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The paper considers the convergence to equilibrium for measure solutions of the spatially homogeneous Boltzmann equation for hard potentials with angular cutoff. We prove the exponential sharp rate of strong convergence to equilibrium for conservative measure solutions having finite mass and energy. The proof is based on the regularizing property of the iterated collision operators, exponential moment production estimates, and some previous results on the exponential rate of strong convergence to equilibrium for square integrable initial data. We also obtain a lower bound of the convergence rate and deduce that no eternal solutions exist apart from the trivial stationary solutions given by the Maxwellian equilibrium. The constants in these convergence rates depend only on the collision kernel and conserved quantities (mass, momentum, and energy). We finally use these convergence rates in order to deduce global-in-time strong stability of measure solutions.

The Boltzmann equation describes evolution of a dilute gas. Investigations of the spatially homogeneous Boltzmann equation have made a lot of progresses in the last decades and it is hoped to provide useful clues for the understanding of the complete (spatially inhomogeneous) Boltzmann equation. The complete equation is more realistic and interesting to physics and mathematics but remains still largely out of reach mathematically and will most likely need long term preparations and efforts. For review and references of these areas, the reader may consult for instance [START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF][START_REF] Desvillettes | Celebrating Cercignani's conjecture for the Boltzmann equation[END_REF][START_REF] Lu | On measure solutions of the Boltzmann equation, part I: moment production and stability estimates[END_REF].

The present paper is a follow-up to our previous work [START_REF] Lu | On measure solutions of the Boltzmann equation, part I: moment production and stability estimates[END_REF] on measure-valued solutions 1 to the spatially homogeneous Boltzmann equation for hard potentials. In this second part, we prove that, under some angular cutoff assumptions (which include the hard sphere model), solutions with measure-valued initial data having finite mass and energy converge strongly to equilibrium in the exponential rate e -λt , where λ > 0 is the spectral gap of the corresponding linearized collision operator. This sharp exponential rate was first proved in [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] for initial data with bounded energy, and belonging to L 1 (for the hard sphere model) or to L 1 ∩ L 2 (for all hard potentials with cutoff). The core idea underlying our improvement of this result to measure solutions is that instead of considering a one-step iteration of the collision integral which produces the L 1 ∩ L 2 integrability for the hard sphere model (as first observed by Abrahamsson [START_REF] Abrahamsson | Strong L 1 convergence to equilibrium without entropy conditions for the Boltzmann equation[END_REF], elaborating upon an idea in [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF]),

we consider a multi-steps iteration which produces the L 1 ∩ L ∞ integrability for all hard potentials with angular cutoff. This, together with approximation by L 1 solutions through the Mehler transform, and the property of the exponential moment production, enables us to apply the results of [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] and obtain the same convergence rate e -λt for measure solutions. We also obtain a lower bound of the convergence rate and establish the global in time strong stability estimate. As a consequence we prove that, for any hard potentials with cutoff, there are no eternal measure solutions with finite and non-zero temperature, apart from the Maxwellians. 

∂ ∂t f t (v) = Q(f t , f t )(v), (v, t) ∈ R N × (0, ∞), N ≥ 2
with some given initial data f t (v)| t=0 = f 0 (v) ≥ 0, where Q is the collision integral defined by

(1.2) Q(f, f )(v) = form (1.5) B(z, σ) = |z| γ b z |z| • σ , γ > 0
where b is a nonnegative Borel function on [-1, 1]. This corresponds to the so-called inverse power-law interaction potentials between particles, and the condition γ > 0 corresponds to the so-called hard potentials. Throughout this paper we assume that the function b satisfies Grad's angular cutoff :

(1.6)

A 0 := S N-1 b z |z| • σ dσ = S N -2 π 0 b(cos θ) sin N -2 θ dθ < ∞
and it is always assumed that A 0 > 0, where |S N -2 | denotes the Lebesgue measure of the (N -2)-dimensional sphere S N -2 (recall that in the case N = 2 we have S 0 = {-1, 1} and

|S 0 | = 2 )
. This enables us to split the collision integral as

Q(f, g) = Q + (f, g) -Q -(f, g)
with the two bilinear operators

Q + (f, g)(v) = R N ×S N-1 B(v -v * , σ)f (v ′ )g(v ′ * ) dσ dv * , (1.7) Q -(f, g)(v) = A 0 f (v) R N |v -v * | γ g(v * ) dv * . (1.8)
which are nonnegative when applied to nonnegative functions.

The bilinear operators

Q ± are bounded from L 1 s+γ (R N ) × L 1 s+γ (R N ) to L 1 s (R N ) for s ≥ 0, where L 1 s (R N ) is a subspace of L 1 0 (R N ) := L 1 (R N ) defined by (1.9) f ∈ L 1 s (R N ) ⇐⇒ f L 1 s := R N v s |f (v)| dv < ∞.
where we have used the standard notation

∀ v ∈ R, v := 1 + |v| 2 .
Since in the equation (1.1), f = g = f t , by replacing

B(v -v * , σ) with 1 2 B(v -v * , σ) + B(v -v * , -σ)
one can assume without loss of generality that the function b is even: b(-t) = b(t) for all t ∈ [-1, 1]. This in turn implies that the polar form of Q + satisfies (1.10)

Q + (f, g) ≡ Q + (g, f ).
1.2. The definition of the solutions. The equation (1.1) is usually solved as an integral equation as follows. Given any 0 ≤ f 0 ∈ L 1 2 (R N ), we say that a nonnegative Lebesgue measurable function (v, t) → f t (v) on [0, ∞) × R N is a mild solution to (1.1) if for every t ≥ 0, v → f t (v) belongs to L 1 2 (R N ), sup t≥0 f t L 1 2 < ∞, and there is a Lebesgue null set Z 0 (which is independent of t) such that (1.11)

         ∀ t ∈ [0, ∞), ∀ v ∈ R N \ Z 0 , t 0 Q ± (f τ , f τ )(v) dτ < ∞, ∀ t ∈ [0, ∞), ∀ v ∈ R N \ Z 0 , f t (v) = f 0 (v) + t 0 Q(f τ , f τ )(v) dτ.
The bilinear operators (f, g) → Q ± (f, g) can now be extended to measures. For every s ≥ 0, let B s (R N ) with the norm • s be the Banach space of real Borel measures on R N defined by (1.12)

F ∈ B s (R N ) ⇐⇒ F s := R N v s d|F |(v) < ∞,
where the positive Borel measure |F | is the total variation of F . This norm • s can also be defined by duality:

(1. [START_REF] Desvillettes | Celebrating Cercignani's conjecture for the Boltzmann equation[END_REF])

F s = sup ϕ∈Cc(R N ), ϕ L ∞ ≤1 R N ϕ(v) v s dF (v) .
The latter form is convenient when dealing with the difference of two positive measures.

The norms • s and • L 1 s are related by (1.14)

F s = f L 1 s if dF (v) = f (v) dv.
For any F, G ∈ B s+γ (R N ) (s ≥ 0), we define the Borel measures Q ± (F, G) and

Q(F, G) = Q + (F, G) -Q -(F, G)
through Riesz's representation theorem by (1.15)

R N ψ(v) dQ + (F, G)(v) = R N ×R N L B [ψ](v, v * ) dF (v) dG(v * ), (1.16 
)

R N ψ(v) dQ -(F, G)(v) = A 0 R N ×R N |v -v * | γ ψ(v)dF (v) dG(v * )
for all bounded Borel functions ψ, where (1.17)

L B [ψ](v, v * ) = |v -v * | γ S N-1 b(n • σ)ψ(v ′ ) dσ, n = v -v * |v -v * |
and in case v = v * we define n to be a fixed unit vector e 1 . It is easily shown (see Proposition 2.3 of [START_REF] Lu | On measure solutions of the Boltzmann equation, part I: moment production and stability estimates[END_REF]) that the extended bilinear operators Q ± are also bounded from

B s+γ (R N ) × B s+γ (R N ) to B s (R N ) for s ≥ 0: if F, G ∈ B s+γ (R N ) then Q ± (F, G) ∈ B s (R N ) and (1.18) Q ± (F, G) s ≤ 2 (s+γ)/2 A 0 ( F s+γ G 0 + F 0 G s+γ ) , (1.19) 
Q ± (F, F ) -Q ± (G, G) s ≤ 2 (s+γ)/2 A 0 ( F + G s+γ F -G 0 + F + G 0 F -G s+γ ) .
Let us finally define the cone of positive distributions with s moments bounded:

B + s (R N ) := F ∈ B s (R N ) | F ≥ 0 .
We can now define the notion of solutions that we shall use in this paper. We note that the condition γ ∈ (0, 2] as assumed in the following definition is mainly used for ensuring the existence of solutions.

Definition 1.1 (Measure strong solutions). Let B(z, σ) be given by (1.5) with γ ∈ (0, 2] and with b satisfysing the condition (1.6). Let {F t } t≥0 ⊂ B + 2 (R N ). We say that {F t } t≥0 , or simply F t , is a measure strong solution of equation (1.1) if it satisfies the following:

(i) sup t≥0 F t 2 < ∞, (ii) t → F t ∈ C([0, ∞); B 2 (R N )) ∩ C 1 ([0, ∞); B 0 (R N )) and (1.20) ∀ t ∈ [0, ∞), d dt F t = Q(F t , F t ).
Furthermore F t is called a conservative solution if F t conserves the mass, momentum and energy, i.e.

∀ t ≥ 0,

R N   1 v |v| 2   dF t (v) = R N   1 v |v| 2   dF 0 (v).
Observe that (1.18) and (1.19) imply the strong continuity of t → F t ∈ C([0, ∞); B 2 (R N )) and therefore the strong continuity of t → Q(F t , F t ) ∈ C([0, ∞); B 0 (R N )). Hence the differential equation (1.20) is equivalent to the integral equation

(1.21) ∀ t ≥ 0, F t = F 0 + t 0 Q(F τ , F τ ) dτ,
where the integral is taken in the sense of the Riemann integration or more generally in the sense of the Bochner integration. Recall also that here the derivative dµ t /dt and integral 1.3. Recall of the main results of the first part. The following results concerning moment production and uniqueness of conservative solutions which will be used in the present paper are extracted from our previous paper [START_REF] Lu | On measure solutions of the Boltzmann equation, part I: moment production and stability estimates[END_REF]. The following properties (a)

and (b) are a kind of "gain of decay" property of the flow stating and quantifying how moments of the solutions become bounded for any positive time even they are not bounded at initial time; the following properties (c)-(d)-(e) concern the stability of the flow.

Theorem 1.2 ([22]

). Let B(z, σ) be defined in (1.5) with γ ∈ (0, 2] and with the condition (1.6). Then for any F 0 ∈ B + 2 (R N ) with F 0 0 > 0, there exists a unique conservative measure strong solution F t of equation (1.1) satisfying F t | t=0 = F 0 . Moreover this solution satisfies:

(a) F t satisfies the moment production estimate:

∀ t > 0, ∀ s ≥ 0, F t s ≤ K s 1 + 1 t (s-2) + γ (1.22)
where (xy) + = max{xy, 0},

K s := K s ( F 0 0 , F 0 2 ) = F 0 2 2 s+7 F 0 2 F 0 0 1 + 1 16 F 0 2 A 2 γ (s-2) + γ (1.23) A 2 := S N -2 π 0 b(cos θ) sin N θ dθ. (1.24) (b) If γ ∈ (0, 2) or if (1.25) γ = 2 and ∃ 1 < p < ∞ s.t. π 0 [b(cos θ)] p sin N -2 θ dθ < ∞
then F t satisfies the exponential moment production estimate:

∀ t > 0, R N e α(t) v γ dF t (v) ≤ 2 F 0 0 (1.26)
where 

α(t) = 2 -s 0 F 0 0 F 0 2 1 -e -βt , β = 16 F 0 2 A 2 γ > 0, (1.
G t | t=τ = G τ ∈ B + 2 (R N )
for some τ ≥ 0. Then:

-If τ = 0, then (1.28) ∀ t ≥ 0, F t -G t 2 ≤ Ψ F 0 ( F 0 -G 0 2 ) e C(1+t) ,
where

(1.29) Ψ F 0 (r) = r + r 1/3 + |v|>r -1/3 |v| 2 dF 0 (v), r > 0, Ψ F 0 (0) = 0, and C = R(γ, A 0 , A 2 , F 0 0 , F 0 2 ) is an explicit positive continuous function on (R * + ) 5 . -If τ > 0, then (1.30) ∀ t ∈ [τ, ∞), F t -G t 2 ≤ F τ -G τ 2 e Cτ (t-τ ) ,
where

C τ := 4 (K 2+γ + F 0 2 ) 1 + 1 τ ,
and K 2+γ is defined by (1.23) with s = 2 + γ.

(d) If F 0 is absolutely continuous with respect to the Lebesgue measure, i.e.

dF 0 (v) = f 0 (v) dv with 0 ≤ f 0 ∈ L 1 2 (R N ),
then F t is also absolutely continuous with respect to the Lebesgue measure: dF t (v) = f t (v) dv for all t ≥ 0, and f t is the unique conservative mild solution of equation (1.1) with the initial datum f 0 .

(e) If F 0 is not a single Dirac distribution, then there is a sequence

f k,t , k ≥ 1, of conservative mild solutions of equation (1.1) with initial data 0 ≤ f k,0 ∈ L 1 2 (R N ) satisfying (1.31) R N   1 v |v| 2   f k,0 (v) dv = R N   1 v |v| 2   dF 0 (v), k = 1, 2, . . . such that (1.32) ∀ ϕ ∈ C b (R N ), ∀ t ≥ 0, lim k→∞ R N ϕ(v)f k,t (v) dv = R N ϕ(v) dF t (v).
Besides, the initial data can be chosen of the form

f k,0 = I n k [F 0 ], k = 1, 2, 3, . . . where {I n k [F 0 ]} ∞ k=1 is a subsequence of the Mehler transforms {I n [F 0 ]} ∞ n=1 of F 0 . Remarks 1.3.
(1) In the physical case, N = 3 and 0 < γ ≤ 1, the moment estimates (1.22) and (1.26) also hold for conservative weak measure solutions of equation (1.1) without angular cutoff (see [START_REF] Lu | On measure solutions of the Boltzmann equation, part I: moment production and stability estimates[END_REF]).

(2) The Mehler transform

I n [F ](v) := e N n R N M 1,0,T e n v -u -1 -e -2n (v * -u) dF (v * ) ∈ L 1 2 (R N )
of a measure F ∈ B + 2 (R N ) (which is not a single Dirac distribution) will be studied in Section 4 (after introducing other notations) where we shall show that I n [F ] has a further convenient property:

lim n→∞ I n [F ] -M 2 = F -M 2
and thus it is a useful tool in order to reduce the study of properties of measure solutions to that of L 1 solutions. Here M is the Maxwellian (equilibrium) having the same mass, momentum, and energy as F , see (1.42)-(1.43) below.

1.4. Normalization. In most of the estimates in this paper, we shall try as much as possible to make explicit the dependence on the basic constants in the assumptions. But first let us study the reduction that can be obtained by scaling arguments.

Under the assumption (1.6), it is easily seen that F t is a measure solution of equation (1.1) with the angular function b if and only if t → F A -1 0 t is a measure solution of equation (1.1) with the scaled angular function A -1 0 b. Therefore without loss of generality we can assume the normalization (1.33)

A 0 = S N -2 π 0 b(cos θ) sin N -2 θ dθ = 1.
Next given any ρ > 0, u ∈ R N and T > 0, we define the bounded positive linear operator

N ρ,u,T on B 2 (R N ) as follows: for any F ∈ B 2 (R N ), there is a unique N ρ,u,T (F ) ∈ B 2 (R N )
such that (thanks to Riesz representation theorem),

∀ ψ Borel function s.t. sup v∈R N |ψ(v)| v -2 < +∞, R N ψ(v) dN ρ,u,T (F )(v) = 1 ρ R N ψ v -u √ T dF (v).
We call N ρ,u,T the normalization operator associated with ρ, u, T . The inverse

N -1 ρ,u,T of N ρ,u,T is given by N -1 ρ,u,T = N 1/ρ,-u/ √ T ,1/T , i.e. R N ψ(v) dN -1 ρ,u,T (F )(v) = ρ R N ψ √ T v + u dF (v).
It is easily seen that for every

F ∈ B 2 (R N ) N ρ,u,T (F ) 0 = 1 ρ F 0 , (1.34) N ρ,u,T (F ) 2 ≤ C ρ,|u|,T F 2 , (1.35) N -1 ρ,u,T (F ) 2 ≤ C 1/ρ,|u|/ √ T ,1/T F 2 (1.36) where C ρ,|u|,T = 1 ρ max 1 + |u| 2 + |u| T ; 1 + |u| T , (1.37) C 1/ρ,|u|/ √ T ,1/T = ρ max 1 + |u| 2 + √ T |u| ; T + √ T |u| . (1.38) We then introduce the subclass B + ρ,u,T (R N ) of B + 2 (R N ) by (1.39)      F ∈ B + ρ,u,T (R N ) ⇐⇒ F ∈ B + 2 (R N ) and R N dF (v) = ρ, 1 ρ R N v dF (v) = u, 1 N ρ R N |v -u| 2 dF (v) = T.
In other words, F ∈ B + ρ,u,T (R N ) means that F has the mass ρ, mean-velocity u, and the kinetic temperature T . It is obvious that F t conserves mass, momentum, and energy is equivalent to that F t conserves mass, mean-velocity , and kinetic temperature.

