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Direct adaptive rejection of unknown time-varying narrow band
disturbances applied to a benchmark problem

Abraham Castellanos Silva1, Ioan Doré Landau1, and Tudor-Bogdan Airimiţoaie1,2

Abstract—The paper presents a direct adaptive algorithm for
the rejection of unknown time-varying narrow band distur-
bances, applied to an adaptive regulation benchmark. The objec-
tive is to minimize the residual force by applying an appropriate
control signal on the inertial actuator in the presence of multiple
and/or unknown time-varying disturbances. The direct adaptive
control algorithm is based on the internal model principle
(IMP) and uses the Youla-Kučera (YK) parametrization. A direct
feedback adaptive regulation is proposed and evaluated both in
simulation and real-time. The robustness is improved by shaping
the sensitivity functions of the system through band stop filters
(BSF).

Index Terms—Adaptive Regulation, Active Vibration Control,
Inertial Actuators, Multiple Narrow Band Disturbances, Youla-
Kučera Parametrization, Internal Model Principle

I. INTRODUCTION

A basic problem in active vibration control is the attenuation
(rejection) of multiple narrow band disturbances of unknown
and time-varying frequencies. The energy of these disturbances
(or vibrations) is concentrated in a narrow band around an
unknown frequency and could be modelled as a white noise
or a Dirac impulse passed through a model of the disturbance.
While, in general, one can assume a certain structure for such
model of disturbance, its parameters are unknown and may be
time-varying. The need of an adaptive approach arises.

This problem could be addressed using additional trans-
ducers to obtain an image of the perturbation (inspired by
Widrow’s technique for adaptive noise cancellation [29]) con-
sidering that the measurement is highly correlated with the
unknown disturbance. This leads to a feedforward approach
as in [5], [10], [11], [14]. The disadvantages of this approach
are:
• Requires the use of an additional transducer.
• Difficult choice for the location of this transducer.
• Requires the adaptation of many parameters.

A feedback approach overcome these disadvantages providing
disturbance rejection (at least asymptotically), using only the
measurement of the residual force (acceleration) as in [1], [2],
[22].

Different problem scenarios have been considered using a
feedback solution and the model of the disturbance:

1) Unknown plant and disturbance model [12].
2) Unknown plant and known disturbance model [26], [30].
3) Known plant and unknown disturbance model [7], [1],

[2], [28], [24], [9], [15], [16]
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The present paper belongs to the third category, since the
dynamic characteristics of the system are practically constant
for a given physical realization. Also, very reliable estimates
of the parameters of the control model can be obtained by
standard system identification.

In this context, the following approaches have been con-
sidered for solving the problem of feedback regulation of
unknown and time-varying narrow-band disturbances:

1) Use of the internal model principle [1], [2], [4], [13],
[15], [16], [17], [22], [27], [28].

2) Use of an observer for the disturbance [9], [24], [8].
3) Use of the phase-locked loop structure considered in

communications systems [7], [6].

Since the model of the perturbation is consider unknown, an
adaptive implementation is required. Two approaches can be
considered: direct or indirect.

Direct adaptive schemes require less computational time
than indirect schemes and through the Youla-Kučera (YK)
parametrization of the controller along with the Internal Model
Principle (IMP), offer advantages as simpleness, excellent
adaptation transients and closed loop stability during the
adaptive regulation. This approach has been successfully used
in a number of applications [22], [21], and therefore has been
considered to be applied to the benchmark.

The YK parametrization (known also as the Q-
parametrization) allows to insert and adjust the internal
model of the disturbance into the controller by adjusting the
parameters of the polynomial Q̂(z−1) (see Fig. 3). The above
is done without recomputing the central controller (R0(z−1)
and S0(z−1) in Fig. 3 remain unchanged). This also preserves
the desired closed loop poles adding to the robustness of the
control scheme. Also the number of parameters to be directly
adapted is roughly equal to the number of parameters on
the denominator disturbance model. The above means that
the size of the adaptation algorithm will depend upon the
complexity of the disturbance model.

The design that will be presented in this paper preserves
the fixed parts in the nominal controller (as shown in [21])
and also shows how the robustness of the closed loop can be
improved by chosing adequate Band-Stop Filters (BSF) for
shaping the sensitivity functions.

