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Indirect adaptive regulation strategy for the attenuation of time
varying narrow-band disturbances applied to a benchmark problem

Tudor-Bogdan Airimiţoaie1,2, Abraham Castellanos Silva1, and Ioan Doré Landau1

Abstract—The paper presents an indirect adaptive regulation
algorithm for the attenuation of unknown narrow-band distur-
bances. The main features of this new scheme are: (i) the use of
adaptive Band-stop Filters (BSFs) tuned at the frequencies of the
disturbance and (ii) a procedure for direct identification of fre-
quencies contained in the disturbance. The use of adaptive BSFs
allows to introduce the desired attenuation of the disturbance
(instead of total rejection) and simplifies the shaping of the output
sensitivity function (to meet the specification for the tolerated
amplification outside the frequencies of the disturbance). The
proposed approach is evaluated on the benchmark simulator and
on the benchmark active vibration control system.

Index Terms—Indirect adaptive regulation, active vibration
control, inertial actuators, multiple narrow-band disturbances

I. INTRODUCTION

THE present benchmark concerns attenuation of unknown
and time varying narrow-band disturbances without an

explicit measurement of the disturbance [13]. Only the residual
force measurement is provided. Therefore a feedback approach
has to be considered for disturbance attenuation. In general,
one considers the disturbances as being a white noise or
a Dirac impulse passed through a filter which characterises
the model of the disturbance. For the purpose of this paper,
the disturbances are considered to be unknown and/or time
varying multiple narrow-band disturbances, in other words
their model has time varying coefficients. Adaptive feedback
control methods can then be used either in a direct scheme that
updates the parameters of a controller at each sampling time
or when the disturbance changes or in an indirect scheme that
treats the problems of disturbance estimation and controller
updating separately.

Various design procedures have been described in the
scientific literature: (i) the internal model principle (IMP)
([11], [2], [14]), (ii) the disturbance observer ([19], [9]), and
(iii) the use of the phase-locked loop structure ([7], [6]). A
popular methodology for this adaptive regulation problem is
the design of a controller that incorporates the model of the
disturbance (internal model principle). Using the Youla-Kučera
parametrization of the controller a direct adaptation technique
can be implemented. Using the IMP principle, the complete
rejection of the disturbances is attempted (asymptotically). In
the case of several narrow-band disturbances, the ”water bed”
effect on the output sensitivity function (amplification intro-
duced at the other frequencies than those of the disturbances)
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using IMP may become unacceptable in terms of performance
as well as in terms of robustness (unacceptable profile of the
output sensitivity function).

In practice however, and in particular for the present bench-
mark, we do not need a complete rejection of the narrow-
band disturbances but just a level of attenuation (IMP does
too much!). Introducing only a level of attenuation combined
with an appropriate controller design will reduce the ”water
bed” effect on the output sensitivity function improving both
robustness and performance (by reducing the unwanted am-
plification of the noise). This will become particularly useful
in the case of multiple narrow-band disturbances.

In this paper, an indirect adaptive regulation method is
presented that is capable of introducing a desired level of
attenuation on the disturbances. The most important advantage
of this scheme is that the loss of robustness due to the ”water
bed” effect on the Bode integral of the output sensitivity
function can be easily controlled by the design parameters
of the new controller. The proposed procedure is based on
the shaping of the output sensitivity function using band
stop-filters (BSFs) centred at the frequencies corresponding
to spikes in the spectrum of the disturbance. One interesting
fact that should be mentioned is that the zeros of these
BSFs are implemented in the controller while their poles
are introduced as desired poles of the closed loop (see also
[24], [16]). Reduction of the complexity of the computations
has been achieved by considering the Youla-Kučera (YK)
parametrization of the controller ([31], [10], [29]). This is very
important in the perspective of using this controller design
procedure in an adaptive scheme. It is important to underline
that previous approaches for indirect adaptive regulation were
still based on the use of the IMP and the identification of a
model of the disturbance was enough for implementing the
procedure ([14]).

In order to use adaptive BSFs for disturbance attenuation,
it is necessary to estimate the frequencies of the narrow-
band signals in the disturbance. Therefore a procedure for
the direct estimation of the frequencies of the disturbance
has been implemented. Several methods have been proposed
by the signal processing community for solving the problem
of frequencies estimation from a narrow-band signal ([30]).
In a continuous time framework and for a small number of
disturbances recent solutions have been described in [20],
[4], [5], [25]. For estimation using discrete time signals and
a theoretically unlimited number of narrow-band spikes, the
adaptive notch filter (ANF) approach has been proposed in
[22], [21] and analysed in a statistical framework in [28].
Revised and improved versions have also been proposed in a
number of articles [26], [27], [8], [18], [12], [23]. In this paper,
the estimation approach presented in [28], [21] will be used.



Combining the frequency estimation procedure and the control
design procedure, an indirect adaptive regulation system for
attenuation of multiple unknown and/or time varying narrow-
band disturbances is obtained, which will be denoted IBSF in
the remainder of this paper.

The paper is organised as follows. Section II presents the
general plant and controller structure in the context of the YK
parametrization. To better understand the proposed approach,
the linear controller design is presented in Section III con-
sidering, temporarily, constant and known frequencies of the
narrow-band disturbances. Then in Section IV the frequency
estimation technique based on ANF is recalled which can be
combined with the linear controller design technique from the
previous section to complete the indirect adaptive controller
scheme. Section V discusses briefly the design of the central
controller and simulation results are shown in Section VI.
Experimental results are given in Section VII where also a
comparison with simulation results is performed. Concluding
remarks are presented in Section VIII.