When restricting N ρ,u,T on B + ρ,u,T (R N ), it is easily seen that N ρ,u,T : B + ρ,u,T (R N ) → B + 1,0,1 (R N ), N -1 ρ,u,T : B + 1,0,1 (R N ) → B + ρ,u,T (R N ). Similarly we define L 1 ρ,u,T (R N ) by (1.40) f ∈ L 1 ρ,u,T (R N ) ⇐⇒        0 ≤ f ∈ L 1 2 (R N ), R N f (v) dv = ρ, 1 ρ R N vf (v) dv = u, 1 N ρ R N |v -u| 2 f (v) dv = T.
In this case, the normalization operator

N = N ρ,u,T : L 1 ρ,u,T (R N ) → L 1 1,0,1 (R N ) is written directly as (1.41) N (f )(v) = T N/2 ρ f √ T v + u .
Recall that the Maxwellian M ∈ L 1 ρ,u,T (R N ) is given by

(1.42) M (v) := ρ (2πT ) N/2 exp - |v -u| 2 2T .
For notational convenience we shall do not distinguish between a Maxwellian distribution

M ∈ B + ρ,u,T (R N ) and its density function M ∈ L 1 ρ,u,T (R N ): we write without risk of confusion that (1.43) dM (v) = M (v) dv. Due to the homogeneity of z → B(z, σ) = |z| γ b( z |z| • σ), we have L B ψ • -u √ T (v, v * ) = T γ/2 L B [ψ] v -u √ T , v * -u √
T and then by Fubini theorem we get (denoting simply N = N ρ,u,T when no ambiguity is possible)

∀ F ∈ B + 2 (R N ), N Q ± (F, F ) = ρT γ/2 Q ± (N (F ), N (F )) . Since N is linear and bounded, this implies that if F t is a measure strong solution of equation (1.1) and c = ρT γ/2 , then d dt N (F t/c ) = Q N (F t/c ), N (F t/c ) .
This together with (1.34)-(1.36) leads to the following statement:

Proposition 1.4 (Normalization). Let B(z, σ) be defined by (1.5) with γ ∈ (0, 2] and with the condition (1.33). Let F 0 ∈ B + ρ,u,T (R N ) with ρ > 0, u ∈ R N and T > 0, and let F t be the unique conservative measure strong solution of equation (1.1) with the initial datum

F 0 . Let M ∈ B +
ρ,u,T (R N ) be the Maxwellian defined by (1.42), let N := N ρ,u,T be the normalization operator, and let c = ρT γ/2 . Then: 

(I) The normalization t → N (F t/c ) is the unique conservative measure strong solution of equation (1.1) with the initial datum N (F 0 ) ∈ B + 1,0,1 (R N ). (II) For all t ≥ 0          F t -M 0 = ρ N (F t ) -N (M ) 0 , F t -M 2 ≤ C 1/ρ,|u|/ √ T ,1/T N (F t ) -N (M ) 2 , N (F t ) -N (M ) 2 ≤ C ρ,|u|,T F t -M 2 where C ρ,
p (R N , W ) with 1 ≤ p < ∞ by f ∈ L p (R N , W ) ⇐⇒ f L p (W ) := R N |f (v)| p W (v) dv 1/p < ∞.
Let B(z, σ) as defined in (1.5) with γ ∈ (0, 2] and with b satisfying (1.33). Let M be the Maxwellian with mass ρ > 0, mean velocity u and temperature T > 0 defined in (1.42), and let

L M : L 2 R N , M -1 → L 2 R N , M -1
be the linearized collision operator associated with B(z, σ) and M (v), i.e.

(1.44)

L M (h)(v) = R N ×S N-1 B(v -v * , σ)M (v * ) h ′ + h ′ * -h -h * dσ dv * .
It is well-known that the spectrum Σ(L M ) of L M is contained in (-∞, 0] and has a positive spectral gap S b,γ (ρ, µ, T ) > 0, i.e.

S b,γ (ρ, u, T ) := inf {λ > 0 | -λ ∈ Σ(L M )} > 0.
Moreover by simple calculations, one has the following scaling property on this spectral gap S b,γ (ρ, u, T ) = ρT γ/2 S b,γ (1, 0, 1).

In the spatially homogeneous case, the study of the linearized collision operator goes back to Hilbert [START_REF] Hilbert | Begründung der kinetischen Gastheorie[END_REF][START_REF] Hilbert | Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen[END_REF] who computed the collisional invariant, the linearized operator and its kernel in the hard spheres case, and showed the boundedness and "complete continuity" of its non-local part. Carleman [START_REF] Carleman | Problèmes mathématiques dans la théorie cinétique des gaz[END_REF] then proved the existence of a spectral gap by using Weyl's theorem and the compactness of the non-local part proved by Hilbert. Grad [START_REF] Grad | Principles of the kinetic theory of gases[END_REF][START_REF] Grad | Asymptotic theory of the Boltzmann equation. II[END_REF] then extended these results to the case of hard potentials with cutoff. All these results are based on non-constructive arguments. The first constructive estimates in the hard spheres case were obtained only recently in [START_REF] Baranger | Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials[END_REF] (see also [START_REF] Mouhot | Explicit coercivity estimates for the linearized Boltzmann and Landau operators[END_REF] for more general interactions, and [START_REF] Mouhot | Quantitative linearized study of the Boltzmann collision operator and applications[END_REF] for a review). Let us also mention the works [START_REF] Chang | In Studies in Statistical Mechanics[END_REF][START_REF] Bobylëv | The method of the Fourier transform in the theory of the Boltzmann equation for Maxwell molecules[END_REF][START_REF] Bobylëv | The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules[END_REF] for the different setting of Maxwell molecules where the eigenbasis and eigenvalues can be explicitly computed by Fourier transform methods. Although these techniques do not apply here, the explicit formula computed are an important source of inspiration for dealing with more general physical models.

1.6. Main results. In order to use the results obtained in [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] (see also [START_REF] Villani | Cercignani's conjecture is sometimes true and always almost true[END_REF][START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF]) for L 1 solutions, we shall need the following additional assumptions for some of our main results:

b L ∞ := sup t∈[-1,1] b(t) < ∞, (1.45) inf t∈[-1,1] b(t) > 0. (1.46)
Recall that for the hard sphere model, i.e. N = 3, γ = 1, and b ≡ const. > 0, the conditions (1.45)-(1.46) are satisfied.

The first main result of this paper is concerned with the upper bound of the rate of convergence to equilibrium when the dimension N is greater or equal to 3. Theorem 1.5 (Sharp exponential relaxation rate). Suppose N ≥ 3 and let B(z, σ) be given by (1.5) with γ ∈ (0, min{2, N -2}] and with b satisfying (1.33), (1.45), and (1.46).

Let ρ > 0, u ∈ R N and T > 0, and let λ = S b,γ (ρ, µ, T ) = S b,γ (1, 0, 1) ρ T γ/2 > 0 be the spectral gap for the linearized collision operator (1.44) associated with B(z, σ) and the Maxwellian M ∈ B + ρ,u,T (R N ). Then for any conservative measure strong solution F t of the equation (1.1) with F 0 ∈ B + ρ,u,T (R N ) we have:

∀ t ≥ 0, F t -M 2 ≤ C F 0 -M 1/2 2 e -λt
where (1) It should be noted that, in addition to the exponential rate, Theorem 1.5 also shows that for the hard potentials considered here, the convergence to equilibrium is grossly determined, i.e. the speed of the convergence only depends only on the collision kernel and the conserved macroscopic quantities (mass, momentum, energy). This is essentially different from those for non-hard potentials (i.e. γ ≤ 0), see for instance [START_REF] Carlen | On strong convergence to equilibrium for the Boltzmann equation with soft potentials[END_REF].

C := C 0 C 1/ρ,|u|/ √ T ,1/T C ρ,|u|,T 1 
(2) Applying Theorem 1.5 to the normal initial data and the Maxwellian F 0 , M ∈ B + 1,0,1 (R N ), and using

F 0 -M 1/2 2 ≤ ( F 0 2 + M 2 ) 1/2 = (2(1 + N )) 1/2 we have ∀ t ≥ 0, F t -M 2 ≤ C 0 e -λt , λ = S b,γ (1, 0, 1)
where C 0 < ∞ depends only on N , γ, and the function b. Then by normalization (using Proposition 1.4) and the relation S b,γ (ρ, µ, T ) = S b,γ (1, 0, 1)ρT γ/2 , we conclude that if F 0 , M ∈ B + ρ,u,T (R N ), then for the same constant C 0 we have

(1.47) F t -M 2 ≤ C 0 C 1/ρ,|u|/ √ T ,1/T e -λt , t ≥ 0; λ = S b,γ (ρ, u, T ).
This estimate will be used in proving our next results Corollary 1.9 and Theorem 1.10.

(3) In general, in this paper we say that a constant C depends only on some param-

eters x 1 , x 2 , . . . , x m , if C = C(x 1 , x 2 , . . . , x m
) is an explicit continuous function of (x 1 , x 2 , . . . , x m ) ∈ I where I ⊂ R m is a possible value range of the parameters (x 1 , x 2 , . . . , x m ). In particular this implies that if K is a compact subset of I, then

C is bounded on K.
The second main result is concerned with the lower bound of the rate of convergence to equilibrium.

Theorem 1.7 (Lower bound on the relaxation rate). Let B(z, σ) be given by (1.5) with γ ∈ (0, 2] and with the condition (1.33). Let ρ > 0, u ∈ R N , T > 0 and let M ∈ B + ρ,u,T (R N ) be the Maxwellian. Then for any conservative measure strong solution F t of equation (1.1) with initial data F 0 ∈ B + ρ,u,T (R N ) we have:

(i) If 0 < γ < 2, then ∀ t ≥ 0, F t -M 0 ≥ (4ρ) 1-α F 0 -M α 0 exp -β t 2 2-γ where α = 2 γ γ 2-γ and β = 1 - γ 2 2 6 (N + 1) 2 ρT γ/2 2 2-γ . (ii) If γ = 2, then ∀ t ≥ 0, F t -M 0 ≥ 4ρ F 0 -M 0 4ρ e κ t
with κ = 2 6 (N + 1) 2 ρT .

Remarks 1.8.

(1) The lower bounds established with the norm • 0 imply certain lower bounds in terms of the norm • 2 . In fact, on one hand, it is obvious that

F t -M 2 ≥ F t -M 0 .
On the other hand, for the standard case F 0 , M ∈ B + 1,0,1 (R N ), applying the inequalities (5.9) and log y ≤ √ y (y ≥ 1) we have

F 0 -M 0 ≥ 1 4(N + 1) F 0 -M 2 2 .
Then, for the general case F 0 , M ∈ B + ρ,u,T (R N ), we use part (II) of Proposition 1.4 (normalization) to deduce

F 0 -M 0 ≥ ρ 1 4(N + 1) • 1 C 1/ρ,|u|/ √ T ,1/T F 0 -M 2 2 .
(2) To our knowledge, Theorem 1.7 is perhaps the first result concerning the lower bounds on the relaxation rate for the hard potentials. Of course -and in spite of the fact that the assumptions of Theorem 1.7 are weaker than those of Theorem 1.5-, these lower bounds are very rough as compared with the corresponding upper bounds in Theorem 1.5. The particular formula in these lower bounds come from limitations of the method we adopted. We conjecture that under the same assumptions on the initial data (i.e. assuming only that F 0 have finite mass, momentum and energy), the lower bounds have the same form cst.e -cst.t as the upper bounds. This may be investigated in the future. Now let us state an important corollary of Theorem 1.5 and Theorem 1.7, which gives a positive answer (see the part (iii) below), for hard potentials, to the question of eternal solutions raised in [30, Chapter 1, subsection 2.9] (see also [START_REF] Lu | On backward solutions of the spatially homogeneous Boltzmann equation for Maxwelian molecules[END_REF]).

Corollary 1.9. Under the same assumptions on N, γ and B(z, σ) as in Theorem 1.5, let F 0 ∈ B + ρ,u,T (R N ) with ρ > 0, u ∈ R N and T > 0, and let M ∈ B + ρ,u,T (R N ) be the Maxwellian. Then we have:

(i) Let F t ∈ B +
ρ,u,T (R N ) be the unique conservative measure solution of equation (1.1) on [0, ∞) with the initial datum F 0 . If F 0 = M , then F t = M for all t ≥ 0. In other words, F t can not arrive at equilibrium state in finite time unless F 0 is an equilibrium.

(ii) Let F t ∈ B + ρ,u,T (R N ) be a conservative backward measure strong solution of equation (1.1) on an interval (-t ∞ , 0] for some 0 < t ∞ ≤ ∞, i.e.

d dt F t = Q(F t , F t ), t ∈ (-t ∞ , 0].
Then if F 0 = M , then (-t ∞ , 0] must be bounded, and if The proof of this Corollary is easy and we would like to present it here.

F 0 = M , then F t ≡ M on (-t ∞ , 0].
Proof of Corollary 1.9. Part (i) is follows simply from the lower bound in Theorem 1.7.

Part (iii) follows from part (ii). In fact let F t be an eternal solution of equation (1.1) as defined in the part (iii) of the statement. Then F t is also a backward measure strong solution of equation (1.1) on the unbounded time-interval (-∞, 0]. By part (ii) we conclude that F 0 = M and thus F t ≡ M on (-∞, 0]. Then by the uniqueness of forward solutions we conclude that F t = M for all t ∈ R.

To prove part (ii), we use the existence and the uniqueness theorem of conservative measure strong solutions (see Theorem 1.2) to extend the backward solution F t to the whole interval (-t ∞ , ∞). Fix any τ ∈ (-t ∞ , 0). Then t → F τ +t is a conservative measure strong solution of equation (1.1) on [0, ∞) with the initial datum F τ . By using the upper bound of the convergence rate in Theorem 1.5 (see also (1.47)), together with the conservation of mass, momentum, and energy we have (with λ = S b,γ (ρ, u, T ))

(1.48) ∀ t ≥ 0, F τ +t -M 0 ≤ Ce -λt ,
where C > 0 only depends on N, γ, b, ρ, u, T . Taking t = -τ gives

F 0 -M 0 ≤ Ce λτ . Thus if F 0 -M 0 > 0, then -τ ≤ 1 λ log C F 0 -M 0 < ∞. Letting τ → -t ∞ leads to t ∞ ≤ 1 λ log C F 0 -M 0 < ∞.
Next, applying Theorem 1.7, we have for all t ≥ 0

F τ +t -M 0 ≥ (4ρ) 1-α F τ -M α 0 e -β t 2 2-γ (if 0 < γ < 2) (1.49) F τ +t -M 0 ≥ 4ρ Fτ -M 0 4ρ e κ t (if γ = 2). (1.50) Now suppose F 0 -M 0 = 0. Then taking t = -τ so that F τ +t -M 0 = 0 we obtain from (1.49), (1.50) that F τ -M 0 = 0. Since τ ∈ (-t ∞ , 0) is arbitrary, this shows that F t ≡ M on (-t ∞ , 0] and concludes the proof.
The third main result is concerned with the global-in-time stability of measure strong solutions.

Theorem 1.10. Let N, γ and B(z, σ) satisfy the same assumptions in Theorem 1.5. Let

ρ 0 > 0, u 0 ∈ R N , T 0 > 0 and let M ∈ B + ρ,u,T (R N ) be the Maxwellian.
Then for any conservative measure strong solutions F t , G t of equation (1.1) with F 0 ∈ B + ρ 0 ,u 0 ,T 0 (R N ), there are explicitable constants η ∈ (0, 1), C ∈ (0, ∞) only depending on N , γ, b, ρ 0 , u 0 , T 0 , such that

sup t≥0 F t -G t 2 ≤ Ψ F 0 ( F 0 -G 0 2 ) where ∀ r ≥ 0, Ψ F 0 (r) := C r + [Ψ F 0 (r)] η with Ψ F 0 (r) defined in (1.29).
1.7. Previous results and references. Apart from the paper [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] already mentioned concerning the sharp rate of relaxation for L 1 solutions in the case of hard spheres or hard potentials with cutoff, let us mention the many previous works that developed quantitative estimates on the rate of convergence [START_REF] Carlen | Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation[END_REF][START_REF] Carlen | Entropy production estimates for Boltzmann equations with physically realistic collision kernels[END_REF][START_REF] Carlen | Entropy production estimates for Boltzmann equations with physically realistic collision kernels[END_REF][START_REF] Carlen | Central limit theorem for Maxwellian molecules and truncation of the Wild expansion[END_REF][START_REF] Carlen | Fast and slow convergence to equilibrium for Maxwellian molecules via Wild sums[END_REF][START_REF] Carlen | On strong convergence to equilibrium for the Boltzmann equation with soft potentials[END_REF][START_REF] Carlen | On strong convergence to equilibrium for the Boltzmann equation with soft potentials[END_REF][START_REF] Carlen | On strong convergence to equilibrium for the Boltzmann equation with soft potentials[END_REF]. Let us also mention the recent work [START_REF] Gualdani | Factorization of non-symmetric operators and applications[END_REF] obtaining sharp rates of relaxation for L 1 v L ∞ x solutions in the spatially inhomogeneous case in the torus.