The paper is organized as follows. Section II presents briefly
the active suspension system using an inertial actuator on
which the algorithms will be tested. Section III presents the
general plant and controller structure in the context of the
YK parametrization. The direct adaptive algorithm is revised
in Section IV. Section V discusses briefly the design of
the central controller using BSFs for shaping the sensitivity
functions. Simulation results are presented in Section VI,



while experimental results for this methodology are given in
Section VII. Concluding remarks are presented in Section VIII.

II. ACTIVE VIBRATION CONTROL SYSTEM USING AN
INERTIAL ACTUATOR

The structure of the system used for the benchmark on
adaptive regulation is presented in Fig. 1. A picture of the real
system is presented in Fig. 2, on both figures the structure
components are indicated. The system consist of a passive
damper (indicated with the number 2 in Fig. 1), an inertial
actuator (indicated with the number 3), a load, a transducer for
the residual force, a controller, a power amplifier and a shaker
(source of perturbation and indicated with the number 1). The

Fig. 1. Active vibration control (scheme)

control objective is to reject the effect of unknown narrow-
band disturbances on the output of the system (residual force),
i.e., to attenuate the vibrations transmitted from the machine to
the chassis. The transfer function (Np(z−1)/Dp(z−1)), between
the disturbance force δ (t) and the residual force y(t) is called
primary path. The plant transfer function (z−dB(z−1)/A(z−1))
between the input of the inertial actuator , u(t), and the residual
force is called secondary path. The system is controlled in
real-time using a MATLAB xPC target environment. The
sampling frequency is Fs = 800 Hz. For a detailed hardware
description see [20], [19]. In [19] the LTI discrete time models

Fig. 2. Active vibration control (photograph)

for both paths are given1. The secondary path model presents a

1The primary path model is given for simulation purposes.

number of low damped vibration modes as well as low damped
complex zeros (anti-resonance).

III. PLANT REPRESENTATION AND CONTROLLER
STRUCTURE

The structure of the LTI discrete time model of the plant,
also called secondary path, used for controller design is

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−d−1B∗(z−1)

A(z−1)
, (1)

where

A(z−1) = 1+a1z−1 + · · ·+anAz−nA , (2)

B(z−1) = b1z−1 + · · ·+bnB z−nB = z−1B∗, (3)

B∗ = b1 + · · ·+bnB z−nB+1, (4)

and d is the plant pure time delay in number of sampling
periods2.

Fig. 3. Direct adaptive regulation scheme for rejection of unknown distur-
bances

Without considering a reference signal, the output of the
plant y(t) and the input u(t) may be written as (see Fig. 3):

y(t) =
q−dB(q−1)

A(q−1)
·u(t)+ p(t), (5)

S0(q−1) ·u(t) =−R0(q−1) · y(t). (6)

In (5), p(t) is the effect of the disturbances on the measured
output3 and R0(z−1), S0(z−1) are polynomials in z−1 having
the following expressions4:

S0 = 1+ s0
1z−1 + . . .+ s0

nS
z−nS = S′0(z

−1) ·HS0(z
−1), (7)

R0 = r0
0 + r0

1z−1 + . . .+ r0
nR

z−nR = R′0(z
−1) ·HR0(z

−1), (8)

where HS0(q
−1) and HR0(q

−1) represent pre-specified parts of
the controller (used for example to incorporate the internal
model of a disturbance or to open the loop at certain frequen-
cies) and S′0(q

−1) and R′0(q
−1) are computed.

2The complex variable z−1 will be used to characterize the system’s
behaviour in the frequency domain and the delay operator q−1 will be used
for the time domain analysis.

3The disturbance passes through a so called primary path which is
represented in this figure, and p(t) is its output.

4The argument (z−1) will be omitted in some of the following equations
to make them more compact.