II. PLANT REPRESENTATION AND CONTROLLER
STRUCTURE

The structure of the LTI discrete time model of the plant,
also called secondary path, used for controller design is

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−d−1B∗(z−1)

A(z−1)
, (1)

where

A(z−1) = 1+a1z−1 + · · ·+anAz−nA , (2)

B(z−1) = b1z−1 + · · ·+bnB z−nB = z−1B∗(z−1), (3)

B∗(z−1) = b1 + · · ·+bnB z−nB+1, (4)

and d is the plant pure time delay in number of sampling
periods1. In the context of this paper the hypothesis of constant
dynamic characteristics of the AVC system is made and it is
also supposed that the corresponding control model (secondary
path) is accurately identified from input/output data.

Fig. 1. Indirect adaptive regulation scheme using Youla-Kučera parametrized
controller with adaptive Q̂ filter.

1The complex variable z−1 will be used to characterise the system’s
behaviour in the frequency domain and the delay operator q−1 will be used
for the time domain analysis.

The output of the plant y(t) and the input u(t) may be
written as (see Fig. 1):

y(t) =
q−dB(q−1)

A(q−1)
·u(t)+ p(t), (5)

S(q−1) ·u(t) =−R(q−1) · y(t), (6)

with p(t) = Np
Dp

δ (t) + v(t), where δ (t) is the Dirac impulse
passed through a model of the primary path, whose denom-
inator, Dp, has all its zeroes on the unit circle, and v(t) is a
zero mean white noise.

In this paper, the Youla-Kučera parametrization ([3], [31]) is
used. Supposing a generalized infinite impulse response (IIR)
representation of the adaptive Q filter

Q(z−1) =
BQ(z−1)

AQ(z−1)
, (7)

the controller’s polynomials are2:

R = R0AQ +ABQHS0HR0 , (8)

S = S0AQ− z−dBBQHS0HR0 . (9)

where R0 and S0 define the central controller and have the
expressions:

S0 = 1+ s0
1z−1 + . . .+ s0

nS
z−nS = S′0 ·HS0 , (10)

R0 = r0
0 + r0

1z−1 + . . .+ r0
nR

z−nR = R′0 ·HR0 . (11)

Let define also the characteristic polynomial of the nominal
system,

P0(z−1) = A(z−1)S0(z−1)+ z−dB(z−1)R0(z−1), (12)

which specifies the desired closed loop poles of the feedback
loop composed only by the process and the central controller
(see also [16]). The characteristic polynomial of the closed
loop with Youla-Kučera parametrized controller becomes

P(z−1) = AQ(z−1)P0(z−1). (13)

In (10) and (11), HS0(z
−1) and HR0(z

−1) represent pre-
specified parts of the controller (used for example to incorpo-
rate the internal model of a disturbance or to open the loop at
certain frequencies) and S′0(z

−1) and R′0(z
−1) are computed.

The central controller is designed in order to fulfil desired
specifications in the absence of the disturbance.

We define the output sensitivity function (the transfer func-
tion between the disturbance p(t) and the output of the system
y(t)) as

Syp(z−1) =
A(z−1)S(z−1)

P(z−1)
(14)

and the input sensitivity function (the transfer function be-
tween the disturbance p(t) and the control input u(t)) as

Sup(z−1) =−A(z−1)R(z−1)

P(z−1)
. (15)

It is important to remark that one should only reject distur-
bances located in frequency regions where the plant model

2The argument (z−1) will be omitted in some of the following equations
to make them more compact.



has enough gain. This can be seen by looking at eq. (14) and
noticing that perfect rejection at a certain frequency, ω0, is
obtained iff S(e− jω0) = 0. On the other hand, from eq. (15)
one can see that this has a bad effect on the control input if
the gain of the secondary path is too small at ω0, since at
this frequency the modulus of the input sensitivity function
becomes

∣∣Sup(e− jω0)
∣∣ = ∣∣∣A(e− jω0 )

B(e− jω0 )

∣∣∣. This implies that the ro-
bustness vs additive plant model uncertainties is reduced and
the stress on the actuator will become important. Furthermore,
it can be observed that serious problems will occur if B(z−1)
has complex zeros close to the unit circle at frequencies
where an important attenuation of disturbances is introduced.
It is mandatory to avoid attenuation of disturbances at these
frequencies ([14]).

In addition to what has already been specified, it is also
important to have a low magnitude of the input sensitivity
function outside the region of attenuation in order to avoid
amplification of noise and to have a good robustness with
respect to model uncertainties.

III. INDIRECT ADAPTIVE REGULATION BASED ON BSFS
FOR DISTURBANCE ATTENUATION

In this section, a technique of output sensitivity function
shaping for narrow-band disturbance attenuation is presented.
The controllers parameters computation procedure will be
presented considering constant and known frequencies of the
narrow-band disturbances ωi, ∀ i ∈ {1, . . . ,n} and n (number
of spikes in the disturbance’s spectral characteristic) is also
known (a technique for estimating the frequencies is presented
in Section IV).