1.8. Strategy and plan of the paper. The rest of the paper is organized as follows:

In Section 2 we give an integral representation for the one-step iterated collision operator

(f, g, h) → Q + (f, Q + (g, h)
) and prove an L p gain of integrability for this operator. This is a generalization of Abrahamsson's result [START_REF] Abrahamsson | Strong L 1 convergence to equilibrium without entropy conditions for the Boltzmann equation[END_REF] which is concerned with N = 3 and γ = 1. In order to obtain the required regularities of such iterated collision operators, the technical difficulty is to deal with small values of γ. In that case one needs multi-step iteration of Q + . In Section 3 we use iteratively the previous multi-step estimates on Q + to give a series of positive decompositions

f t = f n t + h n t for t ∈ [t 0 , ∞) with t 0 > 0, for an L 1 mild solution f t . In this decomposition the f n t are bounded (in L ∞ (R N )
) and regular (they belong at least to H 1 (R N ) for instance) when n is large enough; whereas h n t decays in L 1 norm exponentially fast as t → +∞. By approximation we then extend such positive decompositions to the measure strong solutions F t . In Section 4 we first use the results of [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] and those obtained in Section 3 to prove Theorem 1.5 for L 1 mild solutions, and then we use approximation by L 1 mild solutions to complete the proof of Theorem 1.5 for measure solutions. The proof of Theorem 1.7 is given in Section 5. In Section 6 we prove Theorem 1.10 which is an application of Theorem 1.2 and Theorem 1.5.

Throughout this paper, unless otherwise stated, we always assume that N ≥ 2 as already indicated in equation (1.1).

L p -estimates of the iterated gain term

We introduce the weighted Lebesgue spaces

L p s (R N ) for 1 ≤ p ≤ ∞, 0 ≤ s < ∞ as:          f ∈ L p s (R N ) ⇐⇒ f L p s = R N v ps |f (v)| p dv 1/p < ∞, 1 ≤ p < ∞ f ∈ L ∞ s (R N ) ⇐⇒ f L ∞ s = sup v∈R N v s |f (v)| < ∞, p = ∞.
In the case s = 0, we denote L p 0 (R N ) = L p (R N ) as usual. We shall use the following formula of change of variables. For any n ∈ S N -1 and ψ nonnegative measurable on S N -1 :

(2.1)

S N-1 ψ(σ) dσ = 1 -1 (1 -t 2 ) (N -3)/2 S N-2 (n) ψ tn + 1 -t 2 ω d ⊥ ω dt where S N -2 (n) = {ω ∈ S N -1 | ω ⊥ n} and d ⊥ ω denotes the sphere measure element of S N -2 (n).
For convenience we rewrite (2.1) as follows:

(2.2)

S N-1 ψ(σ) dσ = R ζ(t) S N-2 (n) ψ(σ n (t, ω)) d ⊥ ω dt where (2.3) ∀ t ∈ R, ζ(t) := (1 -t 2 ) N-3 2 1 (-1,1) (t) (2.4) σ n (t, ω) :=        -n if t ≤ -1 tn + √ 1 -t 2 ω if t ∈ (-1, 1
)

n if t ≥ 1.
Lemma 2.1. Suppose N ≥ 3 and let B(z, σ) be given by (1.5) with b satisfying (1.45).

Let f ∈ L 1 γ (R N ) and g, h ∈ L 1 2γ (R N ). Then Q + (f, Q + (g, h)) ∈ L 1 (R N ) with the estimate (2.5) Q + f, Q + (g, h) L 1 ≤ A 2 0 f L 1 γ g L 1 2γ h L 1 2γ .

Moreover we have the following representation: for almost every

v ∈ R N (2.6) Q + f, Q + (g, h) (v) = R N ×R N ×R N K B (v, v * , w, w * )f (v * )g(w)h(w * ) dv * dw dw * where K B : R 4N → [0, ∞) is defined by (2.7) K B (v, v * , w, w * ) :=                      2 N |v -v * ||w -w * | ζ n • 2v -(w + w * ) |w -w * | × S N-2 (n) B(w -w * , σ) B(w ′ -v * , σ ′ ) |w ′ -v * | N -2 d ⊥ ω if |v -v * ||w -w * | = 0, 0 if |w -w * ||v -v * | = 0,
where the function ζ is given by (2.3), and

(2.8) n := v -v * |v -v * | , w ′ = w + w * 2 + |w -w * | 2 σ, σ ′ = 2v -v * -w ′ |2v -v * -w ′ | with (2.9) σ = σ(ω) = σ n (t, ω) at t = n • 2v -(w + w * ) |w -w * | . Remark 2.2. Inserting the formula (1.6) of B(z, σ) into (2.7) gives the more detailed expression of K B : (2.10) K B (v, v * , w, w * ) = 2 N |w -w * | 1-γ |v -v * | ζ n • 2v -(w + w * ) |w -w * | S N-2 (n) b w-w * |w-w * | • σ b w ′ -v * |w ′ -v * | • σ ′ |w ′ -v * | N -2-γ d ⊥ ω for |w -w * ||v -v * | = 0. Also we note that (2.11) K B (v, v * , w, w * ) > 0 =⇒ |v -v * ||w -w * | = 0 and n • 2v -(w + w * ) |w -w * | < 1
which implies, by using the formula (2.9) for σ n (t, ω) in this case and the value of t, that

(v -w ′ ) • (v -v * ) = 0 and therefore by Pythagoras' theorem |w ′ -v * | = |w ′ -v + v -v * | = |v -v * | 2 + |v -w ′ | 2 , (2.12) |w ′ -v * | ≥ |v -v * |. (2.13)
Proof of Lemma 2.1. We shall use the following formula of change of variables (see [30, Chapter 1, Sections 4.5-4.6]): For every nonnegative measurable function ψ on R 4N , one has (2.14)

R N ×R N ×S N-1 B(v -v * , σ)ψ(v ′ , v ′ * , v, v * ) dσ dv * dv = R N ×R N ×S N-1 B(v -v * , σ)ψ(v, v * , v ′ , v ′ * ) dσ dv * dv.
We can assume that f, g, h are all nonnegative. Applying (1.10), (2.14), and recalling definition of L B [ϕ] (see (1.17)) we have, for any nonnegative measurable function ϕ on

R N ,          R N Q + (f, Q + (g, h))(v)ϕ(v) dv = R N f (v * ) R N Q + (g, h)(w)L B [ϕ](w, v * ) dw dv * , R N Q + (g, h)(w)L B [ϕ](w, v * ) dw = R N ×R N L B [L B [ϕ](•, v * )] (w, w * )g(w)h(w * ) dw dw * ,
and so

(2.15)

R N Q + (f, Q + (g, h))(v)ϕ(v) dv = R N ×R N ×R N L B [L B [ϕ](•, v * )] (w, w * )f (v * )g(w)h(w * ) dv * dw dw * .
Taking ϕ = 1 and using the inequalities

(2.16)      |w -w * | ≤ w w * , |w ′ -v * | ≤ |w + w * | 2 + |w -w * | 2 + |v * | ≤ w w * v * ,
we obtain

L B [L B [1](•, v * )] (w, w * ) ≤ A 2 0 v * γ w 2γ w * 2γ
and it follows from (2.15) that

0 ≤ Q + f, Q + (g, h) ∈ L 1 (R N )
and so (2.5) holds true.

Comparing (2.15) with (2.6), it appears that in order to prove the integral representation (2.6) we only need to prove that the following identity (2.17)

∀ 0 ≤ ϕ ∈ C c (R N ), L B [L B [ϕ](•, v * )] (w, w * ) = R N K B (v, v * , w, w * )ϕ(v) dv holds for all w, w * , v * ∈ R N satisfying (2.18) 0 = w + w * 2 -v * = |w -w * | 2 = 0. Observe that    L B [L B [ϕ](•, v * )] (w, w * ) = L B [L B [ϕ(v * + •)](•, 0)] (w -v * , w * -v * ), K B (v, v * , w, w * ) = K B (v -v * , 0, w -v * , w * -v * ).
By replacing respectively ϕ(v * + •), wv * and w *v * with ϕ(•), w and w * , we can assume without loss of generality that v * = 0. That is, in order to prove (2.17), we only need to prove

(2.19) ∀ 0 ≤ ϕ ∈ C c (R N ), L B [L B [ϕ](•, 0)] (w, w * ) = R N K B (v, 0, w, w * )ϕ(v) dv.
To do this we first assume that b ∈ C([-1, 1]) so that the use of the Dirac distribution is fully justified. We compute (2.20)

L B [L B [ϕ](•, 0)] (w, w * ) = S N-1 B(w -w * , σ) S N-1 B(w ′ , ω)ϕ w ′ 2 + |w ′ | 2 ω dω dσ,
and, by using (2.8) and (2.18) with v * = 0, we have w ′ = 0 for all σ ∈ S N -1 . Let δ = δ(x)

be the one-dimensional Dirac distribution. Applying the integral representation

∀ ψ ∈ C((0, ∞)), ρ > 0, ψ(ρ) = 2 ρ N -2 ∞ 0 r N -1 ψ(r)δ(ρ 2 -r 2 ) dr to the function ψ(ρ) := ϕ w ′ 2 + ρω
and then taking ρ = |w ′ |/2 and changing variable rω = z we have

S N-1 B(w ′ , ω)ϕ w ′ 2 + |w ′ | 2 ω dω = 2 w ′ 2 -(N -2) R N B w ′ , z |z| ϕ w ′ 2 + z δ |w ′ | 2 4 -|z| 2 dz.
We then use the change of variable z = vw ′ /2 and Fubini theorem:

L B [L B [ϕ](•, 0)] (w, w * ) = R N ϕ(v) S N-1 2 w ′ 2 -(N -2) B(w -w * , σ)B w ′ , v -w ′ /2 |v -w ′ /2| δ w ′ 2 2 -v - w ′ 2 2 dσ dv.
We now assume that v = 0 and n = v/|v| satisfy

n • 2v -(w + w * ) |w -w * | = 1, v - w + w * 4 = w -w * 4 .
We deduce that |vw ′ /2| > 0 for all σ ∈ S N -1 and we compute using (2.2)-(2.3)-(2.4)

with n = v/|v| that S N-1 2 w ′ 2 -(N -2) B(w -w * , σ)B w ′ , v -w ′ /2 |v -w ′ /2| δ |w ′ | 2 4 -v - w ′ 2 2 dσ = R ζ(t)   S N-2 (n) 2 w ′ 2 -(N -2) B(w -w * , σ)B w ′ , v -w ′ /2 |v -w ′ /2| σ=σn(t,ω) d ⊥ ω   × δ |v| |w -w * | 2 t -v • v - w + w * 2 dt = 2 N |v||w -w * | ζ v • (2v -(w + w * )) |v||w -w * | S N-2 (n) |w ′ | -(N -2) B(w-w * , σ)B w ′ , 2v -w ′ |2v -w ′ | d ⊥ ω
where σ in the last line is given by (2.9). Thus we obtain

(2.21) L B [L B [ϕ](•, 0)](w, w * ) = 2 N |w -w * | R N ϕ(v) |v| ζ n • 2v -(w + w * ) |w -w * | × S N-2 (n) |w ′ | -(N -2) B(w -w * , σ)B w ′ , 2v -w ′ |2v -w ′ | d ⊥ ω dv.
This proves (2.19).

Finally, thanks to N ≥ 3, we use standard approximation arguments in order to prove that (2.19) still holds without the continuity assumption on the function b. We skip these classical calculations.

Lemma 2.3. Suppose N ≥ 3 and let B(z, σ) be defined in (1.5) with b satisfying (1.45). Let 1 ≤ p, q ≤ ∞ satisfy 1/p + 1/q = 1.

Then, in the case where we have

(2.22) 0 < γ < N -2, N -1 N -1 -γ ≤ p < N N -1 -γ ,
the following estimate holds

(2.23) R N [K B (v, v * , w, w * )] p dv 1/p ≤ C p b 2 L ∞ |w -w * | 2γ-N/q .
Second, in the case where we have

(2.24) γ ≥ N -2, 1 ≤ p < N,
then the following estimate holds:

(2.25) R N [K B (v, v * , w, w * )] p dv 1/p ≤ C p b 2 L ∞ v * 2γ-N/q w 2γ-N/q w * 2γ-N/q .
The constants C p only depend on N, γ, p.

Proof. By replacing the function b with b/ b L ∞ we can assume for notation convenience

that b L ∞ = 1. Fix w, w * , v * ∈ R N .
To prove the lemma we may assume that w = w * .

Recall that N ≥ 3 implies ζ(t) ≤ 1 (-1,1) (t). Then from (2.10)-(2.13) we have

(2.26) K B (v, v * , w, w * ) ≤ 2 N |S N -2 | |w -w * | 1-γ • 1 |v -v * | N -1-γ 1 (-1,1) n • 2v -(w + w * ) |w -w * | for 0 < γ < N -2, whereas for γ ≥ N -2 we have (2.27) K B (v, v * , w, w * ) ≤ 2 N |S N -2 | v * γ+2-N w 2γ+1-N w * 2γ+1-N 1 |v -v * | 1 (-1,1) n • 2v -(w + w * ) |w -w * |
where we used N -2 ≥ 1 and the inequalities in (2.16).

Let us define

J β (w, w * ) = R N 1 |v -v * | β 1 (-1,1) n • 2v -(w + w * ) |w -w * | dv.
We need to prove that

J β (w, w * ) ≤ |S N -1 |( v * w w * ) N -1-β |w -w * | when 0 < β < N -1, (2.28) J β (w, w * ) ≤ |S N -1 | (N -β) |w -w * | N -β when N -1 ≤ β < N. (2.29)
To do this we use the change of variable

v = v * + |w -w * | 2 rσ, dv = w -w * 2 N r N -1 dr dσ to compute (2.30) J β (w, w * ) = w -w * 2 N -β S N-1 I(u • σ) dσ
where

I(u • σ) = ∞ 0 r N -1-β 1 {|r+u•σ|<1} dr, u = 2v * -(w + w * ) |w -w * | .
Let us now estimate

I(u • σ) uniformly in σ. If u • σ ≥ 1, then I(u • σ) = 0. Suppose u • σ < 1. If 0 < β < N -1, then I(u • σ) ≤ 2(1 + |u|) N -1-β ≤ 2 | w-w * 2 | + | w+w * 2 | + |v * | | w-w * 2 | N -1-β
which together with (2.30) and the third inequality in (2.16) gives (2.28

). If N -1 ≤ β < N , then 0 < N -β ≤ 1 so that I(u • σ) ≤ 2 N -β N -β which implies (2.29).
Now suppose (2.22) is satisfied. Then using (2.26) and (2.28) with 

N -1 ≤ β = (N -1 -γ)p < N we obtain (2.23): R N [K B (v, v * , w, w * )] p dv 1/p ≤ C p |w -w * | γ-1 J (N -1-γ)p (w, w * ) 1/p ≤ C p |w -w * | γ-1 |w -w * | N-p(N-1-γ) p = C p |w -w * | 2γ-N/q . Next suppose (2.24) is satisfied. If N -1 ≤ p < N ,
R N [K B (v, v * , w, w * )] p dv 1/p ≤ C p v * γ+2-N w 2γ+1-N w * 2γ+1-N (J p (w, w * )) 1/p ≤ C p v * γ+2-N w 2γ-N/q w * 2γ-N/q .
Similarly if 1 ≤ p < N -1, then using (2.27)-(2.28) with β = p we have

R N [K B (v, v * , w, w * )] p dv 1/p ≤ C p v * γ-(N -1)/q w 2γ-N/q w * 2γ-N/q . Since γ ≥ N -2 ≥ 1 and 1 ≤ p < N imply max γ + 2 -N, γ - N -1 q ≤ 2γ -N/q, it follows that max v * γ+2-N , v * γ-N-1 q ≤ v * 2γ-N/q .
This concludes the proof of (2.25).

Lemma 2.4. Let K(v, v * ) be a measurable function on R N × R N and let

∀ v ∈ R N , T (f )(v) := R N K(v, v * )f (v * ) dv * . Assume that 1 ≤ r < ∞, 0 ≤ s < ∞ and that there is 0 < A < ∞ such that (2.31) R N |K(v, v * )| r dv 1 r ≤ A v * s a.e. v * ∈ R N . Then (2.32) ∀ f ∈ L 1 s (R N ), T (f ) L r ≤ A f L 1 s . Furthermore let 1 ≤ p, q ≤ ∞ satisfy 1 p = 1 q + 1 r -1
and assume that there is 0 < B < ∞ such that

(2.33) R N (|K(v, v * )| v * -s ) r dv * 1 r ≤ B a.e. v ∈ R N . Then (2.34) ∀ f ∈ L q s (R N ), T (f ) L p ≤ A r p B 1-r p f L q s .
Proof. Let us define

∀ v ∈ R N , T s (f )(v) := R N K(v, v * ) v * -s f (v * ) dv * .
By Minkowski inequality and (2.31) we have

(2.35) ∀ f ∈ L 1 (R N ), T s (f ) L r ≤ A f L 1 .
Also by (2.33) we have

(2.36) ∀ f ∈ L r ′ (R N ), T s (f ) L ∞ ≤ B f L r ′ where 1 ≤ r ′ ≤ ∞ satisfies 1/r + 1/r ′ = 1.
Let θ = 1r/p. By assumption on p, q, r we have 0 ≤ θ ≤ 1 and

1 p = 1 -θ r + θ ∞ , 1 q = 1 -θ 1 + θ r ′ .
So 

∀ f ∈ L q (R N ), T s (f ) L p ≤ A 1-θ B θ f L q . Now if we set (f ) s (v * ) = v * s f (v * ), then T (f ) = T s ((f ) s ), (f ) s L 1 = f L 1 s , (f ) s L q = f L q s
and thus (2.32)-(2.34) follow from (2.35)-(2.37).