We define the output sensitivity function (the transfer func-
tion between the disturbance p(t) and the output of the system
y(t)) as

Syp(z−1) =
A(z−1)S0(z−1)

P0(z−1)
(9)

and the input sensitivity function (the transfer function be-
tween the disturbance p(t) and the control input u(t)) as

Sup(z−1) =−A(z−1)R(z−1)

P0(z−1)
, (10)

where

P0(z−1) = A(z−1)S0(z−1)+ z−dB(z−1)R0(z−1), (11)

the characteristic polynomial, specifies the desired closed loop
poles of the system5 (see also [23]). It is important to remark
that one should only reject disturbances located in frequency
regions where the plant model has enough gain. This can be
seen by looking at eq. (9) and noticing that perfect rejection
at a certain frequency, ω0, is obtained iff S0(e− jω0) = 0. On
the other hand, from eq. (10) one can see that this has a bad
effect on the control input if the gain of the secondary path is
too small at ω0.

In this paper, the Youla-Kučera parametrization ([3], [27]) is
used. Supposing a finite impulse response (FIR) representation
of the adaptive Q filter

Q(z−1) = qo +q1z−1 + . . .+qnQz−nQ (12)

the controller’s polynomials are:

R = R0 +AQHS0HR0 , (13)

S = S0− z−dBQHS0HR0 . (14)

where R0 and S0 define the central controller which verifies
the desired specifications in the absence of the disturbance.
The characteristic polynomial of the closed loop becomes

P = AS0 + z−dBR0. (15)

IV. DIRECT ADAPTIVE REGULATION FOR DISTURBANCE
REJECTION

This section presents the direct adaptive control algorithm
([22], [21]) that will be used for the benchmark problem. A
key aspect of this methodology is the use of the IMP. It is
supposed that p(t) is a deterministic disturbance given by

p(t) =
Np(q−1)

Dp(q−1)
·δ (t), (16)

where δ (t) is a Dirac impulse and Np, Dp are coprime
polynomials of degrees nNp and nDp , respectively6. In the case
of stationary narrow-band disturbances, the roots of Dp(z−1)
are on the unit circle and the contribution of the terms of Np
can be neglected.

5It is assumed that a reliable model identification is achieved and therefore
the estimated model is assumed to be equal to the true model.

6Throughout the paper, nX denotes the degree of the polynomial X .

Internal Model Principle: The effect of the disturbance
given in (16) upon the output

y(t) =
A(q−1)S(q−1)

P(q−1)
·

Np(q−1)

Dp(q−1)
·δ (t), (17)

where Dp(z−1) is a polynomial with roots on the unit circle
and P(z−1) is an asymptotically stable polynomial, converges
asymptotically towards zero iff the polynomial S(z−1) in the
RS controller has the form (based on eq. (7))

S(z−1) = Dp(z−1)HS0(z
−1)S′(z−1). (18)

Thus, the pre-specified part of S(z−1) should be chosen as
HS(z−1) = Dp(z−1)HS0(z

−1) and the controller is computed
solving

P = ADpHS0S′+ z−dBHR0 R′, (19)

where P, Dp, A, B, HR0 , HS0 and d are given7.
To compute Q(z−1) in order that the polynomial S(z−1)

given by (14) incorporates the internal model of the distur-
bance (18), one has to solve the diophantine equation

S′Dp + z−dBHR0Q = S′0, (20)

where Dp, d, B, S′0, and HR0 are known and S′ and Q
are unknown. Eq. (20) has a unique solution for S′ and Q
with: nS′0

≤ nDp + nB + d + nHR0
− 1, nS′ = nB + d + nHR0

− 1,
nQ = nDp−1. One sees that the order nQ of the polynomial Q
depends upon the structure of the disturbance model. The use
of the Youla-Kučera parametrization, with Q given in (12), is
interesting because it allows to maintain the closed loop poles
as given by the central controller but at the same time introduce
the parameters of the internal model into the controller. The
development of the parametric adaptation algorithm (PAA)
requires first find an error equation (see also [27], [22], [21]).
Using the Q-parametrization, the output of the system in the
presence of a disturbance can be expressed as

y(t) =
A[S0−q−dBHS0HR0Q]

P
·

Np

Dp
·δ (t)

=
S0−q−dBHS0 HR0Q

P
·w(t), (21)

where w(t) is given by (see also Fig. 3)

w(t) =
ANp

Dp
·δ (t) = A · y(t)−q−d ·B ·u(t). (22)

Taking into consideration that the adaptation of Q is done
in order to obtain an output y(t) which tends asymptotically to
zero, one can define ε0(t+1) as the value of y(t+1) obtained
with Q̂(t,q−1) (the estimate of Q at time t, written also Q̂(t))

ε
0(t +1) =

S0

P
·w(t +1)− Q̂(t)

q−dB∗HS0HR0

P
·w(t). (23)

Similarly, the a posteriori error becomes (using Q̂(t +1)) as

ε(t +1) =
S0

P
·w(t +1)− Q̂(t +1)

q−dB∗HS0HR0

P
·w(t). (24)

7Of course, it is assumed that Dp and B do not have common factors.