The design uses BSFs to shape the output sensitivity func-
tion. Following [16], [24], there exist digital filters

HSi
PFi

, which
will assure the desired attenuation of a narrow-band distur-
bance. The numerators of these filters are directly included in
the controller. The denominators specify a factor in the desired
closed loop characteristic polynomial. The transfer function of
the BSFs is

SBSFi(z
−1)

PBSFi(z−1)
=

1+β i
1z−1 +β i

2z−2

1+α i
1z−1 +α i

2z−2 , (16)

resulting from the discretization of a continuous filter (see also
[24], [16])

Fi(s) =
s2 +2ζniωis+ω2

i

s2 +2ζdiωis+ω2
i

(17)

using the bilinear transformation. This filter introduces an
attenuation of

Mi =−20 · log10

(
ζni

ζdi

)
(18)

at the frequency ωi. Positive values of Mi denote attenuations
(ζni < ζdi ) and negative values denote amplifications (ζni >
ζdi )

3. For n narrow-band disturbances, n BSFs will be used

HBSF(z−1) =
SBSF(z−1)

PBSF(z−1)
=

∏
n
i=1 SBSFi(z

−1)

∏
n
i=1 PBSFi(z−1)

. (19)

3For frequencies below 0.17 fs ( fs is the sampling frequency) the design
can be done with a very good precision directly in discrete time ([16]).

Remark: The design parameters for each BSF are the desired
attenuation (Mi), the central frequency of the filter (ω̂i) and the
damping of the denominator (ζdi ). The denominator damping
is used to adjust the frequency bandwidth of the BSF. For
very small values of the frequency bandwidth the influence
of the filters on frequencies other than those defined by ω̂i is
negligible. Therefore, the number of BSFs and subsequently
that of the narrow-band disturbances that can be compensated
can be as large as necessary4.

Next, the computation of the controller’s S(z−1) and R(z−1)
polynomials (eqs. (8) and (9)) is described taking into account
that at the end the BSFs have to become part of the output
sensitivity function. Without considering the Youla-Kučera
parametrization, the controller is computed as solution of a
Bezout equation P(z−1) = A(z−1)S(z−1) + z−dB(z−1)R(z−1),
where

R(z−1) = HR(z−1)R′(z−1), S(z−1) = HS(z−1)S′(z−1), (20)

and P(z−1) is given by

P(z−1) = P0(z−1)PBSF(z−1). (21)

In the last equation, PBSF is the combined denominator of
all the BSFs, (19), and P0 can define any other poles, e.g.,
from an initial robust control design as in (12). The fixed part
of the controller denominator HS is in turn factorized into

HS(z−1) = SBSF(z−1)HS0(z
−1), (22)

where SBSF is the combined numerator of the BSFs, (19), and
HS0 is the fixed part of the denominator in the initial robust
controller (see (10)). The fixed part of R is equal to that used
for the initial robust controller, i.e. HR = HR0 . It is easy to see
that the output sensitivity function becomes

Syp(z−1) =
A(z−1)S(z−1)

P(z−1)
=

AS′HS0SBSF

P0PBSF
(23)

and the shaping effect of the BSFs upon the sensitivity
functions is obtained.

The unknowns S′ and R′ are solutions of

P(z−1) =P0(z−1)PBSF(z−1) = A(z−1)HS(z−1)S′(z−1)+

+ z−dB(z−1)HR0(z
−1)R′(z−1) (24)

and can be computed by putting (24) into matrix form (see
also [16]). The size of the matrix equation that needs to be
solved is given by

nBez = nA +nB +d +nHS0
+nHR0

+2 ·n−1, (25)

where nA, nB, and d are respectively the order of the plant’s
model denominator, numerator, and delay (given in (2) and
(3)), nHS0

and nHR0
are the orders of HS0(z

−1) and HR0(z
−1)

respectively and n is the number of narrow-band disturbances.
Eq. (24) has an unique minimal degree solution for S′ and R′,
if

nP ≤ nBez, (26)

4Of course, there is a compromise between the attenuation imposed and
the number of narrow-band disturbances.



where nP is the order of the pre-specified characteristic poly-
nomial P(q−1). Also, it can be seen from (24) and (22) that
the minimal orders of S′ and R′ will be:

nS′ = nB +d +nHR0
−1, nR′ = nA +nHS0

+2 ·n−1. (27)

Note that for real time applications, the diophantine equa-
tion (24) has to be solved either at each sampling time
(adaptive operation) or each time when a change in the narrow-
band disturbances’ frequencies occurs (self-tuning operation).

The computational complexity related to the Bezout equa-
tion (24) is significant. We show next how the computation
load of the algorithm can be reduced by the use of the Youla-
Kučera parametrization with IIR parameter (7). Using this, the
initial robust controller from (10) and (11) becomes the central
controller of the parametrization as in (8) and (9).

In (8) and (9), AQ(z−1) will be chosen as the cumulated
denominator of the BSFs, PBSF(z−1), while BQ(z−1) is com-
puted so that it allows to introduce the BSFs’ numerators into
the fixed part of S(z−1), as in (22). Taking into account (9),
this is equivalent to finding BQ(z−1) from the Bezout equation

S′0PBSF = SBSF S′+q−dBHR0BQ, (28)

where the common term HS0(z
−1) has been eliminated.

In the last equation, the left side of the equal sign is known
and on its right side only S′(z−1) and BQ(z−1) are unknown.
This is also a Bezout equation which can be solved by finding
the solution to a matrix equation of dimension

nBezY K = nB +d +nHR0
+2 ·n−1. (29)

As it can be observed, the size of the new Bezout equation
is reduced in comparison to (25) by nA + nHS0

. For systems
with large dimensions, this has a significant influence on the
computation time (in Sections VI and VII, nA = 22 and nHS0

=
0). Taking into account that the central controller is an unique
and minimal degree solution of the Bezout equation (12), we
find that the left hand side of (28) is a polynomial of degree

nS′0
+2 ·n = 2 ·n+nB +d +nHR0

−1 (30)

which is equal to the quantity given in (29). Therefore, the
solution of the simplified Bezout equation (28) is unique and
of minimal degree. Furthermore, the order of the BQ FIR filter
is equal to 2 · n− 1 (where n is the number of narrow-band
signals in the disturbance).

