback loop but it allows to show how passivity
can be passed from the feedback path to the feedforward path.

To prove the stability it remains to show that the new feed-
back path given by (24) is weakly passive, i.e., it satisfies the
Popov inequality

(25)

Y vealt)uealt) = —1.
t=0

The following theorem provides the necessary result.

e (£) Yer(t) = v(t +1)

Figure 2: Equivalent feedback representation of the PAA with “Integral + Pro-
portional” adaptation and scalar gain K.

Theorem 3.1. The adaptive system described by eq. (8) and
egs. (10) for Ax(t) =0 and A1 (t) = 1 is asymptotically stable
provided that:

T1) It exists a gain K such that 7 15 SPR,

1+K

T2) The adaptation gains Fy and Fp(t) and the observation vec-
tor ®(t) satisfy

i [cpT(r— 1) (;F]-i-FP(t — 1)) Ot —1) —K} vi(1)>0
t=0
(26)



forallty > 0or
@7 (1) (;F[ +Fp(z)> d(t) > K >0, (27)

forallt > 0.

The proof is similar to that of Theorem 3.3 (p. 109) in [8]
where Lemma 3.3 (p.110) is replaced by Lemma 3.1 of this
paper.

It is interesting to note that condition (26) implies that the
regressor vector has the property

ZlcpTzfl )@(t—1)] >€>0, (28)

which means that the trace of the covariance matrix of the re-
gressor vector is positive, i.e., that the energy of the signal is
greater than zero (a milder condition than “persistence of exci-
tation”). The magnitude of the proportional gain will depend
on how far the transfer function is from a SPR transfer func-
tion (level of K) and what is the energy of the regressor (which
depends upon the disturbance).

4. Experimental Results

The same AVC system as in [3] has been used to carry on
the experiments. Description of the system and the characteris-
tics of the various identified paths can be found in [3].

4.1. Broadband Disturbance Rejection Using Scalar Adapta-
tion Gain

The adaptive feedforward filter structure for all of the ex-
periments has been ng = 3, ng = 4 (total of 8 parameters). This
complexity does not allow to verify the “perfect matching con-
dition” (not enough parameters). A PRBS excitation on the
global primary path will be considered as the disturbance.

For the adaptive operation the Algorithm /I has been used
with scalar adaptation gain (A;(¢) = 1, A,(¢) = 0)>. The exper-
iments have been carried out by first applying the disturbance
in open loop during 50s and after that closing the loop with the
adaptive feedforward algorithms.

Plaongoutput using broadband disturban%eGadaptive compensation after 50 secc
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Figure 3: Real time results obtained with Algorithm II using “Integral” scalar
adaptation gain (left) and “Integral + Proportional” scalar adaptation gain
(right).

3Note that Algorithm I7 uses the same filtering as the FuLMS algorithm.
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Figure 4: Phase of estimated H(z~!) for Algorithm II.
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Figure 5: Real time results obtained with Algorithm II using “Integral” scalar
adaptation gain (left) and “Integral + Proportional” scalar adaptation gain
(right) over 1500s.

Time domain results obtained on the AVC system are shown
in Fig. 3. The advantage of using an IP-PAA is an overall im-
provement of the transient behaVior despite that the SPR condi—
tion on H(g ') = 445
satisfied around 83 Hz and around 116 Hz as shown in Fig. 4).
The improvement of performance can be explained by the re-
laxation of the SPR condition when using I+P adaptation. A
variable ¢((z) in the IP-PAA has been chosen, starting with an
initial value of 200 and linearly decreasing to 100 (over a hori-
zon of 25s).

Fig. 5 shows the comparison between “Integral” and “Inte-
gral 4 Proportional” adaptation over an horizon of 1500s (Fig. 3
is a zoom of Fig. 5 covering only the first 30s after the introduc-
tion of the adaptive feedforward compensator). It is clear that
IP adaptation gives better results even on a long run.

5. Conclusions

The paper has shown that the “Integral + Proportional” adap-
tation algorithms presented are useful in the context of adaptive
feedforward vibration compensation. Theoretical development
shows that the SPR condition can be relaxed and an improve-
ment of the adaptation transients is obtained.