Replacing S0 from the last equation by (20), one obtains

ε(t+1) = [Q−Q̂(t+1)] ·
q−dB∗HS0HR0

P
·w(t)+v(t+1), (25)

where

v(t) =
S′DpHS0

P
·w(t) =

S′HS0ANp

P
·δ (t) (26)

is a signal which tends asymptotically towards zero.
Define the estimated polynomial Q̂(t,q−1) = q̂0(t) +

q̂1(t)q−1 + . . .+ q̂nQ(t)q
−nQ and the associated estimated pa-

rameter vector θ̂(t) = [q̂0(t) q̂1(t) . . . q̂nQ(t)]
T . Define the

fixed parameter vector corresponding to the optimal value of
the polynomial Q as: θ = [q0 q1 . . . qnQ ]

T .
Denote

w2(t) =
q−dB∗HS0HR0

P
·w(t) (27)

and define the following observation vector

φ
T (t) = [w2(t) w2(t−1) . . . w2(t−nQ)]. (28)

Eq. (25) becomes

ε(t +1) = [θ T − θ̂
T (t +1)] ·φ(t)+ v(t +1). (29)

One can remark that ε(t + 1) corresponds to an adaptation
error ([18]).

From eq. (23), one obtains the a priori adaptation error

ε
0(t +1) = w1(t +1)− θ̂

T (t)φ(t), (30)

with

w1(t +1) =
S0(q−1)

P(q−1)
·w(t +1), (31)

w(t +1) = A(q−1) · y(t +1)−q−dB∗(q−1) ·u(t), (32)

where B(q−1)u(t +1) = B∗(q−1)u(t).
The a posteriori adaptation error is obtained from (24)

ε(t +1) = w1(t +1)− θ̂
T (t +1)φ(t). (33)

For the estimation of the parameters of Q̂(t,q−1) the fol-
lowing PAA is used ([18]):

θ̂(t +1) = θ̂(t)+F(t)φ(t)ε(t +1), (34)

ε(t +1) =
ε0(t +1)

1+φ T (t)F(t)φ(t)
, (35)

ε
0(t +1) = w1(t +1)− θ̂

T (t)φ(t), (36)

F(t +1) =
1

λ1(t)

F(t)− F(t)φ(t)φ T (t)F(t)
λ1(t)
λ2(t)

+φ T (t)F(t)φ(t)

 , (37)

1≥ λ1(t)> 0, 0≤ λ2(t)< 2, (38)

where λ1(t), λ2(t) allow to obtain various profiles for the
evolution of the adaptation gain F(t) (for details see [18],
[23]).

V. CENTRAL CONTROLLER DESIGN

The central controller plays a relevant role in this approach,
making of it a key element. Its role is to stabilize the system
in the absence of disturbances and to allow to obtain a small
amplification outside the attenuation frequencies, when the
adaptive regulation algorithm is active. The central controller
was presented in eqs. (7) and (8) and is indicated in Fig. 3.

Since the amplifications outside the attenuation frequencies
are reflected in the output sensitivity function (Syp(z−1)), the
technique of pole placement with sensitivity function shaping
is an option to address the problem (see details in [23]).
The benchmark specifications propose a frequency region of
interest from 50 to 95 Hz. Considering this region as a band it
is possible to shape the sensitivity functions through a band-
pass filter approach, in order to minimize the effect of the
IMP design. This is achieved by introducing fixed auxiliary
low damped poles near to the frequency limits of the band of
interest. The damping factor of these poles has to be chosen
in a way that the effect of the IMP will not be eliminated, just
attenuated. To preserve the robustness and dynamics, all the
poles of the system are conserved.