IV. FREQUENCY ESTIMATION USING ADAPTIVE NOTCH
FILTERS

In order to use the proposed control strategy in the presence
of unknown and/or time varying narrow-band disturbances,
one needs an estimation in real time of the spikes’ frequencies
in the spectrum of the disturbance. In the framework of
narrow-band disturbance rejection, it is usually supposed that
the disturbances are in fact sinusoidal signals with variable
frequencies. As specified in the introduction, it is assumed that
the number of narrow-band disturbances n is known (similar
to [15], [14], [9]). A technique based on ANFs will be used
to estimate the frequencies of the sinusoidal signals in the
disturbance (more details can be found in [22], [21]). Under

the hypothesis that the plant model parameters are constant
and that an accurate identification experiment can be run, a
reliable estimate p̂(t) of the disturbance signal can be obtained
by using the disturbance observer

p̂(t +1) = y(t +1)−q−d B∗(q−1)

A(q−1)
u(t). (31)

The signal p̂(t) can then be used to estimate the spike
frequencies (ω̂i) with adaptive notch filters (ANF) as will be
described in Section IV.

The general form of an ANF is

H f (z−1) =
A f (z−1)

A f (ρz−1)
, (32)

where the polynomial A f (z−1) is such that the zeros of the
transfer function H f (z−1) lie on the unit circle. A necessary
condition for a monic polynomial to satisfy this property is
that its coefficients have a mirror symmetric form

A f = 1+a f
1z−1 + . . .+a f

nz−n + . . .+a f
1z−2n+1 + z−2n. (33)

Another requirement is that the poles of the ANF should
be on the same radial lines as the zeros but slightly closer to
the origin of the unit circle. Using filter denominators of the
general form A f (ρz−1) with ρ a positive real number smaller
but close to 1, the poles have the desired property and are in
fact located on a circle of radius ρ ([22]).

The estimation algorithm will be detailed next. It is assumed
that the disturbance signal (or a good estimation) is available.
A cascade construction of second order ANF filters is con-
sidered. Their number is given by the number of narrow-band
signals whose frequencies have to be estimated. The main idea
behind this algorithm is to consider the signal p̂(t) as having
the form

p̂(t) =
n

∑
i=1

ci sin(ωi · t +βi)+ v(t), (34)

where v(t) is a noise affecting the measurement.
The ANF cascade form will be given by (this is an equiv-

alent representation of eqs. (32) and (33))

H f (z−1) =
n

∏
i=1

H i
f (z
−1) =

n

∏
i=1

1+a fiz−1 + z−2

1+ρa fiz−1 +ρ2z−2 . (35)

Next, the estimation of one spike’s frequency is considered,
assuming convergence of the other n− 1, which can thus
by filtered out of the estimated disturbance signal, p̂(t), by
applying

p̂ j(t) =
n

∏
i=1
i 6= j

1+a fiz−1 + z−2

1+ρa fiz−1 +ρ2z−2 p̂(t). (36)

The prediction error is obtained from

ε(t) = H f (z−1)p̂(t) (37)

and can be computed based on one of the p̂ j(t) to reduce
the computation complexity. Each cell can be adapted inde-
pendently after prefiltering the signal by the others. Following



the Recursive Prediction Error (RPE) technique, the gradient
is obtained as

Ψ
j(t) =−∂ε(t)

∂a f j
=

(1−ρ)(1−ρz−2)

1+ρa f j z−1 +ρ2z−2
p̂ j(t). (38)

The parametric adaptation algorithm can be summarised as

â f j(t) = â f j(t−1)+F(t−1) ·Ψ j(t) · ε(t) (39)

F(t) =
F(t−1)

λ +F(t−1)Ψ j(t)2 . (40)

where â f j are estimations of the true a f j , which are con-
nected to the narrow-band signals’ frequencies by ω f j =

fs · arccos(− a f j

2 ), where fs is the sampling frequency.
Combining the linear controller design presented in Section

III with the spike frequency estimations presented here, an
indirect adaptive regulation scheme is obtained. A stability
proof for this scheme has been given in [1].

V. CENTRAL CONTROLLER DESIGN
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Fig. 2. Output sensitivity functions comparison for a central controller and
a BSF controller designed to attenuate disturbances at 60, 75, and 90 Hz.
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Fig. 3. Input sensitivity functions comparison for a central controller and a
BSF controller designed to attenuate disturbances at 60, 75, and 90 Hz.

A key element of the IBSF is the central controller, which
is presented in eqs. (10) and (11). Its aim is to ensure
closed loop robustness with respect to model uncertainties
and noise outside the attenuation region. The design of the
central controller is described in this section. The main tool
used has been the sensitivity functions shaping. As there exist

uncertainties in the estimated parameters of the system, an
important aspect is that of minimising the effect of possibly
undesired dynamics and unmodelled noise ([17]). Therefore,
outside of the frequency region of interest for control (the
disturbances are located between 50 and 95 Hz) the input
sensitivity (15) function is reduced.