In order to highlight structures of inequalities, we adopt the following notional convention: Functions f, g, h appeared below are arbitrary members in the classes indicated.

Whenever the notation (for instance)

f L p s appears, it always means that f ∈ L p s (R N ) with the norm f L p s ; and if f L p s , f L q k appear simultaneously, it means that f ∈ L p s (R N ) ∩ L q k (R N ). Lemma 2.5. Let 0 < α < N, 1 ≤ αq < N, 1 < p ≤ ∞ with 1/p + 1/q = 1. Then sup v∈R N R N |f (v * )| |v -v * | α dv * ≤ 2 S N -1 N -αq α N f 1-αq N L 1 f αq N L p .
Proof. This follows from Hölder inequality and a minimizing argument.

Lemma 2.6. Suppose N ≥ 3 and let B(z, σ) be defined in (1.5) with the condition (1.45). For any w, w * ∈ R N with w = w * , let

(2.38) ∀ v ∈ R N , T w,w * (f )(v) := R N K B (v, v * , w, w * )f (v * ) dv *
for nonnegative measurable or certain integrable functions f as indicated below.

(i) Suppose 0 < γ < N -2. Let p 1 = (N -1)/(N -1 -γ). Then (2.39) T w,w * (f ) L p 1 ≤ C p 1 b 2 L ∞ f L 1 w γ w * γ . Also if 1 < p, q < ∞ satisfy 1 p = 1 q + 1 p 1 -1 then (2.40) T w,w * (f ) L p ≤ C p b 2 L ∞ f L q 1 w 1- p 1 p w * 1- p 1 p |w -w * | 1-γ-1 p . And if 1 < p ≤ ∞, 1 ≤ q < N/(N -1 -γ) satisfy 1/p + 1/q = 1, then (2.41) T w,w * (f ) L ∞ ≤ C p b 2 L ∞ |w -w * | 1-γ f 1-N-1-γ N q L 1 f N-1-γ N q L p . (ii) Suppose γ ≥ N -2. Let 1 < p < N , 1/p + 1/q = 1. Then (2.42) T w,w * (f ) L p ≤ C p b 2 L ∞ f L 1 2γ-N/q w 2γ-N/q w * 2γ-N/q . Furthermore if N/(N -1) < p < N , then (2.43) T w,w * (f ) L ∞ ≤ C p b 2 L ∞ f 1-q N L 1 γ+2-N f q N L p γ+2-N w 2γ+1-N w * 2γ+1-N .
The constants C p < ∞ only depend on N, γ, p.

Proof. As in the proof of Lemma 2.3 we can assume that b L ∞ = 1.

Case (i). Suppose 0 < γ < N -2. By Lemma 2.3 we have

(2.44) R N [K B (v, v * , w, w * )] p 1 dv 1/p 1 ≤ C p 1 |w -w * | 2γ-N/q 1
where q 1 = (p 1 )/(p 1 -1) = (N -1)/γ. Since 

0 < 2γ -N/q 1 <
K B (v, v * , w, w * ) > 0 =⇒ 1 + |v -v * | 2 ≤ √ 2 w w * v * so that (2.45) K B (v, v * , w, w * ) v * -1 ≤ √ 2 w w * K B (v, v * , w, w * ) 1 + |v -v * | 2 .
This together with (2.26) and (N -

1 -γ)p 1 = N -1 gives (2.46) R N (K B (v, v * , w, w * ) v * -1 ) p 1 dv * 1/p 1 ≤ C p 1 w w * |w -w * | 1-γ R N dv * (1 + |v -v * | 2 ) p 1 /2 |v -v * | N -1 1/p 1 = C p 1 w w * |w -w * | 1-γ .
Note that the above integral is finite since p 1 > 1. If we set

A w,w * := C p 1 |w -w * | 2γ-N/q 1 , B w,w * := C p 1 w w * |w -w * | 1-γ
then we see from (2.44) and (2.46) that Lemma 2.4 can be used for T w,w * (f ) with r = p 1 and s = 1, and thus for all f ∈ L q 1 (R N )

T w,w * (f ) L p ≤ (A w,w * ) p 1 p (B w,w * ) 1- p 1 p f L q 1 = C p w 1-p 1 p w * 1- p 1 p |w -w * | 1-γ-1 p f L q 1
where we have computed (using the definitions of p 1 , q 1 )

p 1 p 2γ - N q 1 -1 - p 1 p (1 -γ) = 1 p + γ -1.
This proves (2.40). To prove (2.41) we use (2.26) to get

|T w,w * (f )(v)| ≤ 2 N |S N -2 | |w -w * | 1-γ R N |f (v * )| dv * |v -v * | N -1-γ . Since 1 ≤ (N -1 -γ)q < N , it follows from Lemma 2.5 that T w,w * (f ) L ∞ ≤ C p |w -w * | 1-γ f 1-N-1-γ N q L 1 f N-1-γ N q L p .
Case (ii). Suppose γ ≥ N -2. In this case we recall the inequality (2.25). Let 1 < p < N and 1/p + 1/q = 1. Then applying Lemma 2.4 to T w,w * (f ) with r = p, s = 2γ -N/q gives (2.42). Finally suppose N/(N -1) < p < N . Recalling (2.38) and using (2.27) we have

|T w,w * (f )(v)| ≤ C N,γ w 2γ+1-N w * 2γ+1-N R N v * γ+2-N |v -v * | |f (v * )| dv * .
Since q = p/(p -1) < N , it follows from Lemma 2.5 that

R N v * γ+2-N |v -v * | |f (v * )| dv * ≤ C p f 1-q N L 1 γ+2-N f q N L p γ+2-N .
This proves (2.43).

Let f, g, h be nonnegative measurable functions on R N . Define for any s ≥ 0

(f ) s (v) := v s f (v).
Then applying the inequality

v ≤ v ′ v ′ * we have    Q + (f, g) s ≤ Q + ((f ) s , (g) s ), Q + (f, Q + (g, h)) s ≤ Q + (f ) s , Q + ((g) s , (h) s ) ,
and so on and so forth. Consequently we have for all s ≥ 0 and 1 ≤ p ≤ ∞:

(2.47)

Q + (f, Q + (g, h)) L p s ≤ Q + (f ) s , Q + ((g) s , (h) s ) L p
provided that the right hand side makes sense. Now we are going to prove the L p and L ∞ boundedness of the iterated operator

Q + (f, Q + (g, h)). Let (2.48) N γ =      N -1 γ if 0 < γ < N -2 1 if γ ≥ N -2
where [x] denotes the largest integer not exceeding x.

Theorem 2.7. Suppose N ≥ 3 and let B(z, σ) be defined by (1.5) with the condition (1.45). Given any s ≥ 0 we have:

(i) Suppose 0 < γ < N -2.
Let N γ be defined in (2.48) and let

p n = N -1 N -1 -nγ ∈ (1, ∞], n = 1, 2, . . . , N γ .
Then (a) For all n = 1, 2, . . . , N γ , we have

(2.49) Q + (f, Q + (g, h)) L p 1 s ≤ C p 1 b 2 L ∞ f L 1 s g L 1 s+γ h L 1 s+γ . (b) If 1 ≤ n ≤ N γ -1, then (2.50) Q + (f, Q + (g, h)) L p n+1 s ≤ C p n+1 b 2 L ∞ f L pn s+1 g L 1 s+γ 1 h 1-θn L 1 s+γ 1 h θn L pn s+γ 1
where

(2.51) γ 1 = max{γ , 1}, θ n = 1 N 1 - N -2 n + , n ≥ 1. (c) Finally if n = N γ , then (2.52) Q + (f, Q + (g, h)) L ∞ s ≤ C ∞ b 2 L ∞ f 1-α 1 L 1 s f α 1 L p Nγ s g L 1 s+γ * h 1-α 2 L 1 s+γ * h α 2 L p Nγ s
where γ * = (γ -1) + and

(2.53) 0 < α 1 := N -1 γN γ N -1 -γ N < 1, 0 ≤ α 2 := N -1 γN γ (1 -γ) + N < 1. (ii) Suppose γ ≥ N -2. Let 1 < p < N , 1/p + 1/q = 1. Then (2.54) Q + (f, Q + (g, h)) L p s ≤ C p b 2 L ∞ f L 1 s+2γ-N/q g L 1 s+2γ-N/q h L 1 s+2γ-N/q . Furthermore if N/(N -1) < p < N , then (2.55) 
Q + f, Q + (g, h) L ∞ s ≤ C p b 2 L ∞ f 1-q N L 1 s+γ+2-N f q N L p s+γ+2-N g L 1 s+2γ+1-N h L 1 s+2γ+1-N .
All the constants C p < ∞ only depend on N, γ, p.

Remark 2.8. Observe that in the case γ ≥ N -2, the iterated operator maps (forgetting about the weights) L 1 × L 1 × L 1 to L p for 1 < p < N . This can be recovered heuristically from Lions' theorem in [START_REF] Lions | Compactness in Boltzmann's equation via Fourier integral operators and applications[END_REF] and [START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF] that states that

Q + maps L 1 × H s to H s+(N -1)/2
for s ∈ R. Then L 1 is contained in H -N/2-0 and applying twice Lions' theorem one gets that the iterated operator maps

L 1 × L 1 × L 1 to H 2(N -1)/2-N/2-0 = H N/2-1-0 .
And the Sobolev embedding for the space H N/2-1 is precisely L N .

Proof. The proof is a direct application of the inequalities obtained in Lemma 2.5 and Lemma 2.6. We can assume that f, g, h are all nonnegative. And because of (2.47), we need only to prove the theorem for s = 0. By the integral representation of

Q + (f, Q + (g, h))
and the definition of T w,w * we have

Q + (f, Q + (g, h))(v) = R N ×R N T w,w * (f )(v)g(w)h(w * ) dw dw * ,
and therefore

(2.56)

Q + f, Q + (g, h) L p ≤ R N ×R N T w,w * (f ) L p g(w)h(w * ) dw dw * for all 1 ≤ p ≤ ∞.
Case (i). Suppose 0 < γ < N -2. By (2.39) we have

T w,w * (f ) L p 1 ≤ C p 1 b 2 L ∞ f L 1 w γ w * γ
and so by (2.56)

Q + (f, Q + (g, h)) L p 1 ≤ C p 1 b 2 L ∞ f L 1 g L 1 γ h L 1 γ .
This proves (2.49) (with s = 0).

-Suppose 1 ≤ n ≤ N γ -1. By definition of p n we have 1

p n+1 = 1 p n + 1 p 1 -1, n = 1, 2, . . . , N γ -1.
By (2.40) and (2.56) we have

(2.57)                      T w,w * (f ) L p n+1 ≤ C p n+1 b 2 L ∞ w 1- p 1 p n+1 w * 1- p 1 p n+1 |w -w * | 1-γ-1 p n+1 f L pn 1 , Q + (f, Q + (g, h)) L p n+1 ≤ C p n+1 b 2 L ∞ f L pn 1 R N ×R N w 1- p 1 p n+1 w * 1- p 1 p n+1 |w -w * | 1-γ-1 p n+1 g(w)h(w * )dw dw * .
Let q n ≥ 1 be defined by 1

q n + 1 p n = 1, i.e. q n = N -1 nγ .
We have

1 -γ - 1 p n+1 = n + 2 -N N -1 γ, q n 1 -γ - 1 p n+1 = 1 - N -2 n .
If n ≤ N -2, then 1γ -1/p n+1 ≤ 0 and using |ww * | ≤ w w * we have

w 1- p 1 p n+1 w * 1- p 1 p n+1 |w -w * | 1-γ-1 p n+1
≤ w γ w * γ and so by (2.57) we have

Q + f, Q + (g, h) L p n+1 ≤ C p n+1 b 2 L ∞ f L pn 1 g L 1 γ h L 1 γ .
If n > N -2, then 0 < q n (1γ -1/p n+1 ) < 1 so that applying Lemma 2.5 (with q = q n , α = 1γ -1/p n+1 ) and recalling the definition of θ n we have (2.58)

R N ×R N w 1- p 1 p n+1 w * 1- p 1 p n+1 |w -w * | 1-γ-1 p n+1 g(w)h(w * ) dw dw * ≤ C p n+1 g L 1 1 ( h L 1 1 ) 1-θn ( h L pn 1 ) θn
and thus (2.50) (with s = 0) follows from (2.57) and (2.58).

-Now let n = N γ . Let us recall that

q Nγ = N -1 N γ γ , N γ > N -1 γ -1 > 0, hence (2.59) q Nγ (N -1 -γ) < N -1.
Using (2.41) and (2.56) (for the L ∞ norm) we have

(2.60)                T w,w * (f ) L ∞ ≤ C ∞ b 2 L ∞ |w -w * | 1-γ f 1-N-1-γ N q Nγ L 1 f N-1-γ N q Nγ L p Nγ , Q + f, Q + (g, h) L ∞ ≤ C ∞ b 2 L ∞ f 1-N-1-γ N q Nγ L 1 f L p Nγ N-1-γ N q Nγ R N ×R N g(w)h(w * ) |w -w * | 1-γ dw dw * .
If 0 < γ < 1, then from (2.59) and N ≥ 3 we have 0 < q Nγ (1γ) < N -1 so that using Lemma 2.4 gives (2.61)

R N ×R N g(w)h(w * ) |w -w * | 1-γ dw dw * ≤ C γ g L 1 h 1-1-γ N q Nγ L 1 h 1-γ N q Nγ L p Nγ . If 1 ≤ γ < N -2, then |w -w * | γ-1 ≤ w γ-1 w * γ-1 and so (2.62) R N ×R N g(w)h(w * ) |w -w * | 1-γ dw dw * ≤ g L 1 γ-1 h L 1 γ-1 .
Thus (2.52) (with s = 0) follows from (2.60), (2.61) and (2.62).

Case (ii). Suppose γ ≥ N -2 and let 1 < p < N , 1/p + 1/q = 1. Then (2.54) (with s = 0) follows from (2.56) and (2.42). Furthermore if N/(N -1) < p < N , then (2.55) (with s = 0) follows from (2.56) (for the L ∞ norm) and (2.43).

Iteration and Decomposition of Solutions

We 

(3.1) ∀ s, t ≥ 0, E t s (v) := exp - t s R N |v -v * | γ f τ (v * ) dv * dτ .
Given any t 0 ≥ 0 we also define for all t ≥ t 0

f 0 t (v) = f t (v), h 0 t (v) = 0, (3.2) f n t (v) = t t 0 E t t 1 (v) t 1 t 0 Q + f n-1 t 1 , Q + (f n-1 t 2 , f n-1 t 2 )E t 1 t 2 (v) dt 2 dt 1 , (3.3) h 1 t (v) = f t 0 (v)E t t 0 (v) + t t 0 Q + f t 1 , f t 0 E t 1 t 0 (v)E t t 1 (v) dt 1 , (3.4) h n t (v) = h 1 t (v) + t t 0 E t t 1 (v) t 1 t 0 Q + f t 1 , Q + (f t 2 , h n-1 t 2 )E t 1 t 2 (v) dt 2 dt 1 (3.5) + t t 0 E t t 1 (v) t 1 t 0 Q + f t 1 , Q + (f n-1 t 2 , h n-1 t 2 )E t 1 t 2 (v) dt 2 dt 1 + t t 0 E t t 1 (v) t 1 t 0 Q + h n-1 t 1 , Q + f n-1 t 2 , f n-1 t 2 E t 1 t 2 (v) dt 2 dt 1
for n 1, 2, 3, . . . Then f n t ≥ 0, h n t ≥ 0 and there is a null set Z ⊂ R N which is independent of t and n such that for all v ∈ R N \ Z

(3.6) ∀ t ∈ [t 0 , ∞), n = 1, 2, 3, . . . , f t (v) = f n t (v) + h n t (v).
Proof. In the following we denote by Z 0 , Z 1 , Z 2 , • • • ⊂ R N some null sets (i.e. meas(Z n ) = 0) which are independent of the time variable t. The decomposition (3.6) is based on the Duhamel representation formula for the solution f t : for all v ∈ R N \ Z 0

(3.7) ∀ t ≥ t 0 , f t (v) = f t 0 (v)E t t 0 (v) + t t 0 Q + (f t 1 , f t 1 )(v)E t t 1 (v) dt 1 .
Here we note that in the definition of E t s (v) we have used the assumption (1.33), i.e., A 0 = 1. Applying (3.7) to f t at time t = t 1 and inserting it into the second argument of

Q + (f t 1 , f t 1 ) we obtain for all t ≥ t 0 and all v ∈ R N \ Z 1 (3.8) f t (v) = h 1 t (v) + t t 0 E t t 1 (v) t 1 t 0 Q + f t 1 , Q + (f t 2 , f t 2 )E t 1 t 2 (v) dt 2 dt 1 .
That is, we have the decomposition

∀ t ≥ t 0 , ∀ v ∈ R N \ Z 1 , f t (v) = h 1 t (v) + f 1 t (v).
Suppose for some n ≥ 1, the decomposition

f t (v) = h n t (v) + f n t (v) holds for all t ≥ t 0 and all v ∈ R N \ Z n . Let us insert f t 2 = h n t 2 + f n t 2 and f t 1 = h n t 1 + f n t 1 into Q + f t 1 , Q + (f t 2 , f t 2 )E t 1
t 2 in the following way:

         Q + f t 1 , Q + (f t 2 , f t 2 )E t 1 t 2 = Q + f t 1 , Q + (f t 2 , h n t 2 )E t 1 t 2 + Q + f t 1 , Q + (f t 2 , f n t 2 )E t 1 t 2 , Q + f t 1 , Q + (f t 2 , f n t 2 )E t 1 t 2 = Q + f t 1 , Q + (f n t 2 , h n t 2 )E t 1 t 2 + Q + f t 1 , Q + (f n t 2 , f n t 2 )E t 1 t 2 , Q + f t 1 , Q + (f n t 2 , f n t 2 )E t 1 t 2 = Q + h n t 1 , Q + (f n t 2 , f n t 2 )E t 1 t 2 + Q + f n t 1 , Q + (f n t 2 , f n t 2 )E t 1 t 2 .
Then

Q + f t 1 , Q + (f t 2 , f t 2 )E t 1 t 2 = Q + f t 1 , Q + (f t 2 , h n t 2 )E t 1 t 2 + Q + f t 1 , Q + (f n t 2 , h n t 2 )E t 1 t 2 + Q + h n t 1 , Q + (f n t 2 , f n t 2 )E t 1 t 2 + Q + f n t 1 , Q + (f n t 2 , f n t 2 )E t 1 t 2 .
Inserting this into (3.8) yields

∀ t ≥ t 0 , ∀ ∈ R N \ Z n+1 , f t (v) = h n+1 t (v) + f n+1 t (v).
This proves the lemma by induction, and the null set Z can be chosen Z = ∞ n=1 Z n .