From eqs. (8) and (7), the central controller can incorporate
fixed parts for specific purposes. In [21] it is shown how
to preserve the fixed parts of the central controller using a
YK parametrization. Following this approach and considering
the characteristics of BSFs (see details in [23] and [25]), a
reduction in the modulus of Sup(z−1) for higher frequencies
can be imposed (for example, see Fig. 4) without introducing
undesired effects on Syp(z−1). This improves the robustness by
reducing the effects of the IMP design outside the frequency
band of interest.
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Fig. 4. Sensitivity functions for Level 2

To accomplish this, the BSFs’ transfer function numerator
(nBSF(z−1)) is implemented on the fixed part of the controller’s



numerator polynomial8,

HR0 = H ′R0
nBSF ,

while the BSF transfer function denominator (dBSF(z−1)) will
define additional closed loop poles. No fixed parts were
considered for S0(z−1).

VI. SIMULATION RESULTS

According to [20], [19], the benchmark’s specifications
consider three levels in terms of the number of narrow band
disturbances to be rejected (attenuated). For each level, three
types of tests were designed for which performance specifica-
tions have to be achieved.

The first series of tests, called Simple Step Test, deals
with global attenuation (GA in dB), disturbance attenuation
(DA in dB), maximum amplification (MA in dB) outside the
attenuation frequencies (these quantities are evaluated once
the adaptation has settled), transient duration (TD in sec),
maximum value (MV in Volts) during transient, a measure
of the integral of the square error during transient (N2T ),
and after settling of the adaptation (N2R). The second series
of tests consider the evaluation of performances for step
changes in frequencies and the third consider the evaluation
of performances when the disturbances are chirp signals.

A. Level 1 Results
The Table I shows the results obtained in the presence of

one sinusoidal disturbance with constant frequency (Simple
Step Test). The benchmark specifications for global attenuation
and disturbance attenuation9 are passed at all frequencies.
The maximum amplifications obtained are slightly over the
limit (6 dB), while the transient duration is lower than 2
seconds. The Table II resume the results obtained when the
disturbance frequency changes (Step Changes Frequency Test)
showing in general fast transients (lower than 2 seconds)
without increasing the maximum values.

The third test consist in applying a chirp signal as distur-
bance. The results are in the Table III. The two periods of
chirp are indicated as↗ (for increasing frequency) and↘ (for
decreasing frequency). The benchmark requirement is that the
maximum value of the residual force (output of the system)
is not greater than 0.1 V. One can see that the benchmark
specifications are satisfied.

B. Level 2 Results
The Level 2 increases the difficulty but the compromise

achieved between attenuation and amplification is demon-
strated in Table I, where the simulation results for simple
step test are presented. Both specifications, global attenuation
and disturbance attenuation, were satisfied. The maximum
amplification is in some cases marginally over the limit (7 dB
for this level). For step changes frequency test, the increments
in the transient time (see Table IV) do not pass the benchmark
limit. The chirp requirement is also fulfilled for this level
(Table V).

8H ′R0
is used for opening the loop at 0 fs and 0.5 fs

9At 95 Hz the disturbance attenuation is marginally below the benchmark
specification for the three levels.

TABLE II
SIMULATION RESULTS - LEVEL 1 - STEP CHANGES

FREQUENCY TEST

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val. Transient

(Hz) (×10−3) (×10−3) (msec)
60→ 70 17.127 22.155 110.00
70→ 60 16.948 16.101 106.25
60→ 50 46.205 18.719 143.75
50→ 60 41.759 30.724 143.75

SEQUENCE - 2
Frequency Norm2 Trans. Max. Val. Transient

(Hz) (×10−3) (×10−3) (msec)
75→ 85 16.738 15.657 132.50
85→ 75 15.422 18.571 126.25
75→ 65 14.178 15.091 121.25
65→ 75 14.246 17.137 103.75

SEQUENCE - 3
Frequency Norm2 Trans. Max. Val. Transient

(Hz) (×10−3) (×10−3) (msec)
85→ 95 39.322 23.835 30.00
95→ 85 32.884 28.047 98.75
85→ 75 15.447 21.127 93.75
75→ 85 16.307 15.769 126.25