For the specific case that was the benchmark active vibration
control system, first all the poles of the secondary path are
conserved as poles of the closed loop (the system is stable).
In addition, two pairs of complex fixed auxiliary low damped
poles are introduced near to the limits of the frequency region
of interest, at 50 and at 95 Hz, in order to improve the system’s
robustness. The effect is the decrease of the magnitudes of the
sensitivity functions outside this region.

Finally, fixed parts are introduced in the central controller’s
numerator, R0(z−1), for opening the loop at 0 fs and 0.5 fs
(required by the benchmark specifications). No fixed parts
were considered for S0(z−1).

Given the characteristics of the BSFs, the design of the
central controller is simplified since the shape of the sensitivity
functions (i.e., the robustness of the closed loop system) is
only slightly modified when the BSFs for attenuation are in-
troduced. Therefore, a single central controller can be designed
for the three levels of the benchmark.

Fig. 2 shows a comparison of the output sensitivity functions
obtained with the central controller presented previously and
a controller that introduces in addition 3 BSFs to attenuate
narrow-band disturbances at 60, 75, and 90 Hz. For the BSFs,
an attenuation of 80 dB and a damping of the denominator
of 0.09 have been used. It can be observed that only a minor
increase in the output sensitivity function is introduced for the
desired level of attenuation, which proves that the proposed
method is capable of offering satisfactory robust performance.
For the same situation, the input sensitivity function is shown
in Fig. 3. It can be seen that the transfer from disturbance to
control signal is significantly below 0 dB outside the frequency
region of interest even when the BSFs are introduced. As a
consequence, the residual noise is not amplified and a good
robustness with respect to plant model uncertainties is assured.

VI. SIMULATION RESULTS

Regarding the parameters used in the IBSF, through all the
simulation and experimental tests, the ANFs use a ρ of 0.92
and the BSFs have been chosen with an attenuation of 80 dB
and a denominator damping of 0.09.

The IBSF approach was tested first in simulation and
the results are presented in the following subsections. The
benchmark considers three levels in terms of number of
unknown narrow-band disturbances. For each level, according
to the benchmark specifications, there are three tests. For
each one, specifications have been set for the frequency and
time domains. For the frequency domain, we evaluate: global
attenuation (GA, in dB), disturbance attenuation (DA, in dB)
and maximum amplification (MA) outside the attenuation fre-
quencies (in pairs of dB@Hz). In the time domain, evaluation
is done for: maximum value during the chirp (in V) and
transient performance.



TABLE I
SIMULATION RESULTS - SIMPLE STEP TEST

LEVEL 1
Frequency Global Dist. Atten. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. TD

(Hz) (dB) (dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (ratio)
50 34.52 46.78 6.41@59.38 21.01 3.60 18.09 1.085
55 34.47 50.04 4.21@68.75 24.14 3.65 20.70 1.081
60 34.40 48.10 3.89@68.75 25.66 3.68 21.84 1.089
65 34.40 48.52 3.59@76.56 18.87 3.74 19.36 1.073
70 34.47 54.06 2.84@79.69 11.26 3.75 21.26 1.067
75 34.84 54.26 3.06@67.19 7.84 3.68 22.82 1.067
80 35.12 49.11 3.34@67.19 7.61 3.52 23.51 1.083
85 34.88 49.97 3.40@70.31 8.69 3.50 23.55 1.091
90 32.69 43.65 4.06@78.13 149.86 3.70 40.94 1.078
95 23.78 40.36 7.86@87.50 200.93 4.60 38.80 1.073

LEVEL 2
Frequency Global Dist. Atten. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. TD

(Hz) (dB) (dB)-(dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (ratio)
50-70 39.68 45.48 - 50.32 7.54@59.38 115.56 4.01 43.13 1.063
55-75 39.98 48.18 - 50.82 6.29@67.19 261.46 3.94 51.75 1.066
60-80 40.51 45.91 - 46.35 5.76@68.75 476.28 3.68 53.36 1.101
65-85 40.36 46.28 - 47.42 5.65@73.44 375.31 3.71 49.41 1.090
70-90 38.99 52.14 - 43.25 5.36@76.56 245.35 3.98 42.43 1.065
75-95 35.25 52.02 - 40.49 8.50@87.50 144.05 4.68 49.25 10.110

LEVEL 3
Frequency Global Dist. Atten. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. TD

(Hz) (dB) (dB)-(dB)-(dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (ratio)
50-65-80 43.28 44.04 - 42.67 - 43.58 7.52@56.26 29.80 3.99 50.43 1.068
55-70-85 43.26 46.34 - 47.80 - 45.53 6.63@62.50 56.60 3.98 53.31 1.075
60-75-90 42.61 45.40 - 50.13 - 42.07 6.78@68.75 131.40 4.07 65.38 1.075
65-80-95 40.48 45.29 - 42.19 - 38.66 8.62@87.50 205.41 4.36 82.05 1.068

The basic specification for transient performance is the re-
quirement that the transient duration (TD) when a disturbance
is applied, be smaller than 2 sec. Details of the measurement
procedure can be found in [13]. From the point of view of
the benchmark, this means that 2 sec after application of a
disturbance, the square of the truncated two norm has to be
equal or smaller than 1.21 of the steady state value of the
square of the truncated two norm of the residual force. The
square of the truncated two norm is evaluated over an interval
of 3 sec both for transient and steady state, taking in account
that disturbance is applied at t = 5 sec and that steady state is
evaluated between 17 and 20 sec. The square of the truncated
two norm is denoted as N2T (v : w) where v and w define the
interval of computation. One defines:

T Di =
N2T (7 : 10)
N2T (17 : 20)

(41)

∆Transi = T Di−1.21, if T Di > 1.21 (42)
∆Transi = 0, if T Di ≤ 1.21, ∀ i = 1, . . . ,M (43)

If T Di is smaller than 1.21 it means that the specifications for
transient duration are satisfied (less or equal to 2 sec).