Appendix A. Proof of Result (15) - Lemma 2.1

Proof. This result can be directly obtained by applying Theo-
rem 1 of [10]. Consider the equivalent feedback system associ-
ated with the I+P adaptation algorithm of eqs. (10) and eq. (13)
shown in Fig. A.6. The same feedback system is represented in
an alternate form in Fig. A.7, where the scalar gains @ and %
are introduced to better understand the two classes of systems,

L(A,) and N(7), that will be used next (see also [10]). The class



Figure A.6: Equivalent feedback representation of the PAA with "Integral +
Proportional” adaptation.

Figure A.7: Equivalent feedback representation of the PAA with “Integral +
Proportional” adaptation and the representation of the L(A,) and N(7) classes.

L(A,) represents those LTI systems that in a parallel connec-
tion with a gain —% are strictly positive real (note that, from
eq. (19), max; A2(t) < A2). On the other hand, the class N(y) de-
notes linear time-varying systems that in feedback connection
with a block @ are passive (in this article y(t) = A2(¢)). Then
considering the composite feedback block in Fig. A.7, it results
that it is passive provided that Ay > A,(¢). Therefore, stability
of the loop is assured since the linear equivalent feedforward
path is SPR (see eq. (19)).

It remains to show that the feedback block indeed belongs
to the class N(y), for y(¢) = A2(t). One can verify this using
Lemma 2 of [10] for the equivalent feedback path given by:

>

6:(1) = 6,(1)— 9, (A1)
v(t+1)=—H(g @' (1)0(t+1) (A2)
Or(1+1) = 61(t) + E () Fy (1) (1) v (1 + 1), (A.3)
e (t) = T (1)0y (1) + DT (F ()@(1)v(t +1),  (A4)

In order to use Lemma 2 of [10], one has to consider the
following change of notation from (A.3) and (A4)*:

A(t) =1, B(t) =&(t)F(1)P(t), C(t) =
D(1) = & (1)F(1)®(1).

(A.5)
(A.6)

@7 (), and

4In [10], k=1

Then, eqs. (2.16)-(2.18) of Lemma 2 of [10] are satisfied for:

P(t)=F (1), Q(t) = [1 = ()]F; ' (1), (A7)
S(t) =[1— 24, (1)]D(2), (A.8)
2
RO =2 24011 1)+ 520 (O 73,0)+ Ba) 7 0
+2t8 £ () frn (8) 215 (1), (A9)
I, (t) 2T () F (1) (1), frp(r) = DT (1)Fp(1)®(1).  (A.10)

Finally, condition (2.21) of Theorem 1 of [10] is satisfied by the
choice y(¢) = A»(¢) and the fact that the feedforward path is of
the class L(A2), where A, > A, (¢) from eq. (19).

Thus the conditions of Theorem 1 from [10] are satisfied
and the time-varying feedback system is asymptotically stable
which implies eq. (15). O

Appendix B. Proof of Lemma 3.1

Proof. To analyse the strict positive realness of this transfer
function, one has to check first that it’s real part is strictly posi-
tive. We then have:

H(z")
I+K-H(z )

_ K-Re{H}*+Re{H}+K-Im{H}*
(1+K-Re{H})>+ (K -Im{H})?
(B.1)

Re{ }=

In eq. (B.1), the denominator is always strictly positive.
Thus, the strict positive realness is satisfied if K is chosen such
that the numerator of eq. (B.1) is also strictly positive. This is
always true if K satisfies the relation

Re{H(e”/®)}

K RefH{e o) P+ Im{H{e To)

0<w < - fs,

fs being the sampling frequency.

Next, the stability of H/(1 + KH) is analyzed. Under hy-
pothesis H2, the poles of H/(1+ KH) are given by the roots of
the polynomial

Z’;’A 19p4 p+KZm 1 mqim
14+ Kbg

Plg ) =1+ (B.2)

and assuming K large enough such that Kb, > a,
Vi € {1, np}.p € {L.c, ma}, Plg~1) =

1+Zm 1% —m
1+2

ian > na,

P ifng <ny.

—m
m=1 bO +Zp np+1 1+Kb0‘1

Thus for ng > ny, the poles and the zeros of H/(1+ KH) be-
come identical when K — oo. For ng < ny4, in addition to the
poles identical to the zeros of B(q~!), na — np poles appear that
go to zero as K — oo. The hypothesis H1 has been introduced to
assure the stability of the direct path when H2 is satisfied. Hy-
pothesis H2 is necessary since if by = 0, H/(1 + KH) becomes
unstable for large K.
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