TABLE III
SIMULATION RESULTS - LEVEL 1 - CHIRP TEST

Error-Mean Square Value Error-Maximum Value
↗ 14.499×10−6 13.963×10−3

↘ 14.0×10−6 14.860×10−3

TABLE IV
SIMULATION RESULTS - LEVEL 2 - STEP CHANGES

FREQUENCY TEST

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val. Transient

(Hz) (×10−3) (×10−3) (msec)
[55,75]→ [60,80] 38.334 34.663 208.75
[60,80]→ [55,75] 36.202 30.359 206.25
[55,75]→ [50,70] 78.016 35.463 263.75
[50,70]→ [55,75] 70.110 39.072 165.00

SEQUENCE - 2
Frequency Norm2 Trans. Max. Val. Transient

(Hz) (×10−3) (×10−3) (msec)
[70,90]→ [75,95] 60.982 30.850 262.50
[75,95]→ [70,90] 66.667 40.396 193.75
[70,90]→ [65,85] 39.498 34.570 198.75
[65,85]→ [70,90] 39.364 29.374 210.00

TABLE V
SIMULATION RESULTS - LEVEL 2 - CHIRP TEST

Error-Mean Square Value Error-Maximum Value
↗ 42.465×10−6 19.443×10−3

↘ 42.104×10−6 19.860×10−3

C. Level 3 Results

The third level considers three narrow band disturbances and
is on this level where the advantages of the approach used for
the central controller design are shown. Generally speaking,
all the benchmark specifications were satisfied at this level, as
can bee seen from the Tables I, VI and VII.

VII. EXPERIMENTAL RESULTS

In this section the real-time results are presented. The same
central controllers and adaptation gains used in simulation



TABLE I
SIMULATION RESULTS - SIMPLE STEP TEST

LEVEL 1
Frequency Global Dist. Atte. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. Trans.

(Hz) (dB) (dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (msec)
50 34.17 44.43 7.21@67.18 14.478 3.751 17.675 248.750
55 32.78 46.84 6.66@78.12 10.146 4.432 19.895 88.750
60 32.30 46.94 6.76@82.81 10.226 4.685 20.136 73.750
65 32.77 48.38 6.95@50.00 9.296 4.512 19.905 52.500
70 33.29 50.04 7.84@53.13 8.314 4.300 19.939 41.250
75 34.01 51.90 7.31@53.13 7.923 4.048 19.817 45.000
80 34.57 51.56 7.65@93.75 8.161 3.750 21.749 43.750
85 34.39 52.29 6.70@64.06 9.753 3.697 23.902 75.000
90 31.94 44.98 7.46@68.75 13.335 4.037 26.842 121.250
95 23.87 35.70 6.17@87.50 20.764 4.550 29.124 305.00

LEVEL 2
Frequency Global Dist. Atte. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. Trans.

(Hz) (dB) (dB)-(dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (msec)
50-70 39.16 41.81 - 47.49 6.11@79.69 25.035 4.258 29.441 171.25
55-75 38.35 48.33 - 47.66 7.74@87.50 23.392 4.747 34.729 136.25
60-80 39.42 50.14 - 49.26 7.87@50.00 19.405 4.170 34.186 90.00
65-85 39.83 49.13 - 51.04 7.24@53.13 18.266 3.941 36.547 97.50
70-90 38.45 51.49 - 42.59 7.61@59.37 27.326 4.238 40.645 198.750
75-95 36.47 54.02 - 37.28 6.06@87.50 35.621 4.061 44.513 197.50

LEVEL 3
Frequency Global Dist. Atte. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. Trans.