Other measurements are also considered in order to asses
the performance of the approach. Such measurements include:
quadratic norm of the transient and the residual (once the
algorithm converges), the maximum value during the transient
and the mean-square error during the chirp.

A. Level 1

For level one of the benchmark, the results, in the presence
of a constant frequency disturbance (called Simple Step Test),

TABLE II
SIMULATION RESULTS - LEVEL 1 - STEP FREQUENCY

CHANGES TEST

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
60→ 70 43.25 23.22
70→ 60 40.17 21.01
60→ 50 31.51 18.76
50→ 60 50.93 30.19

SEQUENCE - 2
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
75→ 85 44.71 21.24
85→ 75 52.24 21.29
75→ 65 45.09 19.87
65→ 75 43.27 22.94

SEQUENCE - 3
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
85→ 95 56.03 23.15
95→ 85 104.22 36.57
85→ 75 51.71 22.15
75→ 85 44.10 21.12

are summarised in Table I. As it can be seen, in general, all
the specifications were fulfilled (one notices however a global
attenuation below the required value of 24 dB at 95 Hz).
Since this approach uses the frequency estimation described
in [22], [21], the performance of the control scheme relies
on how fast the frequency is estimated, thereby the transient
duration results are strongly linked to this issue. For the case
when step changes in the frequency of the disturbance occur
(called Step Frequency Changes Test), the results are shown
in Table II. The results for the chirp disturbance test (called



Chirp Test) are summarized in Table III. ↗ denotes linearly
increasing frequency chirp disturbance, while ↘ is used to
denote the disturbance with linearly decreasing frequencies.
The maximum value during the chirp periods did not exceed
the imposed limit of 0.1 V.

TABLE III
SIMULATION RESULTS - LEVEL 1 - CHIRP TEST

Error-Mean Square Value Error-Maximum Value
↗ 39.229×10−6 13.228×10−3

↘ 53.673×10−6 18.688×10−3

TABLE IV
SIMULATION RESULTS - LEVEL 2 - STEP FREQUENCY

CHANGES TEST

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
[55,75]→ [60,80] 37.65 34.75
[60,80]→ [55,75] 36.85 33.37
[55,75]→ [50,70] 38.40 32.51
[50,70]→ [55,75] 43.66 36.21

SEQUENCE - 2
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
[70,90]→ [75,95] 40.40 28.90
[75,95]→ [70,90] 64.08 40.62
[70,90]→ [65,85] 38.14 31.23
[65,85]→ [70,90] 37.38 31.43

B. Level 2

For the second level of the benchmark, the results of the
proposed approach during the Simple Step Test are shown
in Table I. Almost all the benchmark specifications were
satisfied, the only criteria which is not met being the maximum
amplification and the transient duration ratio at 75− 95 Hz.
The other values for the TD ratio are within the requirements
for the benchmark. For Step Frequency Changes Test and
Chirp Test, the limits were respected as it can be seen in
Tables IV and V.

TABLE V
SIMULATION RESULTS - LEVEL 2 - CHIRP TEST

Error-Mean Square Value Error-Maximum Value
↗ 25.998×10−6 13.416×10−3

↘ 29.678×10−6 16.466×10−3

TABLE VI
SIMULATION RESULTS - LEVEL 3 - STEP FREQUENCY

CHANGES TEST

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
[55,70,85]→ [60,75,90] 84.74 58.41
[60,75,90]→ [55,70,85] 86.05 59.28
[55,70,85]→ [50,65,80] 90.77 58.00
[50,65,80]→ [55,70,85] 91.86 63.18

SEQUENCE - 2
[60,75,90]→ [65,80,95] 85.96 53.62
[65,80,95]→ [60,75,90] 113.25 62.22
[60,75,90]→ [55,70,85] 85.49 60.84
[55,70,85]→ [60,75,90] 84.16 58.74

C. Level 3

On the third level, for Simple Step Test, only at 95 Hz
the disturbance attenuation requirement was not achieved as
imposed by the benchmark specifications (see Table I). The
Step Frequency Changes and Chirp Tests results are shown in
Tables VI and VII.

TABLE VII
SIMULATION RESULTS - LEVEL 3 - CHIRP TEST

Error-Mean Square Value Error-Maximum Value
↗ 15.830×10−6 12.494×10−3

↘ 17.190×10−6 12.783×10−3

VII. EXPERIMENTAL RESULTS

Using the same central controller and frequency estimation
configuration (Section V), the following real-time results were
obtained.

TABLE IX
EXPERIMENTAL RESULTS - LEVEL 1 - STEP FREQUENCY

CHANGES TEST

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
60→ 70 49.83 24.68
70→ 60 50.84 24.68
60→ 50 63.82 23.46
50→ 60 81.38 39.39

SEQUENCE - 2
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
75→ 85 47.40 20.99
85→ 75 52.77 20.993
75→ 65 52.55 23.44
65→ 75 48.34 24.66

SEQUENCE - 3
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
85→ 95 59.21 15.79
95→ 85 95.33 32.01
85→ 75 52.48 19.75
75→ 85 46.39 19.75

A. Level 1 Results

In Table VIII, the experimental results for Simple Step
Level 1 are summarised. The most important differences
between these results and the ones obtained in simulation
concern the maximum amplification (this is due probably to
the model uncertainties, some small error in the estimation of
the frequency of the disturbances, and also to the measurement
noise present in the real time evaluations which is not the same
as the one used in simulations). Except that, the results are
close to those obtained in simulation.