Note that the above iterations make sense since f 0 t = f t ≥ 0 and, by induction, all f n t are nonnegative. Note also that if t 0 > 0, then, by moment production (Theorem 1.

2), we have

∀ t ≥ t 0 , f t ∈ s≥0 L 1 s (R N ).
This enables us to use moment estimates for Q + (f, Q + (g, h)):

(3.9) ∀ s ≥ 0, Q + f, Q + (g, h) L 1 s ≤ f L 1 s+γ g L 1 s+2γ h L 1 s+2γ
. Before we can show the regularity property of f n t and the exponential decay (in norm) of h n t we need further preparation. Recall that the Sobolev space

H s (R N ) (s > 0) is a subspace of f ∈ L 2 (R N ) defined by f ∈ H s (R N ) ⇐⇒ f H s = f L 2 s = R N ξ 2s | f (ξ)| 2 dξ 1/2 < ∞
where f (ξ) is the Fourier transform of f :

f (ξ) = F(f )(ξ) = R N f (v)e -iξ•v dv.
As usual we denote the homogeneous seminorm as

f Ḣs = f L2 s = R N |ξ| 2s | f (ξ)| 2 dξ 1/2 .
The norm and seminorm are related by

(3.10) f Ḣs ≤ f H s ≤ (2π) N/2 2 s/2 f L 2 + 2 s/2 f Ḣs .
It is easily proved (see [20, pp. 416-417]) that if the angular function b satisfies

(3.11) b 2 L 2 := S N -2 π 0 b(cos θ) 2 sin N -2 θ dθ < ∞ then Q + : L 2 N +γ (R N ) × L 2 N +γ (R N ) → L 2 (R N ) is bounded with (3.12) Q + (f, g) L 2 ≤ C b L 2 f L 2 N+γ g L 2 N+γ
where C < ∞ only depends on N and γ. This together with (3.10), (3.12) and the estimate of Q + (f, g) Ḣs obtained in [START_REF] Bouchut | A proof of the smoothing properties of the positive part of Boltzmann's kernel[END_REF][START_REF] Lu | A direct method for the regularity of the gain term in the Boltzmann equation[END_REF] for s = (N -1)/2 leads to the following lemma.

Lemma 3.2 ( [START_REF] Bouchut | A proof of the smoothing properties of the positive part of Boltzmann's kernel[END_REF][START_REF] Lu | A direct method for the regularity of the gain term in the Boltzmann equation[END_REF]). Let B(z, σ) be defined in (1.5) with the condition (3.11). Then

Q + : L 2 N +γ (R N ) × L 2 N +γ (R N ) → H N-1 2 (R N ) is bounded with the estimate Q + (f, g) H N-1 2 ≤ C b L 2 f L 2 N+γ g L 2 N+γ
where C < ∞ only depends on N, γ.

The following lemma will be useful to prove the H 1 -regularity of f n t in the decomposition f t = f n t + h n t .

Lemma 3.3. Let B(z, σ) be defined in (1.5) with γ ∈ (0, 2] and with the condition (1.33). Let F t ∈ B + 1,0,1 (R N ) be a conservative measure strong solution of equation (1.1). Then for any t 0 > 0 we have

(3.13) ∀ t ≥ t 0 , ∀ v ∈ R N , R N |v -v * | γ dF t (v * ) ≥ a v γ ≥ a
where

(3.14) a := K 4 1 + max{1, 1/t 0 } 2/γ -(2-γ)/2 and K 4 = K 4 (1, 1 + N ) (> 1) is the constant in (1.23). In particular if t 0 ≥ 1, then a is independent of t 0 .
Moreover for any t 0 ≤ t 1 ≤ t < ∞, let E t t 1 (v) be defined as in (3.1) for the measure F τ , i.e.

E t t 1 (v) := exp - t t 1 R N |v -v * | γ dF τ (v * ) dτ . Then for any f ∈ L ∞ (R N ) ∩ L 1 2 (R N ) ∩ H 1 (R N ) we have f E t t 1 ∈ H 1 (R N ) and (3.15) f E t t 1 H 1 (R N ) ≤ C f L ∞ (R N ) + f L 1 2 (R N ) + f H 1 (R N ) e -a(t-t 1 ) (1 + t -t 1 )
where C only depends on N, γ.

Proof. Let L s (F t )(v) := R N |v -v * | s dF t (v * ).
By conservation of mass, momentum and energy, we have 

L 2 (F t )(v) = N + |v| 2 > v
L 4 (F t )(v) ≤ v 4 F t 4 ≤ v 4 K 4 (1 + 1/t 0 ) 2 γ .
Then from the decomposition 2 = γ • 2 4-γ + 4 • 2-γ 4-γ and using Hölder inequality we have

v 2 < L 2 (F t )(v) ≤ [L γ (F t )(v)] 2 4-γ [L 4 (F t )(v)] 2-γ 4-γ ≤ [L γ (F t )(v)] 2 4-γ v 4(2-γ) 4-γ K 4 (1 + 1/t 0 ) 2 γ 2-γ 4-γ .
This gives

∀ t ≥ t 0 , v γ ≤ L γ (F t )(v) K 4 (1 + 1/t 0 ) 2 γ 2-γ 2 ≤ 1 a L γ (F t )(v)
and (3.13) follows.

The proof of (3.15) is based on the following a priori estimates. First of all we have

|∂ v j E t t 1 (v)| 2 ≤ γ 2 e -2a(t-t 1 ) (t -t 1 ) t t 1 dτ R N |v -v * | 2(γ-1) dF τ (v * )
where we used Cauchy-Schwartz inequality, F τ 0 = 1, and E t t 1 (v) ≤ e -a(t-t 1 ) .

Case 1: 0 < γ < 1. In this case we have -N < 2(γ -1) < 0 so that

R N |f (v)| 2 |v -v * | 2(γ-1) dv ≤ C f 2 L ∞ + f 2 L 2 hence N j=1 f ∂ v j E t t 1 (v) 2 L 2 ≤ C f 2 L ∞ + f 2 L 2 e -2a(t-t 1 ) (t -t 1 ) 2 . Case 2: γ ≥ 1. Since γ ≤ 2, this implies |v -v * | 2(γ-1) ≤ v 2 v * 2 .
Then recalling

F τ 2 = 1 + N and f ∈ L ∞ (R N ) we have R N R N |f (v)| 2 |v -v * | 2(γ-1) dv dF τ (v * ) ≤ (1 + N ) f L ∞ f L 1 2 which shows that N j=1 f ∂ v j E t t 1 2 L 2 ≤ C f L ∞ f L 1 2 e -2a(t-t 1 ) (t -t 1 ) 2 .
Combing the two cases and using

f L ∞ f L 1 2 ≤ 1 2 f 2 L ∞ + 1 2 f 2 L 1 2 we obtain f E t t 1 2 H 1 (R N ) ≤ C f 2 L ∞ (R N ) + f 2 L 1 2 (R N ) + f 2 H 1 (R N ) e -2a(t-t 1 ) (1 + t -t 1 ) 2 .
A full justification requires standard smooth approximation arguments, for instance one may replace f and |vv * | γ with f * χ ε and (ε 2 + |vv * | 2 ) γ/2 respectively, and then let ε → 0 + , etc., where χ ε (v) = ε -N χ(ε -1 v) and χ ≥ 0 is a smooth mollifier. We omit the details here.

Theorem 3.4. Suppose N ≥ 3 and let B(z, σ) be defined by (1.5) with γ ∈ (0, 2] and with the conditions (1.33)-(1.45). Let f t ∈ L 1 1,0,1 (R N ) be a conservative mild solution of equation (1.1).

Then for any t 0 > 0, the positive decomposition f t = f n t + h n t given in (3.1)-(3.5) on [t 0 , ∞) satisfies the following estimates for all s ≥ 0:

sup n≥Nγ +1, t≥t 0 f n t L ∞ s ≤ C t 0 ,s (3.16) sup n≥Nγ +2, t≥t 0 f n t H 1 ≤ C t 0 (3.17) ∀ t ≥ t 0 , ∀ n ≥ 1, h n t L 1 s ≤ C t 0 ,s,n e -a 2 (t-t 0 ) (3.18) ∀ t 1 , t 2 ≥ t 0 , sup n≥1 f n t 1 -f n t 2 L 1 s , sup n≥1 h n t 1 -h n t 2 L 1 s ≤ C t 0 ,s |t 1 -t 2 |. (3.19)
Here N γ is defined by (2.48), a = a t 0 > 0 is given in (3.14), and C t 0 , C t 0 ,s , C t 0 ,s,n are finite constants depending only on N , γ, the function b, max{1, 1/t 0 }, s, as well as n in the case of C t 0 ,s,n . In particular if t 0 ≥ 1, all these constants are independent of t 0 .

Proof. Let

|||f||| s = sup t≥t 0 f t L 1 s , s ≥ 0.
By using Theorem 1.2, (1.14) and the fact that

f 0 L 1 0 = 1, f 0 L 1 2 = 1 + N we have with K s = K s (1, 1 + N ) that ∀ s ≥ 0, |||f||| s ≤ K s 1 + max{1, 1/t 0 } (s-2) + /γ .
We first prove (3.16) and (3.18). To do this it suffices to prove the following estimates • For all s ≥ 0 and all t ≥ t 0

(3.20) ∀ n ≥ 1, h n t L 1 s ≤ |||f||| 2n s+(2n-1)γ (1 + t -t 0 ) 2n-1 e -a(t-t 0 ) . • If 0 < γ < N -2, we then define p n := N -1 N -1 -nγ , n = 1, 2, 3, . . . , N γ ,
and then for all s ≥ 0 max

1≤n≤Nγ sup t≥t 0 f n t L pn s ≤ C a |||f||| β * s+s 1 , (3.21) sup n≥Nγ +1 sup t≥t 0 f n t L ∞ s ≤ C a |||f||| β * s+s 1 , (3.22)
where s 1 = N γ + γ and 0 < β * , β * < ∞ depend only on N and γ.

• If γ ≥ N -2 and 1 < p < N , then for all s ≥ 0,

sup t≥t 0 f 1 t L p s ≤ C a,p |||f||| 3 s+2γ-N/q , (3.23) sup n≥2 sup t≥t 0 f n t L ∞ s ≤ C a |||f||| 3+4/N s+s 1 , (3.24)
where s 2 = 3γ + 2 -3N/2.

In the following we denote by C, C * , C * , * the finite positive constants (larger than 1) that only depend on N, γ, A 2 , b L ∞ , and on the arguments " * , * "; they may have different values in different places.

By definition of E t s (see (3.1)) and Lemma 3.3 we have

(3.25) ∀ t 0 ≤ t 2 ≤ t 1 ≤ t,    E t t 1 ≤ e -a(t-t 1 ) , E t 1 t 2 E t t 1 ≤ e -a(t-t 2 )
. We then deduce from (3.25) and 0 ≤ f n t ≤ f t that

h n t (v) ≤ h 1 t (v) + 2 t t 0 t 1 t 0 e -a(t-t 2 ) Q + f t 1 , Q + (f t 2 , h n-1 t 2 ) (v) dt 2 dt 1 (3.26) + t t 0 t 1 t 0 e -a(t-t 2 ) Q + h n-1 t 1 , Q + (f t 2 , f t 2 ) (v) dt 2 dt 1 , f n t (v) ≤ t t 0 t 1 t 0 e -a(t-t 2 ) Q + f n-1 t 1 , Q + (f n-1 t 2 , f n-1 t 2 ) (v) dt 2 dt 1 . (3.27)
Next by definition of h 1 t in (3.4) and using (3.25) and

f t L 1 s ≥ f t L 1 = 1 we have h 1 t L 1 s ≤ |||f||| 2 s+γ (1 + t -t 0 )e -a(t-t 0 ) .
Suppose (3.20) holds for some n ≥ 1. Using (3.26) for h n+1 t we have

h n+1 t L 1 s ≤ e -a(t-t 0 ) |||f||| 2 s+γ (1 + t -t 0 ) + 2|||f||| 2 s+2γ t t 0 t 1 t 0 h n t 2 L 1 s+2γ e -a(t-t 2 ) dt 2 dt 1 +|||f||| 2 s+2γ t t 0 h n t 1 L 1 s+γ t 1 t 0 e -a(t-t 2 ) dt 2 dt 1 = |||f||| 2 s+2γ e -a(t-t 0 ) 1 + t -t 0 + t t 0 t 1 t 0 e a(t 2 -t 0 ) 2 h n t 2 L 1 s+2γ + h n t 1 L 1 s+γ dt 2 dt 1
and by inductive hypothesis on h n t we have for all

t 0 ≤ t 2 ≤ t 1 , 2 h n t 2 L 1 s+2γ + h n t 1 L 1 s+γ ≤ 2 f s+2γ+(2n-1)γ 2n (1 + t 2 -t 0 ) 2n-1 e -a(t 2 -t 0 ) + f s+γ+(2n-1)γ 2n (1 + t 1 -t 0 ) 2n-1 e -a(t 1 -t 0 ) ≤ 3|||f||| 2n s+(2n+1)γ (1 + t 1 -t 0 ) 2n-1 e -a(t 2 -t 0 ) . So h n+1 t L 1 s ≤ |||f||| 2(n+1) s+(2n+1)γ e -a(t-t 0 ) 1 + t -t 0 + 3 t t 0 (1 + t 1 -t 0 ) 2n-1 (t 1 -t 0 ) dt 1 .
It is easily checked that

∀ t ≥ t 0 , 1 + t -t 0 + 3 t t 0 (1 + t 1 -t 0 ) 2n-1 (t 1 -t 0 ) dt 1 ≤ (1 + t -t 0 ) 2n+1 .
Thus

h n+1 t L 1 s ≤ |||f||| 2(n+1)
s+(2n+1)γ (1 + tt 0 ) 2n+1 e -a(t-t 0 ) . This proves (3.20). Now we are going to prove (3.21)- (3.24). First of all by (3.27) and the inequality

t t 0 t 1 t 0 e -a(t-t 2 ) dt 2 dt 1 ≤ 1 a 2
we have

(3.28) sup t≥t 0 f n t L p s ≤ 1 a 2 sup t 1 ≥t 2 ≥t 0 Q + (f n-1 t 1 , Q + (f n-1 t 2 , f n-1 t 2 )) L p s
for all s ≥ 0, 1 ≤ p ≤ ∞, provided that the right hand side makes sense.

Case 1: 0 < γ < N -2. We first prove that

(3.29) ∀ s ≥ 0, sup t≥t 0 f n t L pn s ≤ C a,n (|||f||| s+n-1+γ 1 ) βn , n = 1, 2, . . . , N γ
where γ 1 = max{γ, 1} and

β n := 2(N + 1) 1 + 1 N n-1 + 1 -2N.
By part (i) of Theorem 2.7 we have

∀ t 1 ≥ t 2 ≥ t 0 , Q + f t 1 , Q + (f t 2 , f t 2 ) L p 1 s ≤ C 1 f t 1 L 1 s f t 2 2 L 1 s+γ ≤ C 1 |||f||| 3 s+γ 1 .
Using (3.28) with p = p 1 and n = 1 (recalling f

(0) t (v) = f t (v)) gives ∀ s ≥ 0, sup t≥t 0 f 1 t L p 1 s ≤ C a,1 |||f||| 3 s+γ 1 .
Since β 1 = 3, this proves that the inequality in (3.29) holds for n = 1.