(Hz) (dB) (dB)-(dB)-(dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (msec)
50-65-80 42.72 40.29 - 41.46 - 40.79 7.63@87.50 117.834 4.251 66.905 566.250
55-70-85 42.98 47.36 - 47.86 - 46.42 7.56@76.56 262.424 4.104 112.903 518.750
60-75-90 41.96 46.33 - 48.62 - 39.75 8.43@51.56 359.209 4.375 158.195 585.000
65-80-95 40.93 44.40 - 42.29 - 35.13 7.88@73.43 753.370 4.141 235.072 657.500

TABLE VI
SIMULATION RESULTS - LEVEL 3 - STEP CHANGES

FREQUENCY TEST

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val. Transient

(Hz) (×10−3) (×10−3) (msec)
[55,70,85]→ [60,75,90] 221.36 52.324 410.00
[60,75,90]→ [55,70,85] 170.29 55.00 398.75
[55,70,85]→ [50,65,80] 270.26 61.669 482.50
[50,65,80]→ [55,70,85] 195.22 63.247 338.75

SEQUENCE - 2
[60,75,90]→ [65,80,95] 241.53 51.326 341.25
[65,80,95]→ [60,75,90] 187.52 67.680 338.75
[60,75,90]→ [55,70,85] 181.05 55.209 470.00
[55,70,85]→ [60,75,90] 198.20 51.033 343.75

TABLE VII
SIMULATION RESULTS - LEVEL 3 - CHIRP TEST

Error-Mean Square Value Error-Maximum Value
↗ 131.54×10−6 44.252×10−3

↘ 118.3×10−6 40.351×10−3

have been considered in this section.

A. Level 1 Results

Table VIII presents the simple step test results. The proxim-
ity between the simulation and real-time results is remarkable.
The main differences are in the maximum amplification and
transient duration. For the step changes frequency test (Ta-
ble IX) the results are quite similar and significant differences
weren’t found. In the chirp case, the results are also close to
the simulation ones (Table X).

TABLE IX
EXPERIMENTAL RESULTS - LEVEL 1 - STEP CHANGES

FREQUENCY TEST

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val. Transient

(Hz) (×10−3) (×10−3) (msec)
60→ 70 16.785 21.183 138.75
70→ 60 16.803 19.259 122.5
60→ 50 69.216 20.084 255
50→ 60 46.052 33.437 170

SEQUENCE - 2
Frequency Norm2 Trans. Max. Val. Transient

(Hz) (×10−3) (×10−3) (msec)
75→ 85 15.955 15.056 143.75
85→ 75 15.528 18.733 152.5
75→ 65 14.55 18.032 98.75
65→ 75 14.223 18.733 130

SEQUENCE - 3
Frequency Norm2 Trans. Max. Val. Transient

(Hz) (×10−3) (×10−3) (msec)
85→ 95 40.822 16.794 2.5
95→ 85 30.727 23.647 168.75
85→ 75 15.227 19.971 126.25
75→ 85 16.044 14.343 150

TABLE X
EXPERIMENTAL RESULTS - LEVEL 1 - CHIRP TEST

Error-Mean Square Value Error-Maximum Value
↗ 13.742×10−6 15.015×10−3

↘ 13.943×10−6 15.015×10−3

B. Level 2 Results

The similar behaviour is reflected in the Tables VIII, XI
and XII, where the results are still close to the previous ones
obtained in simulation.



TABLE VIII
EXPERIMENTAL RESULTS - SIMPLE STEP TEST

LEVEL 1
Frequency Global Dist. Atte. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. Trans.

(Hz) (dB) (dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (msec)
50 34.60 38.49 9.83@65.63 14.478 4.88 13.86 392.50
55 34.54 50.45 9.48@118.75 13.32 4.94 19.97 103.75
60 33.34 49.49 8.23@79.69 14.72 5.16 21.19 81.25
65 32.78 50.04 9.65@90.63 14.17 4.53 20.50 120.00
70 30.54 47.90 9.01@89.06 14.73 4.87 22.96 113.75
75 29.53 45.54 8.90@50.00 11.20 4.86 19.28 57.50
80 30.28 48.72 8.49@95.31 8.14 4.17 21.14 43.750
85 28.47 45.94 10.66@57.81 10.05 6.90 25.14 22.50
90 28.02 42.65 8.24@73.44 17.08 6.94 25.11 110.00
95 24.63 34.55 9.06@82.81 50.09 8.33 32.44 616.25

LEVEL 2
Frequency Global Dist. Atte. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. Trans.