Table IX shows the Step Frequency Changes Test results for
this level. In most of the cases, one obtains faster transients
in real-time than in simulation. Also for the Chirp Test, the
results are generally better than in simulation (Table X).

The time responses of the system in open loop and in closed
loop with the proposed disturbance attenuation approach are
shown in Fig. 4 for specific disturbance characteristics (see
figure for details). A sufficient level of attenuation is observed
in all of the tests. In the case of the simple step test, the



TABLE VIII
EXPERIMENTAL RESULTS - SIMPLE STEP TEST

LEVEL 1
Frequency Global Dist. Atten. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. TD

(Hz) (dB) (dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (ratio)
50 36.17 37.54 11.61@65.63 62.06 6.61 23.57 1.013
55 38.50 49.35 8.15@120.31 33.31 3.60 21.81 1.310
60 36.74 49.20 9.53@46.88 26.13 4.11 20.59 1.088
65 36.25 48.45 8.03@134.38 15.17 3.56 22.35 0.875
70 34.23 52.76 10.66@134.38 9.88 3.67 19.37 1.097
75 33.31 46.91 5.99@134.38 8.45 3.64 18.62 1.029
80 32.65 48.32 7.48@276.56 16.05 3.65 20.56 0.985
85 32.58 48.07 12.03@73.44 20.85 3.55 22.33 1.120
90 31.19 47.38 8.49@14.06 21.18 3.64 24.79 1.071
95 28.83 38.52 10.85@82.21 21.32 3.71 27.22 1.094

LEVEL 2
Frequency Global Dist. Atten. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. TD

(Hz) (dB) (dB)-(dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (ratio)
50-70 38.44 39.73 - 47.27 9.29@56.25 50.36 7.68 34.56 0.983
55-75 40.22 48.89 - 40.72 9.05@270.31 435.20 4.74 63.44 0.982
60-80 39.07 49.94 - 47.17 9.96@68.75 51.69 3.54 35.96 0.939
65-85 35.86 43.67 - 43.89 9.75@104.69 25.08 5.13 48.52 0.939
70-90 35.44 47.23 - 39.01 8.70@134.38 230.78 4.22 84.22 0.923
75-95 35.44 47.23 - 39.01 8.40@81.25 131.21 4.02 37.69 1.019

LEVEL 3
Frequency Global Dist. Atten. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. TD

(Hz) (dB) (dB)-(dB)-(dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (ratio)
50-65-80 41.87 32.47 - 34.95 - 43.68 8.02@71.69 44.00 6.46 45.72 1.052
55-70-85 42.53 46.70 - 46.16 - 48.35 10.99@62.50 92.26 4.93 58.58 0.890
60-75-90 40.77 49.59 - 42.09 - 42.37 8.70@67.19 173.46 5.40 64.68 0.972
65-80-95 41.43 44.85 - 43.74 - 36.49 9.88@87.50 340.05 4.47 57.37 0.973

power spectral density (PSD) estimate of the open loop and
the effective attenuation are shown in Fig. 5. The tests shown
in these figure have been selected to be the same for all the
participants in order to help evaluate the various approaches.

TABLE X
EXPERIMENTAL RESULTS - LEVEL 1 - CHIRP TEST

Error-Mean Square Value Error-Maximum Value
↗ 31.783×10−6 16.730×10−3

↘ 35.878×10−6 11.828×10−3
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Fig. 4. Time response results for Level 1 - experimental.

B. Level 2 Results

Simple Step Test results for this level are shown in Ta-
ble VIII and it can be noticed that the algorithm provides in
general good results within the specifications of the benchmark
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Fig. 5. PSD of the open loop disturbance (black dashed line) and effective
attenuation (red line) for 75 Hz - experimental.

TABLE XI
EXPERIMENTAL RESULTS - LEVEL 2 - STEP FREQUENCY

CHANGES TEST

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
[55,75]→ [60,80] 46.39 19.75
[60,80]→ [55,75] 33.71 37.39
[55,75]→ [50,70] 50.66 36.70
[50,70]→ [55,75] 45.62 41.61

SEQUENCE - 2
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
[70,90]→ [75,95] 44.15 35.49
[75,95]→ [70,90] 54.60 36.82
[70,90]→ [65,85] 38.19 34.26
[65,85]→ [70,90] 41.22 34.37

with the exception of the maximum amplification which is
over the limit. Tables XI and XII show the results for the Step
Frequency Changes and the Chirp Test.

The time responses of the system in open loop and in closed
loop with the proposed disturbance attenuation approach are



shown in Fig. 6 for specific disturbance characteristics. A
sufficient level of attenuation is observed in all of the tests.
In the case of the simple step test, the power spectral density
(PSD) estimate of the open loop and the effective attenuation
are shown in Fig. 7.
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Fig. 6. Time response results for Level 2 - experimental.
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Fig. 7. PSD of the open loop disturbance (black dashed line) and effective
attenuation (red line) for 60−80 Hz - experimental.

TABLE XII
EXPERIMENTAL RESULTS - LEVEL 2 - CHIRP TEST

Error-Mean Square Value Error-Maximum Value
↗ 34.007×10−6 16.307×10−3

↘ 35.600×10−6 16.307×10−3

TABLE XIII
EXPERIMENTAL RESULTS - LEVEL 3 - STEP FREQUENCY

CHANGES TEST

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val.