Suppose the inequality in (3.29) holds for some 1 ≤ n ≤ N γ -1. Then we compute using 0 ≤ f n t ≤ f t and part (I) of Theorem 2.7 that, for all s ≥ 0, (3.30)

Q + f n t 1 , Q + (f n t 2 , f n t 2 ) L p n+1 s ≤ C n f n t 1 L pn s+1 f n t 2 L 1 s+γ 1 f n t 2 1-θn L 1 s+γ 1 f n t 2 θn L pn s+1 ≤ C n |||f||| 2-θn s+γ 1 sup t≥t 0 f n t L pn s+1 1+θn
.

By inductive hypothesis on f n t we compute

(3.31) |||f||| 2-θn s+γ 1 sup t≥t 0 f n t L pn s+1 1+θn ≤ C a,n |||f||| 2-θn+βn(1+θn) s+n+γ 1 .
Also by definition of θ n and β n it is easily checked that 2 - 

θ n + β n (1 + θ n ) < β n+1 . It
∀ s ≥ 0, sup t≥t 0 f n+1 t L p n+1 s ≤ C a,n+1 |||f||| β n+1 s+n+γ 1 .
This proves that the inequality in (3.29) holds for all n = 1, 2, . . . , N γ . From (3.29) and 

N γ -1 + γ 1 < N γ + γ = s 1 ,
Q + (f Nγ t 1 , Q + (f Nγ t 2 , f Nγ t 2 )) L ∞ s ≤ C f Nγ t 1 1-α 1 L 1 s f Nγ t 1 α 1 L p Nγ s f Nγ t 2 L 1 s+γ f Nγ t 2 1-α 2 L 1 s+γ f Nγ t 2 α 2 L p Nγ s ≤ C (|||f||| s+s 1 ) 3+(β Nγ -1)(α 1 +α 2 ) .
This together with (3.28) gives

(3.32) sup t≥t 0 f Nγ +1 t L ∞ s ≤ C a |||f||| η s+s 1 , η := 3 + (β Nγ -1)(α 1 + α 2 ).
Using (3.28) with p = ∞, Theorem 2.7, and

f Nγ +k t L p Nγ s ≤ |||f||| 1/p Nγ s f Nγ+k t 1/q Nγ L ∞ s
together with the L ∞ s -boundedness (3.32) for k = 1, we deduce by induction on k that, for all s ≥ 0,

(3.33) sup t≥t 0 f Nγ+k+1 t L ∞ s ≤ 1 a 2 sup t 1 ≥t 2 ≥t 0 Q + f Nγ+k t 1 , Q + f Nγ+k t 2 , f Nγ+k t 2 L ∞ s ≤ C a sup t 1 ≥t 2 ≥t 0 f Nγ+k t 1 1-α 1 L 1 s f Nγ +k t 1 α 1 L p Nγ s × f Nγ+k t 2 L 1 s+γ f Nγ+k t 2 1-α 2 L 1 s+γ f Nγ +k t 2 α 2 L p Nγ s ≤ C a |||f||| 3-(α 1 +α 2 )/q Nγ s+γ sup t≥t 0 f Nγ+k t L ∞ s (α 1 +α 2 )/q Nγ = C a |||f||| 3-δ s+γ sup t≥t 0 f Nγ+k t L ∞ s δ < ∞, k = 1, 2, 3, . . .
where

δ := α 1 + α 2 q Nγ = N -1 -γ + (1 -γ) + N (< 1 ).

Now fix any s ≥ 0 and let us define

A = C a |||f||| 3-δ s+γ and Y k = sup t≥t 0 f Nγ+k t L ∞ s .
Then, from (3.33),

Y k+1 ≤ AY δ k , k = 1, 2, . . . which gives Y k+1 ≤ A 1+δ+•••+δ k-1 Y δ k 1 = A 1-δ k 1-δ Y δ k 1 ≤ A 1 1-δ Y 1 , k = 1, 2, . . . It follows from (3.32) and γ < s 1 that sup t≥t 0 f Nγ+k+1 t L ∞ s = Y k+1 ≤ C a |||f||| 3-δ s+γ 1 1-δ C a |||f||| η s+s 1 ≤ C 1+1/(1-δ) a |||f||| 3-δ 1-δ +η s+s 1
for all k = 1, 2, 3, . . . This gives (3.22) with

β * = (3 -δ)/(1 -δ) + η.
Case 2: γ ≥ N -2. By Theorem 2.7 we have for any 1 < p < N and s ≥ 0

Q + f t 1 , Q + (f t 2 , f t 2 ) L p s ≤ C p f t 1 L 1 s+γ-N/q f t 2 2 L 1 s+2γ-N/q ≤ C p |||f||| 3 s+2γ-N/q .
This together with (3.28) with n = 1 implies that

∀ s ≥ 0, sup t≥t 0 f 1 t L p s ≤ C a,p |||f||| 3 s+2γ-N/q .
This proves (3.23). In particular for p = 2 we have

(3.34) ∀ s ≥ 0, sup t≥t 0 f 1 t L 2 s ≤ C a |||f||| 3 s+2γ-N/2 .
Then using (3.28) with p = ∞, Theorem 2.7 with

p = q = 2 ∈ (N/(N -1), N ) ,
and induction on n starting from n = 1 with the L 2 s -boundedness (3.34) we have, for all s ≥ 0,

sup t≥t 0 f n+1 t L ∞ s ≤ 1 a 2 sup t 1 ≥t 2 ≥t 0 Q + f n t 1 , Q + f n t 2 , f n t 2 L ∞ s (3.35) ≤ C a sup t≥t 1 ≥t 0 f n t 1 1-2/N L 1 s+γ+2-N f n t 1 2/N L 2 s+γ+2-N f n t 2 2 L 1 s+2γ+1-N ≤ C a |||f||| s+2γ+1-N ) 3-2/N sup t≥t 0 f n t L 2 s+γ+2-N 2/N < ∞, n = 1, 2, 3, . . .
Taking n = 1 and using (3.34) and 2γ + 1 -N < 3γ + 2 -3N/2 =: s 2 we obtain

(3.36) sup t≥t 0 f 2 t L ∞ s ≤ C a |||f||| 3+4/N s+s 2 .
Further, using

∀ n ≥ 2, f n t L 2 s+γ+2-N ≤ |||f||| 1/2 s+2γ+4-2N f n t 1/2 L ∞ s and 2γ + 4 -2N ≤ 2γ + 1 -N ≤ s 2 (because γ ≥ N -2 ≥ 1) we get from (3.35) that sup t≥t 0 f n+1 t L ∞ s ≤ C a |||f||| 3-1/N s+s 2 sup t≥t 0 f n t L ∞ s 1/N
, n = 2, 3, . . . By iteration we deduce, as shown above with δ = 1/N , and using (3.36) that sup

t≥t 0 f n+1 t L ∞ s ≤ C a |||f||| 3-1/N s+s 2 1-δ n-1 1-δ sup t≥t 0 f 2 t L ∞ s δ n-1 ≤ C a (|||f||| s+s 2 ) (3-1 N ) 1-δ n-1 1-δ +(3+4/N )δ n-1 ≤ C a (|||f||| s+s 2 ) 3+4/N , n = 2, 3, . . .

This proves (3.24).

Now let us prove the H 1 -regularity (3.17) of f n t for n ≥ N γ +2. For notation convenience we denote

Q n-1 t 1 ,t 2 (v) := Q + f n-1 t 1 , Q + f n-1 t 2 , f n-1 t 2 E t 1 t 2 (v).
The iteration formula (3.3) is then written

(3.37) ∀ t ≥ t 0 , f n t (v) = t t 0 E t t 1 (v) t 1 t 0 Q n-1 t 1 ,t 2 (v) dt 2 dt 1 .
Applying Theorem 2.7 and the L ∞ s estimate in (3.16) we have

Q n-1 t 1 ,t 2 L ∞ ≤ e -a(t 1 -t 2 ) Q + f n-1 t 1 , Q + (f n-1 t 2 , f n-1 t 2 ) L ∞ ≤ C t 0 e -a(t 1 -t 2 ) .
Also by f n-1 t ≤ f t we have

Q n-1 t 1 ,t 2 L 1 2 ≤ e -a(t 1 -t 2 ) Q + f n-1 t 1 , Q + f n-1 t 2 , f n-1 t 2 L 1 2 ≤ C t 0 e -a(t 1 -t 2 ) .
And using Lemma 3.2, (3.12) and the L ∞ s estimate in (3.16) we have

Q n-1 t 1 ,t 2 H 1 ≤ Q n-1 t 1 ,t 2 H N-1 2 ≤ C f n-1 t 1 L 2 N+γ Q + (f n-1 t 2 , f n-1 t 2 )E t 1 t 2 L 2 N+γ ≤ C f n-1 t 1 L 2 N+γ f n-1 t 2 2 L 2 2(N+γ) e -a(t 1 -t 2 ) ≤ C t 0 e -a(t 1 -t 2 ) .
Thus we conclude from Lemma 3.

3 that Q n-1 t 1 ,t 2 E t t 1 ∈ H 1 (R N ) and (3.38) Q n-1 t 1 ,t 2 E t t 1 H 1 ≤ C t 0 e -a(t 1 -t 2 ) e -a(t-t 1 ) (1 + t -t 1 ) = C t 0 e -a(t-t 2 ) (1 + t -t 1 ).
Using Minkowski inequality to (3.37) we then conclude from (3.38) and the above estimates that f n t ∈ H 1 (R N ) and

f n t H 1 ≤ t t 0 t 1 t 0 Q n-1 t 1 ,t 2 E t t 1 H 1 dt 2 dt 1 ≤ C t 0 t t 0 t 1 t 0 e -a(t-t 2 ) (1 + t -t 1 ) dt 2 dt 1 ≤ C t 0 .
This proves (3.17).

Finally let us prove (3.19). To do this we rewrite f n t as follows (recall definition of f n t in (3.3))

f n t (v) = E t t 0 (v) t t 0 E t 0 t 1 (v) t 1 t 0 Q + f n-1 t 1 , Q + f n-1 t 2 , f n-1 t 2 E t 1 t 2 (v) dt 2 dt 1
and recall that

E t s (v) = exp - t s L γ (f τ )(v) dτ , L γ (f τ )(v) := R N |v -v * | γ f τ (v * ) dv * .
Then it is easily seen that the function t → f n t (v) is absolutely continuous on every bounded subinterval of [t 0 , ∞) and

∂ ∂t f n t (v) = t t 0 Q + f n-1 t , Q + f n-1 t 2 , f n-1 t 2 E t t 2 (v) dt 2 -L γ (f t )(v)f n t (v), a.e. t ≥ t 0 . Since Q + f n-1 t , Q + f n-1 t 2 , f n-1 t 2 E t t 2 L 1 s ≤ Q + (f t , Q + (f t 2 , f t 2 )) L 1 s e -a(t-t 2 ) ≤ f t L 1 s+γ f t 2 2 L 1 s+2γ e -a(t-t 2 ) ≤ C t 0 ,s e -a(t-t 2 )
and

L γ (f t )f n t L 1 s ≤ f t γ f t L 1 s+γ ≤ C t 0 ,s it follows that ∂ ∂t f n t L 1 s ≤ C t 0 ,s a.e. t ≥ t 0 .
Thus, by the absolute continuity of t → f n t (v), we deduce that

∀ t 1 , t 2 ≥ t 0 , f n t 1 -f n t 2 L 1 s ≤ C t 0 ,s |t 1 -t 2 |.
On the other hand, from

∀ t ≥ t 0 , f t (v) = f t 0 (v) + t t 0 Q + (f τ , f τ )(v) -L γ (f τ )(v)f τ (v) dτ we also have f t 1 -f t 2 L 1 s ≤ C t 0 ,s |t 1 -t 2 | for all t 1 , t 2 ≥ t 0 . Thus the function t → h n t = f t -f n
t satisfies the same estimate. This proves (3.19) and completes the proof of the theorem.

Corollary 3.5. Suppose N ≥ 3 and let B(z, σ) be defined in (1.5) with γ ∈ (0, 2] and with the conditions (1.33), (1.45). Let F t ∈ B + 1,0,1 (R N ) be a conservative measure strong solution of equation (1.1). Then for any t 0 > 0, F t can be decomposed as

(3.39) ∀ t ≥ t 0 , dF t (v) = f t (v) dv + dµ t (v), with 0 ≤ f t ∈ s≥0 L ∞ s ∩ H 1 (R N ), µ t ∈ s≥0 B + s (R N ), satisfying for all s ≥ 0 sup t≥t 0 f t L ∞ s ≤ C t 0 ,s , sup t≥t 0 f t H 1 ≤ C t 0 (3.40) ∀ t ≥ t 0 , µ t s ≤ C t 0 ,s e -a 2 (t-t 0 ) , (3.41) ∀ t 1 , t 2 ∈ [t 0 , ∞), f t 1 -f t 2 L 1 s , µ t 1 -µ t 2 s ≤ C t 0 ,s |t 1 -t 2 |, (3.42) 
where a = a t 0 > 0 is given in (3.14) and C t 0 , C t 0 ,s are finite constant depending only on N , γ, the function b, max{1, 1/t 0 } and s.

Proof. By Theorem 1.2, there is a sequence {f k,t } ∞ k=1 ⊂ L 1 1,0,1 (R N ) of conservative mild solutions of equation (1.1) such that (3.43) ∀ ϕ ∈ C c (R N ), ∀ t ≥ 0, lim k→∞ R N ϕ(v)f k,t (v) dv = R N ϕ(v) dF t (v).
Let n γ = N γ + 2 with N γ defined in (2.48) and consider the positive decompositions of

f k,t ∀ k = 1, 2, 3, . . . ∀ t ≥ t 0 , f k,t (v) = f nγ k,t (v) + h nγ k,t (v),
given by (3.1)- (3.6). By Theorem 3.4 we have for all s ≥ 0 sup

k≥1,t≥t 0 f nγ k,t L ∞ s ≤ C t 0 ,s , sup k≥1, t≥t 0 f nγ k,t H 1 ≤ C t 0 , (3.44) ∀ t ≥ t 0 , sup k≥1 h nγ k,t L 1 s ≤ C t 0 ,s e -a 2 (t-t 0 ) , (3.45) ∀ t 1 , t 2 ≥ t 0 , sup k≥1 f nγ k,t 1 -f nγ k,t 2 L 1 s , sup k≥1 h nγ k,t 1 -h nγ k,t 2 L 1 s ≤ C t 0 ,s |t 1 -t 2 |. (3.46) From (3.44), it is easily seen that for every t ≥ t 0 , {f nγ k,t } ∞ k=1 is relatively compact in L 1 (R N ).
Moreover by using the density of rational times, a diagonal process and (3.46), one can prove that there is a common subsequence {f nγ k j ,t } ∞ j=1 (where {k j } ∞ j=1 is independent of t) and a function 0

≤ f t ∈ L 1 (R N ), such that (3.47) ∀ t ≥ t 0 , f nγ k j ,t -f t L 1 ---→ j→∞ 0. Since h nγ k j ,t = f k j ,t -f nγ k j ,t
, it follows from (3.47) and the weak convergence (3.43) that for every t ≥ t 0 , h nγ k j ,t converges weakly to some

µ t ∈ B + 0 (R N ) as j → ∞, i.e. (3.48) ∀ ϕ ∈ C c (R N ), ∀ t ≥ t 0 , lim j→∞ R N ϕ(v)h nγ k j ,t (v) dv = R N ϕ(v) dµ t (v).
This leads to the decomposition (3.39). The inequalities (3.40), (

and the equivalent version (1.13) of measure norm

• s .

Rate of Convergence to Equilibrium

This section is devoted to the proof of Theorem 1.5. We first recall the results in [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] on the exponential rate of convergence to equilibrium for L 1 mild solutions. 

(v) = (2π) -N/2 e -|v| 2 /2 in L 1 1,0,1 (R N ). Let f 0 ∈ L 1 1,0,1 (R N ) ∩ L 2 (R N ) and let f t ∈ L 1 2 (R N
) be the unique conservative solution of equation (1.1) with the initial datum f 0 . Then there is a constant 0 < C < ∞, which depends only on N , γ, the function b, and on f 0 L 2 , such that

∀ t ≥ 0, f t -M L 1 ≤ Ce -λt .
In the important case of hard sphere model (i.e. N = 3, γ = 1, and b = const.), the assumption "f 0 ∈ L 1 ∩ L 2 " can be relaxed to "f 0 ∈ L 1 " and the same result holds with the constant C depending only on N , γ, and the function b. 

(v) = (2π) -N/2 e -|v| 2 /2 in L 1 1,0,1 (R N ). Let α > 0, m(v) = e -α|v| γ .
Then there are some explicitable finite constants ε > 0, C > 0 depending only on N , γ, the function b, and α, such that if f t with the initial datum

f 0 ∈ L 1 1,0,1 (R N ) ∩ L 1 (R N , m -2 ) is a conservative solution to equation (1.1) satisfying ∀ t ∈ [0, ∞), f t -M L 1 (m -2 ) ≤ ε then ∀ t ∈ [0, ∞), f t -M L 1 (m -1 ) ≤ C f 0 -M L 1 (m -1 ) e -λt .
Remarks 4.3.