(Hz) (dB) (dB)-(dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (msec)
50-70 34.42 33.58 - 42.90 8.32@59.38 32.10 9.35 29.02 393.75
55-75 33.27 44.90 - 44.18 11.85@115.63 32.49 8.04 30.23 212.50
60-80 33.42 45.59 - 41.70 7.78@118.75 31.35 7.08 28.99 230
65-85 31.72 40.01 - 43.66 8.02@106.25 22.75 7.62 31.44 112.50
70-90 32.91 41.43 - 38.63 7.52@59.38 21.38 6.05 33.90 192.50
75-95 31.04 48.89 - 34.66 7.09@87.50 28.33 6.65 38.40 222.50

LEVEL 3
Frequency Global Dist. Atte. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. Trans.

(Hz) (dB) (dB)-(dB)-(dB) (dB@Hz) (×10−3) (×10−3) (×10−3) (msec)
50-65-80 42.73 37.69 - 44.32 - 41.98 9.10@71.88 536.57 7.06 129.54 786.25
55-70-85 42.68 42.29 - 45.51 - 46.14 9.27@93.75 1,260.60 5.86 225.17 1,375
60-75-90 40.94 44.49 - 41.76 - 44.35 11.30@68.75 310.35 6.44 87.36 820
65-80-95 35.99 44.27 - 42.29 - 31.50 10.67@87.50 1,148.10 7.25 143.77 1,433.80

TABLE XI
EXPERIMENTAL RESULTS - LEVEL 2 - STEP CHANGES

FREQUENCY TEST

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val. Transient

(Hz) (×10−3) (×10−3) (msec)
[55,75]→ [60,80] 38.575 35.17 210
[60,80]→ [55,75] 38.506 31.007 160
[55,75]→ [50,70] 117.28 40.072 315
[50,70]→ [55,75] 69.186 43.262 157.5

SEQUENCE - 2
Frequency Norm2 Trans. Max. Val. Transient

(Hz) (×10−3) (×10−3) (msec)
[70,90]→ [75,95] 66.517 32.699 215
[75,95]→ [70,90] 60.013 33.827 205
[70,90]→ [65,85] 42.56 35.15 166.25
[65,85]→ [70,90] 42.946 28.575 216.25

TABLE XII
EXPERIMENTAL RESULTS - LEVEL 2 - CHIRP TEST

Error-Mean Square Value Error-Maximum Value
↗ 41.277×10−6 21.624×10−3

↘ 42.379×10−6 21.228×10−3

C. Level 3 Results

Finally, the most difficult level shows that the direct adaptive
algorithm along with a central controller tuned with BSFs,
presents a good performance regarding the benchmark spec-
ifications. This is confirmed in Tables VIII, XIII and XIV.
From the simulation and real-time results, we can conclude
that the frequency limits (50 and 95 Hz) are quite challenging
due to the proximity of low damped complex zeros.

TABLE XIII
EXPERIMENTAL RESULTS - LEVEL 3 - STEP CHANGES

FREQUENCY TEST

SEQUENCE - 1
Frequency Norm2 Trans. Max. Val. Transient

(Hz) (×10−3) (×10−3) (msec)
[55,70,85]→ [60,75,90] 235.74 62.066 343.75
[60,75,90]→ [55,70,85] 208.75 55.581 278.75
[55,70,85]→ [50,65,80] 242.6 59.615 345
[50,65,80]→ [55,70,85] 235.63 76.772 282.5

SEQUENCE - 2
[60,75,90]→ [65,80,95] 275.33 64.494 411.25
[65,80,95]→ [60,75,90] 225.24 56.829 400
[60,75,90]→ [55,70,85] 196.53 51.927 277.5
[55,70,85]→ [60,75,90] 183.17 54.69 350

TABLE XIV
EXPERIMENTAL RESULTS - LEVEL 3 - CHIRP TEST

Error-Mean Square Value Error-Maximum Value
↗ 158.15×10−6 42.399×10−3

↘ 133.47×10−6 52.203×10−3

VIII. CONCLUDING REMARKS

Good coherence has been found between the simulation and
real-time results, since the same controllers and adaptation
gains were used on both situations. This shows the robustness
of the scheme and the reliability of the model identified for
the plant. The initial statements were confirmed since the pro-
posed scheme shows fast transient durations, simpleness (the
polynomial Q̂(q−1) is the only part estimated) and stability in
closed loop. The computational complexity of the proposed
algorithm is not very demanding.
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