(Hz) (×10−3) (×10−3)
[55,70,85]→ [60,75,90] 97.33 65.06
[60,75,90]→ [55,70,85] 86.38 64.84
[55,70,85]→ [50,65,80] 103.87 62.61
[50,65,80]→ [55,70,85] 115.15 68.74

SEQUENCE - 2
[60,75,90]→ [65,80,95] 96.45 57.76
[65,80,95]→ [60,75,90] 100.68 61.44
[60,75,90]→ [55,70,85] 85.00 61.44
[55,70,85]→ [60,75,90] 96.50 63.57

C. Level 3 Results

In the most challenging level, the good performance of
the algorithm is proved since the benchmark specifications

are passed for all the objectives in the Simple Step Test
(Table VIII). Table XIII shows the results for the Step Fre-
quency Changes Test. It can be observed that both the two
norm transient and the maximum value are worse than for
the previous level but the values are still acceptable from
the benchmark specifications point of view. Meanwhile, in
Table XIV the Chirp Test evaluation is shown and the result
is even better than for the previous level.

The time responses of the system in open loop and in closed
loop with the proposed disturbance attenuation approach are
shown in Fig. 8 for specific disturbance characteristics. A
sufficient level of attenuation is observed in all of the tests.
In the case of the simple step test, the power spectral density
(PSD) estimate of the open loop and the effective attenuation
are shown in Fig. 9.
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Fig. 8. Time response results for Level 3 - experimental.
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Fig. 9. PSD of the open loop disturbance (black dashed line) and effective
attenuation (red line) for 60−75−90 Hz - experimental.

TABLE XIV
EXPERIMENTAL RESULTS - LEVEL 3 - CHIRP TEST

Error-Mean Square Value Error-Maximum Value
↗ 19.874×10−6 13.749×10−3

↘ 20.479×10−6 13.749×10−3

D. Comparison with simulation results

The comparison of the GA, DA, MA and TD between
simulation (Table I) and experimental (Table VIII) results for
the Single Step Test is shown in Fig. 10 for Level 1 of the
benchmark, in Fig. 11 for Level 2, and in Fig. 12 for Level
3. The interpretation of these results is given next. For Level



1, one observes in Fig. 10 very similar results with respect
to global attenuation and disturbance attenuation. However,
for the MA the results obtained experimentally are worse
than those obtained in simulation and the main reason for
this is that the measurement noise used in simulations is not
representative of the one on the real time system (see also
[17]) but also to possible model uncertainties. Nevertheless,
a modified design of the central controller, which decreases
even more the input sensitivity function’s amplitude above
100 Hz (by introduction of 4 additional BSFs in the input
sensitivity function). Such a central controller has improved
the performances for the Level 1 but not for Levels 2 and 3.

With respect to the TD ratio (i.e., ratio between the squared
two norm of the residual force from 7 to 10 seconds and the
squared two norm of the residual force from 17 to 20 seconds,
as described by eqs. (41)-(43)), the experimental results seem
overall better than those obtained in simulation (especially for
Levels 2, Fig. 11, and 3, Fig. 12).

Another aspect is the maximum amplification, which, by
analysing the Level 3 comparison in Fig. 12, is significantly
improved with respect to the previous two levels and very
close to the simulation results with the single exception of the
rejection of a disturbance composed of sinusoids at 55, 70,
and 85 Hz.

To complete the comparison, particular disturbance con-
figurations are chosen and further analysed. In Fig. 13, the
PSD estimates of the effective attenuation/amplification of the
residual during the Simple Step Test, are shown5. It can be
seen that measurement noise is present in the experimental
results but the level of the noise in closed loop remains
below the benchmark specifications (i.e., below the accepted
MA).For the Step Frequency Changes Test, Fig. 14 shows
very close results between simulation and real time and
a satisfactory level of attenuation for both. The frequency
estimation comparison is shown in Fig. 15 for the same
protocol as in Fig. 14. It is notable that transient durations
inFig. 14 are related to those in Fig. 15. Finally, a Chirp Test
comparison is provided in Fig. 16 and allows to conclude that
both in simulation and in real time the proposed approach
gives satisfactory results. Robustness is also shown by the
similarity of the simulation and real time results.

VIII. CONCLUDING REMARKS

The idea of designing an adaptive controller on which the
value of the attenuation can be imposed, proved to be efficient
in practice. A single central controller has been used for the
three levels of the benchmark in both simulation and in real
time.

Experimental results on the benchmark platform have shown
a reasonable good coherence between simulation and real
time results. The IBSF simplifies the design, since it allows
to obtain good results without the redesign of the central
controller for each benchmark level, and seems to be less
sensitive with respect to controller design, plant model uncer-
tainties at various frequencies, and to measurement noise. In

5Note that the two PSDs are computed with 512 points windows and do
not allow to view the attenuations of 80 dB introduced by the BSFs.
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Fig. 10. Level 1 comparison between simulation and experimental results.

terms of computational complexity, indirect adaptive control
approaches are in general more demanding than direct adaptive
control approaches ([14]), but the compromise between robust
performance and computational complexity makes it appealing
for the rejection of multiple narrow-band disturbances.

Among the advantages of this approach we should mention
an easy and systematic controller design assuring simulta-
neously a good profile for the sensitivity functions in order
to guarantee a good robustness with respect to plant model
uncertainties and low noise amplification outside the region
of attenuation.
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