(1) The original version of Theorem 4.1 and Lemma 4.2 in [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] were

proved for the class L 1 π N/2 ,0,1/2 (R N ), i.e. for the Maxwellian M (v) = M π N/2 ,0,1/2 (v) = e -|v| 2 .
According to Proposition 1.4 (normalization), these are equivalent to the present version. In fact let

g t ∈ L 1 π N/2 ,0,1/2 (R N ), f t ∈ L 1 1,0,1 (R N ) have the relation f t (v) = (2π) -N/2 g t/c (v/ √ 2), i.e. g t (v) = (2π) N/2 f ct ( √ 2 v), t ≥ 0 where c = π N/2 2 -γ/2
. Then f t is a conservative solution of equation (1.1) if and only if g t is a conservative solution of equation (1.1). And we have

∀ t ≥ 0, f t -M 1,0,1 L 1 = π -N/2 g t/c -M π N/2 ,0,1/2 L 1 ,
and

S b,γ (π N/2 , 0, 1/2) = S b,γ (1, 0, 1)π N/2 2 -γ/2 .
(2) In order to prove the exponential rate of convergence to equilibrium, it was introduced in [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] the modified linearized collision operator

L m (h) = m -1 M L M (mM -1 h), m(v) = e -a|v| s
with M (v) = e -|v| 2 , a > 0 and 0 < s < 2. It is proved in [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] that L m and L M has the same spectrum, but L m is available to connect the exponential moment estimates of solutions. The proof of the original version of Theorem 4.1 in [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] used additional technical assumptions: the angular function b is convex and nondecreasing in (-1, 1), and the constant s in m(v) = e -a|v| s satisfies 0 < s < γ/2.

These assumptions were only used to prove the exponential moment estimate of the form (1.26) (see Lemma 4.7 of [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF]). According to Theorem 1.2 in Section 1, these additional assumptions on the function b can be removed and the restriction 0 < s < γ/2 can be relaxed to 0 < s ≤ γ. In particular one can choose s = γ.

(3) In [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] it was actually assumed that γ ∈ (0, 1]; however this assumption was only used three times:

• The first and second times are in [25, Proof of Proposition 2.3, pp.643-645]:

-first in "|v -v * | γ sin N -2 θ/2 ≤ (|v -v * | sin θ/2) γ = |v -v ′ | γ since N -2 ≥ 1 ≥ γ"
[a key step in obtaining basic properties of the linearized collision operator L M ], but here the condition 0 < γ ≤ 1 can be relaxed to 0 < γ ≤ N -2 for any N ≥ 3;

second in " [25, p.639]. In this place, if we assume 0 < γ ≤ 2 and let 1 {|•|≤δ -1 } be modified as 1 {|•|≤δ -1/2 } , i.e. we redefine

I δ L + L 2 (M ) = O(δ 2-γ ) → 0 as δ → 0 + ", with I δ = Θ δ * 1 {|•|≤δ -1 } as defined in
I δ = Θ δ * 1 {|•|≤δ -1/2 }
, then the same proof in [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] also yields

I δ L + L 2 (M ) = O(δ 2-γ/2 ) → 0 as δ → 0 + .
• The third time was in applying a regularity result from [START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF]: in the latter paper the condition 0 < γ < 2 was used to ensure the existence and the uniqueness of the mild solution of equation (1.1) constructed in [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF]. However since by Theorem 1.2, the existence and the uniqueness of the mild solution of equation (1.1) have been proven for all 0 < γ ≤ 2, the results of [START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF] mentioned above holds also for γ = 2.

Therefore the present assumption 0 < γ ≤ min{2, N -2} satisfies all requirements and so the above Theorem 4.1 and Lemma 4.2 hold true. Of course in the physical case, N = 3, there is no improvement on γ. To prove Theorem 1.5, we need further preparation.

Lemma 4.4. Let 0 ≤ f ∈ L 1 k+l (R N ) ∩ L 2 1 (R N ) ∩ H s (R N ) with k ≥ 0, l > 0, s > 0. Let N (f ) = N ρ,u,T (f ) ∈ L 1 1,0,1 (R N )
be the normalization of f defined in (1.40),(1.41), and suppose that |ρ -

1| + |u| + |T -1| ≤ 1/2. Then (4.1) f -N (f ) L 1 k ≤ C N,k,l,s (f ) (|ρ -1| + |u| + |T -1|) sl (1+s)(k+N+2l)
where

C N,k,l,s (f ) := C N,k,l max f L 1 k+l , f L 2 1 , f H s and C N,k,l < ∞ only depends on N, k, l. Proof. Recall that N (f ) = ρ -1 T N/2 f ( √ T v + u). Let N 1 (f ) = T N/2 f ( √ T v + u). Then f -N (f ) L 1 k ≤ f -N 1 (f ) L 1 k + 2|ρ -1| N 1 (f ) L 1 k
where we used |1ρ -1 | ≤ 2|ρ -1| because 1/2 ≤ ρ ≤ 3/2. We need to prove that

(4.2) f -N 1 (f ) L 1 k ≤ C N f -N 1 (f ) k+N k+N+2l L 1 k+l f -N 1 (f ) 2l k+N+2l L 2 . Let h = f -N 1 (f ), R ∈ (0, ∞). We have h L 1 k = v <R v k |h(v)| dv + v ≥R v k |h(v)| dv ≤ C N h L 2 R k+N 2 + h L 1 k+l 1 R l .
Minimizing the right hand side with respect to R ∈ (0, ∞) leads to

h L 1 k ≤ 2C 2l k+N+2l N h k+N k+N+2l L 1 k+l h 2l k+N+2l L 2 which gives (4.2) by Plancherel theorem h L 2 = (2π) -N/2 h L 2 . Since 1/2 ≤ T ≤ 3/2 and |u| ≤ 1/2 imply 1 + v -u √ T 2 ≤ 4(1 + |v| 2 ), it follows that N 1 (f ) L 1 k+l = R N 1 + v -u √ T 2 (k+l)/2 f (v) dv ≤ 2 k+l f L 1 k+l and thus (4.3) f -N (f ) L 1 k ≤ C N,k,l f k+N k+N+2l L 1 k+l f -N 1 (f ) 2l k+N+2l L 2 + 2 k+1 |ρ -1| f L 1 k . Next we compute N 1 (f )(ξ) = e iT -1/2 ξ•u f (T -1/2 ξ), 1 -e iT -1/2 ξ•u ≤ 2 1 + |T -1/2 ξ| 2 s/2 max{|u|, |u| s }, f (ξ) -N 1 (f )(ξ) ≤ f (ξ) -f (T -1/2 ξ) + 2 f (T -1/2 ξ) 1 + |T -1/2 ξ| 2 s/2 max{|u|, |u| s }, hence (4.4) f -N 1 (f ) L 2 ≤ f -f T -1/2 • L 2 + 2 1+N/4 f H s max{|u|, |u| s }. Write ξ = (ξ 1 , ξ 2 , . . . , ξ N ), v = (v 1 , v 2 , . . . , v N ), and f j (v) = v j f (v), j = 1, 2, . . . , N . Then f (ξ) -f T -1/2 ξ = -i 1 1 √ T N j=1 f j (tξ)ξ j dt.
By Cauchy-Schwarz inequality and

1/2 ≤ T ≤ 3/2 =⇒ 1 √ T -1 ≤ |T -1| we have f (ξ) -f T -1/2 ξ ≤ |T -1| 1/2   1∨ 1 √ T 1∧ 1 √ T N j=1 | f j (tξ)| 2 dt   1/2 |ξ|
where a ∧ b = min{a, b} and a ∨ b = max{a, b}. Let 1/p + 1/q = 1 with p = (1 + s)/s and q = 1 + s. Then

f (ξ) -f T -1/2 ξ 2 = f (ξ) -f T -1/2 ξ 2/p f (ξ) -f T -1/2 ξ 2/q ≤ |T -1| 1/p   1∨ 1 √ T 1∧ 1 √ T N j=1 f j (tξ) 2 dt   1/p |ξ| 2/p f (ξ) -f T -1/2 ξ 2/q .
It follows from Hölder inequality and q/p = s that

f -f T -1/2 • 2 L 2 ≤ |T -1| 1/p   1∨ 1 √ T 1∧ 1 √ T N j=1 R N f j (tξ) 2 dξ dt   1/p f -f T -1/2 • 2/q L2 s
where L2 s denotes the weighted L 2 space with the homogeneous weight |ξ| 2s . Since, by Plancherel theorem,

1∨ 1 √ T 1∧ 1 √ T   N j=1 R N f j (tξ) 2 dξ   dt = (2π) N 1∨ 1 √ T 1∧ 1 √ T t -N dt R N |v| 2 f (v) 2 dv ≤ C N f 2 L 2 1 and f -f T -1/2 • L2 s ≤ f L2 s + f T -1/2 • L2 s ≤ 1 + 2 (N +2s)/4 f H s , it follows that (4.5) f -f T -1/2 • L 2 ≤ C N f 1/p L 2 1 f 1/q H s |T -1| 1/(2p) .
Thus we get from (4.4), (4.5), and 1/p = s/(1 + s) that

(4.6) f -N 1 (f ) L 2 ≤ C N max f L 2 1 , f H s (|u| + |T -1|) s 2(1+s)
and so (4.1) follows from (4.3) and (4.6).

In order to apply existing results on L 1 solutions to our measure solutions, we shall use the Mehler transform, which is defined as follows: 

I n [F ](v) = e N n R N M 1,0,T e n v -u -1 -e -2n (v * -u) dF (v * ), n > 0,
where M 1,0,T (v) = (2πT ) -N/2 exp(-|v| 2 /(2T )).

The following lemma gives some basic properties of the Mehler transform that we shall use in the proof of Theorem 1.5. 

I n [F ] -M L 1 s = F -M s .
Proof. Recall the basic formula of I n [F ]:

(4.8) R N ψ(v)I n [F ](v) dv = R N R N ψ e -n z + u + 1 -e -2n (v * -u) M 1,0,T (z) dz dF (v * )
where ψ is any Borel function on R N satisfying sup

v∈R N |ψ(v)| v -2 < ∞. This formula (4.8)
is easily proved by using Fubini theorem and change of variables. From (4.8) it is easily deduced that I n [F ] ∈ L 1 ρ,u,T (R N ) for all n > 0 and (4.9)

lim n→∞ R N ϕ(v)I n [F ](v) dv = R N ϕ(v) dF (v) for all ϕ ∈ C(R N ) satisfying sup v∈R N |ϕ(v)| v -2 < ∞. Let 0 ≤ s ≤ 2.
Applying the dual version (1.14) of the norm • s and the convergence (4.9) we have

(4.10) F -M s ≤ lim inf n→∞ I n [F ] -M L 1 s .
On the other hand we shall prove that To prove (4.11), we take

ψ n (v) = v s sign (I n [F ](v) -M (v)) .
Then

I n [F ] -M s = R N ψ n (v)I n [F ](v) dv - R N ψ n (v)M (v) dv = R N R N ψ n e -n z + u + 1 -e -2n (v * -u) M 1,0,T (z) dz d(F -M )(v * ) + R N R N ψ n e -n z + u + 1 -e -2n (v * -u) M 1,0,T (z) dz M (v * ) dv * - R N ψ n (v)M (v) dv := I n,1 + I n,2 .
Let h be the sign function of F -M , i.e., h : R N → R is a real Borel function satisfying

d(F -M )(v * ) = h(v * ) d|F -M |(v * ) and h(v * ) 2 ≡ 1
(see e.g. [START_REF] Rudin | Real and complex analysis[END_REF]Chapter 6]). Then

I n,1 ≤ R N R N e -n z + u + 1 -e -2n (v * -u) s M 1,0,T (z) dz d|F -M |(v * ). Since ∀ (z, v * ) ∈ R N × R N , lim n→∞ e -n z + u + 1 -e -2n (v * -u) s = v * s and e -n z + u + 1 -e -2n (v * -u) s ≤ 3 s u s z s v * s so that R N R N 3 s u s z s v * s M 1,0,T (z) dz d|F -M |(v * ) = 3 s u s M 1,0,T s F -M s < ∞,
it follows from dominated convergence that (4.12) lim sup

n→∞ I n,1 ≤ M 1,0,T L 1 F -M s = F -M s .
Next we prove that lim sup n→∞ I n,2 ≤ 0. We compute by changing variable that

R N R N ψ n e -n z + u + 1 -e -2n (v * -u) M 1,0,T (z) dz M (v * ) dv * = 1 (1 -e -2n ) N/2 R N M 1,0,T (z) dz R N ψ n (v) M v -e -n z -(1 - √ 1 -e -2n )u √ 1 -e -2n
dv.

So we get

I n,2 = 1 (1 -e -2n ) N/2 R N M 1,0,T (z) dz R N ψ n (v) M v -e -n z -(1 - √ 1 -e -2n )u √ 1 -e -2n -M (v) dv + 1 (1 -e -2n ) N/2 -1 R N ψ n (v)M (v) dv ≤ 1 (1 -e -2n ) N/2 R N ×R N v s M v -e -n z -(1 - √ 1 -e -2n )u √ 1 -e -2n -M (v) M 1,0,T (z) dv dz + 1 (1 -e -2n ) N/2 -1 R N v s M (v) dv
and finally (since the last last term above clearly converges to zero)

(4.13) lim sup n→∞ I n,2 ≤ lim sup n→∞ R N ×R N v s M v -e -n z -(1 - √ 1 -e -2n )u √ 1 -e -2n -M (v) M 1,0,T (z) dv dz.
It is obvious that the integrand in the right hand side of (4.13) tends to zero as n → ∞.

To find a dominated function for the integrand, we recall that

M v -e -n z -(1 - √ 1 -e -2n )u √ 1 -e -2n = ρ (2πT ) N/2 exp   - 1 2T v -e -n z -(1 - √ 1 -e -2n )u √ 1 -e -2n -u 2   .
Elementary calculation shows that

1 2T v -e -n z -(1 - √ 1 -e -2n )u √ 1 -e -2n -u 2 ≥ |v -u| 2 4T - |z| 2 4T .
This gives

M v -e -n z -(1 - √ 1 -e -2n )u √ 1 -e -2n M 1,0,T (z) ≤ √ ρ (2πT ) N/2 M (v) M 1,0,T (z) and thus v s M v -e -n z -(1 - √ 1 -e -2n )u √ 1 -e -2n -M (v) M 1,0,T (z) ≤ √ ρ (2πT ) N/2 v s M (v) M 1,0,T (z) + v s M (v)M 1,0,T (z) 
.

By dominated convergence we then conclude that the limit in the right hand side of (4.13) is zero. Therefore lim sup n→∞ I n,2 ≤ 0 and lim sup n→∞

I n [F ] -M s ≤ lim sup n→∞ I n,1 + lim sup n→∞ I n,2 ≤ F -M s .
This proves (4.11) and completes the proof of the lemma. Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. We first prove that the theorem holds true for all L 1 mild solutions in L 1 1,0,1 (R N ). We shall then use approximation and normalization to extend it to general measure solutions.

Step 1. Let λ = S b,γ (1, 0, 1) > 0 be the spectral gap of the linearized operator L M associated with the kernel B(z, σ) and the Maxwellian M

(v) = (2π) -N/2 e -|v| 2 /2 in L 1 1,0,1 (R N ). Let f 0 ∈ L 1 1,0,1 (R N
) and let f t be the unique conservative mild L 1 solution of equation (1.1) with the initial datum f 0 . We shall prove that

(4.14) ∀ t ≥ 0, f t -M L 1 2 ≤ C 0 f 0 -M 1/2 L 1 2 e -λt
where the constant 0 < C 0 < ∞ depends only on N , γ, and the function b.

To do this we use Theorem 3.4 to consider the positive decomposition:

∀ t ≥ 1, f t = g t + h t ,
where g t = f n t ≥ 0 and h t = h n t ≥ 0 are given in (3.1)-(3.5) with n = N γ + 2 and t 0 = 1. In the following we denote by c i > 0, C i > 0 (i = 1, 2, . . . ) some finite constants that depend only on N, γ, and the function b. By Theorem 3.4 with t 0 = 1 we have

∀ t ≥ 1, f t -g t L 1 2 = h t L 1 2 ≤ C 1 e -1 2 at , (4.15) sup t≥1 g t L 1 N+4 , g t L 2 1 , g t H 1 ≤ C 2 . (4.16) We can assume that C 1 ≥ 1. Let τ 0 = (2/a) log(8C 1 ) (> 1) and let          ρ t = R N g t (v) dv, u t = 1 ρ t R N vg t (v) dv, T t = 1 N ρ t R N |v -u t | 2 g t (v) dv, N (g t )(v) = T N/2 t ρ t g t ( T t v + u t ), t ≥ τ 0 .
Using the relation

T t = 1 N ρ t R N |v| 2 g t (v) dv - |u t | 2 N we compute (4.17) ∀ t ≥ τ 0 , |ρ t -1| + |u t | + |T t -1| ≤ 4 f t -g t L 1 2 ≤ 4C 1 e -1 2 at ≤ 1 2 .
So by (4.16) and applying Lemma 4.4 (with k = 2, l = N + 2, s = 1) we have

∀ t ≥ τ 0 , g t -N (g t ) L 1 2 ≤ C 3 4C 1 e -1 2 at 1/6 = C 4 e -c 1 t .
This together with (4.15) gives

(4.18) ∀ t ≥ τ 0 , f t -N (g t ) L 1 2 ≤ f t -g t L 1 2 + g t -N (g t ) L 1 2 ≤ C 5 e -c 1 t .
Also by (4.17), sup

t≥1 g t L 2 ≤ C 2 , τ 0 > 1 and N (g t ) ∈ L 1 1,0,1 (R N ) we have (4.19) C 6 ≤ inf t≥τ 0 N (g t ) L 2 , sup t≥τ 0 N (g t ) L 2 ≤ C 7 .
The second inequality follows from elementary calculations and the bounds 1/2 ≤ ρ t and

T t ≤ 3/2.
To prove the first one, we consider some R > 0 and write

1 = |v|<R N (g t )(v) dv + |v|≥R N (g t )(v) dv ≤ B N 1/2 R N/2 N (g t ) L 2 + R -2 N,
where

|B N | is the volume of the unite ball B N . If we now fix R = √ 2N , then 1 2 B N -1/2 (2N ) -N/4 ≤ N (g t ) L 2
for all t ≥ τ 0 so that the first inequality in (4.19) holds for

C 6 = (1/2)|B N | -1/2 (2N ) -N/4 .
To prove (4.14) we use the following technique of "moving solutions" as used in [START_REF] Abrahamsson | Strong L 1 convergence to equilibrium without entropy conditions for the Boltzmann equation[END_REF] and [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF]. For any τ ≥ τ 0 , let (t, v) → f (τ ) t (v) be the unique conservative solution on [τ, ∞)×R N with the initial datum at time t = τ :

f (τ ) t | t=τ = f (τ ) τ = N (g τ ).
On the one hand, by Theorem 4.1, we have 

∀ t ≥ τ, f (τ ) t -M L 1 ≤ C f (τ )
-M L 1 ≤ C 8 e -λ(t-τ ) . On the other hand using the stability estimate (1.30) we have

(4.21) ∀ t ≥ τ, f t -f (τ ) t L 1 2 ≤ f τ -f (τ ) τ L 1 2 e c 2 (t-τ ) .
Since (4.18) and τ ≥ τ 0 imply 

f τ -f (τ ) τ L 1 2 = f τ -N (g τ ) L 1 2 ≤ C 5 e -c
∀ t ≥ τ, f t -M L 1 ≤ f t -f (τ ) t L 1 + f (τ ) t -M L 1 ≤ C 5 e -c 1 τ +c 2 (t-τ ) + C 8 e -λ(t-τ ) . Now for any t ≥ t 1 := c 1 + c 2 + λ c 2 + λ τ 0 , we choose τ = τ (t) = c 2 + λ c 1 + c 2 + λ t. Then t > τ (t) ≥ τ (t 1 ) = τ 0 and -c 1 τ (t) + c 2 (t -τ (t)) = - c 1 λ c 1 + c 2 + λ t := -c 3 t.
Thus applying (4.22) with t > τ = τ (t) (for all t ≥ t 1 ) we obtain

(4.23) ∀ t ≥ t 1 , f t -M L 1 ≤ (C 5 + C 8 )e -c 3 t . Now let m(v) := exp - α(1) 4 |v| γ
where α(t) > 0 is given in Theorem 1.2 for the initial datum

F 0 ∈ B + 1,0,1 (R N ) defined by dF 0 (v) = f 0 (v) dv. Then (4.24) sup t≥1 f t L 1 (m -4 ) ≤ 2, M L 1 (m -4 ) ≤ C 9 .
Therefore, using Cauchy-Schwarz inequality and (4.23), we get

(4.25) ∀ t ≥ t 1 , f t -M L 1 (m -2 ) ≤ f t -M 1/2 L 1 (m -4 ) f t -M 1/2
L 1 ≤ C 10 e -c 4 t . Let ε > 0 be the constant in Theorem 4.1 corresponding to m(v), and let us choose

t 2 = max t 1 , 1 c 4 log C 10 ε .
Then we deduce from (4.25) that 

∀ t ≥ t 2 , f t -M L 1 (m -2 ) ≤ C 10 e -c
∀ t ≥ t 2 , f t -M L 1 (m -1 ) ≤ C 11 f t 2 -M L 1 (m -1 ) e -λ(t-t 2 ) .
Next, applying the elementary inequality

1 + |v| 2 ≤ Ce δ|v| 2η , η := γ 2 , δ := α(1) 4 for some constant C = C η,δ > 0, we have (4.27) f t -M L 1 2 ≤ C 12 f t -M L 1 (m -1 ) .
On the other hand, using the bound in (4.24), we have (4.28)

f t 2 -M L 1 (m -1 ) ≤ f t 2 -M 1/2 L 1 (m -2 ) f t 2 -M 1/2 L 1 2 ≤ C 13 f t 2 -M 1/2 L 1 2 .
It follows from (4.27), (4.26) and (4.28) that

(4.29) ∀ t ≥ t 2 , f t -M L 1 2 ≤ C 14 f t 2 -M 1/2 L 1 2 e -λt . It remains to estimate f t -M L 1 2 in terms of f 0 -M L 1 2 for t ∈ [0, t 2 ].
To do this we use the estimate in [22, p. 3359 line 4] for the measure H t := F t -G t where F t , G t are measure solutions of the equation (1.1). Here we define more precisely F t , G t to be dF

t (v) = M (v) dv and dG t (v) = f t (v) dv. Then H t 2 = M -f t L 1 2 , f t L 1 2 = M L 1 2 ,

and thus (recalling

A 0 = 1) ∀ t ∈ [r, ∞), M -f t L 1 2 ≤ 2 (M -f r ) + L 1 2 + 4 M L 1 2+γ + M L 1 2 t r M -f s L 1 γ ds. Since t → f t (v) ≥ 0 is continuous on [0, ∞) for a.e. v ∈ R N , it follows from dominated convergence that 2 (M -f r ) + L 1 2 ----→ r→0 + 2 (M -f 0 ) + L 1 2 = f 0 -M L 1 2 ,
where the last equality follows from

|f 0 -M | = f 0 -M + 2(M -f 0 ) + and f 0 L 1 2 = M L 1 2 . Thus letting r → 0 + gives ∀ t ∈ [0, ∞), f t -M L 1 2 ≤ f 0 -M L 1 2 + c 5 t 0 f s -M L 1 γ ds. Since f s -M L 1 γ ≤ f s -M L 1 2 , it follows from Gronwall lemma that (4.30) ∀ t ≥ 0, f t -M L 1 2 ≤ f 0 -M L 1 2 e c 5 t
. Inserting this estimate with t = t 2 into the right hand side of (4.29) gives

(4.31) ∀ t ≥ t 2 , f t -M L 1 2 ≤ C 15 f 0 -M 1/2 L 1 2 e -λt .
Also because of (4.30) and f

0 -M L 1 2 ≤ 2(1 + N ), we have (4.32) ∀ t ∈ [0, t 2 ], f t -M L 1 2 ≤ C 16 f 0 -M 1/2 L 1 2 e -λt .
Combining (4.31), (4.32) we then obtain (4.14) with C 0 = max{C 15 , C 16 }.

Step 2. Let us now prove that (4.14) holds also true for all measure solutions in B + 1,0,1 (R N ). Given any F 0 ∈ B + 1,0,1 (R N ), let F t be the unique conservative measure strong solution of equation (1.1) with the initial datum F 0 . By part (e) of Theorem 1.2 and Lemma 4.6, there is a sequence f k,t ∈ L 1 1,0,1 (R N ) of solutions with the initial data f k,0 := Step 3. Finally we show that for any ρ > 0, u ∈ R N and T > 0, the theorem holds true for all measure solutions in B + ρ,u,T (R N ). Let F 0 ∈ B + ρ,u,T (R N ) and let F t be the unique conservative measure strong solution with the initial datum F 0 . Let M ρ,u,T ∈ B + ρ,u,T (R N ) be the Maxwellian and let N = N ρ,u,T be the normalization operator. By Proposition 1.4, the flow t → N (F t/c ) is the unique conservative measure strong solution of equation (1.1) with the initial datum N (F 0 ) ∈ B + 1,0,1 (R N ). Here c = ρT γ/2 . Since N (M ρ,u,T ) ∈ B + 1,0,1 (R N ) is the standard Maxwellian, it follows from the above result (4.37) that (writing N (F t ) = N (F ct/c ))

I n k [F 0 ] ∈ L 1 1,0,1 (R N ) such that ∀ ϕ ∈ C b (R N ), ∀ t ≥ 0, lim k→∞ R N ϕ(v)f k,t (v) dv = R N ϕ(v)
∀ t ≥ 0, N (F t ) -N (M ρ,u,T ) 2 ≤ C 0 N (F 0 ) -N (M ρ,u,T ) 1/2 2 e -λct .
Then, applying Proposition 1.4, we have Since λc = S b,γ (1, 0, 1)ρT γ/2 = S b,γ (ρ, u, T ) is the spectral gap of the linearized operator L M ρ,u,T , this completes the proof of Theorem 1.5.

∀ t ≥ 0, F t -M ρ,

Lower Bound of Convergence Rate

In this section we prove Theorem 1.7. Recall that we assume here that γ ∈ (0, 2] and that the function b satisfies only (1.33).

Proof of Theorem 1.7. We first prove the theorem for the standard case, i.e. assuming F 0 , M ∈ B + 1,0,1 (R N ). By

∀ t 1 , t 2 ∈ [0, ∞), F t 2 = F t 1 + t 2 t 1 Q(F τ , F τ ) dτ
and Q(M, M ) = 0, we have (5.1)

∀ t 1 , t 2 ∈ [0, ∞), F t 2 -M 0 -F t 1 -M 0 ≤ t 2 t 1 Q(F τ , F τ ) -Q(M, M ) 0 dτ .
Using the inequalities in (1.19), 0 < γ ≤ 2, and the conservation of mass and energy (which implies F t γ ≤ F t 2 = 1 + N , etc.) we have (5.2)

Q(F t , F t ) -Q(M, M ) 0 ≤ 2 4 (1 + N ) F t -M γ .
Using the definition of U ε (t) and letting ε → 0+, we get finally

∀ t ≥ 0, F t -M 0 4 ≥ F 0 -M 0 4 α exp -β 1 t 2 2-γ .
This concludes the proof of the standard case for 0 < γ < 2.

Case 2: γ = 2. In this case we have by (5.10) Letting ε → 0+ leads to

∀ t ≥ 0, F t -M 0 4 ≥ F 0 -M 0 4 e At .
This prove the standard case for γ = 2.

General non-normalized setting. The general case can be reduced to the standard case by using normalization. Let F 0 ∈ B + ρ,u,T (R N ), c = ρT γ/2 and let M ∈ B + ρ,u,T (R N ) be the Maxwellian. Then, according to Proposition 1.4, the normalization t → N (F t/c ) ∈ B + 1,0,1 (R N ) is a conservative measure strong solution of equation (1.1) with the initial datum N (F 0 ). Applying the above estimates and F t -M 0 = ρ N (F t ) -N (M ) 0 we obtain that if 0 < γ < 2 then Similarly if γ = 2, then

∀ t ≥ 0, F t -M 0 = ρ N (F c -1 ct ) -N (M ) 0 ≥ 4ρ N (F 0 ) -N (M ) 0 4 α exp -β 1 (ct)
F t -M 0 ≥ 4ρ N (F 0 ) -N (M ) 0 4 e Act = 4ρ F 0 -M 0 4ρ e κ t
with κ = Ac = 2 6 (N + 1) 2 ρT . This completes the proof.

Global in Time Stability Estimate

In the last section we prove the the global in time strong stability of the measure strong solutions of equation (1.1).

Proof of Theorem 1.10. Let F t be a conservative measure strong solution of equation (1.1) with the initial datum F 0 ∈ B + ρ 0 ,u 0 ,T 0 (R N ), and let G t be any conservative measure strong solution of equation (1.1) with the initial datum G 0 . Let (6.1)

D 0 := min    ρ 0 2 , 4 F 0 2 N ρ 2 0 + 6 N F 0 2 ρ 2 0 2 -1 T 0 2    .
If F 0 -G 0 2 ≥ D 0 , then by conservation of mass and energy we have for all t ≥ 0, (6.2)

F t -G t 2 ≤ F 0 2 + G 0 2 ≤ 2 F 0 2 + G 0 -F 0 2 ≤ 2 F 0 2 D 0 + 1 G 0 -F 0 2 .
In the following we assume that F 0 -G 0 2 < D 0 . By the uniqueness theorem, we can also assume that F 0 -G 0 2 > 0. Due to our choice of D 0 , we see that G 0 is non-zero and is not a Dirac distribution. Therefore let ρ > 0, u ∈ R N , T > 0 be the mass, mean velocity and temperature corresponding to G 0 , i.e., G 0 ∈ B + ρ,u,T (R N ). Using the condition F 0 -G 0 2 < D 0 and elementary estimates we have

                           |ρ -ρ 0 | ≤ G 0 -F 0 2 , 0 < ρ 0 2 ≤ ρ ≤ 3ρ 0 2 , |u -u 0 | ≤ 2 F 0 2 ρ 2 0 G 0 -F 0 2 , |T -T 0 | ≤ 4 F 0 2 N ρ 2 0 + 6 N F 0 2 ρ 2 0 2 G 0 -F 0 2 , 0 < T 0 2 ≤ T ≤ 3T 0 2 .
Let M F 0 , M G 0 be the Maxwellians associated with F 0 , G 0 respectively, i.e. M F 0 ∈ B + ρ 0 ,u 0 ,T 0 (R N ), M G 0 ∈ B + ρ,u,T (R N ). In the following calculations the constants 0 < C i < ∞ (i = 1, 2, . . . , 9) only depend on N , the function b, γ, ρ 0 , u 0 and T 0 , and we recall that We then deduce

M G 0 -M F 0 2 = R N v 2 |M(ρ, u, T ; v) -M(ρ 0 , u 0 , T 0 ; v)| dv ≤ C 1 (|ρ -ρ 0 | + |u -u 0 | + |T -T 0 |)
and thus using the above estimates for ρρ 0 , uu 0 and T -T 0 , we obtain (6.3)

M G 0 -M F 0 2 ≤ C 2 G 0 -F 0 2 .
Next from the above estimates we have λ 0 = S b,γ (1, 0, 1)ρ 0 T γ/2 0 , λ = S b,γ (1, 0, 1)ρT γ/2 ≥ 2 -1-γ/2 λ 0 .

Then using the convergence estimate (1.47) and recalling that

C 1/ρ,|u|/ √ T ,1/T = ρ max 1 + |u| 2 + √ T |u|, T + √ T |u| , we have    F t -M F 0 2 ≤ C 3 e -λ 0 t , G t -M G 0 2 ≤ C 0 C 1/ρ,|u|/ √ T ,1/T e -λt ≤ C 4 exp -2 -1-γ/2 λ 0 t . Thus ∀ t ≥ 0, F t -M F 0 2 + G t -M G 0 2 ≤ C 5 e -C 6 t ,
and it follows from (6.3) that (6.4) ∀ t ≥ 0, F t -G t 2 ≤ C 5 e -C 6 t + C 2 F 0 -G 0 2 .

On the other hand by the stability estimate (1.28) we have (6.5) 1+t) .

∀ t ≥ 0, F t -G t 2 ≤ Ψ F 0 ( F 0 -G 0 2 ) e C 7 (
The remaining of the proof is concerning with balancing properly (6.4) and (6.5).

Case 1: Ψ F 0 ( F 0 -G 0 2 ) < 1. Note that F 0 -G 0 2 > 0 implies Ψ F 0 ( F 0 -G 0 2 > 0.

Let

t 0 = log 1 Ψ F 0 ( F 0 -G 0 2 ) 1 C 6 +C 7
.

For every t ≥ 0, if t ≤ t 0 , then, using (6.5),

F t -G t 2 ≤ Ψ F 0 ( F 0 -G 0 2 ) e C 7 (1+t 0 ) = e C 7 [Ψ F 0 ( F 0 -G 0 2 )] C 6 C 6 +C 7 .
If t ≥ t 0 , then, using (6.4),

F t -G t 2 ≤ C 5 Ψ F 0 ( F 0 -G 0 2 ) C 6 C 6 +C 7 + C 2 F 0 -G 0 2 . Thus (6.6) ∀ t ≥ 0, F t -G t 2 ≤ C 8 Ψ F 0 ( F 0 -G 0 2 ) C 6 C 6 +C 7 + C 2 F 0 -G 0 2 .
Case 2: Ψ F 0 ( F 0 -G 0 2 ) ≥ 1. In this case we have, by conservation of mass and energy and F 0 -G 0 2 ≤ ρ 0 /2 ≤ F 0 2 /2 that (6.7)

∀ t ≥ 0, F t -G t 2 ≤ 5 2 F 0 2 ≤ 5 2 F 0 2 Ψ F 0 ( F 0 -G 0 2 ) C 6 C 6 +C 7 .
Combining (6.6), (6.7), and (6.2), we obtain

∀ t ≥ 0, F t -G t 2 ≤ C 9 [Ψ F 0 ( F 0 -G 0 2 )] C 6 
C 6 +C 7 + F 0 -G 0 2 .
This proves Theorem 1.10

1. 1 .

 1 The spatially homogeneous Boltzmann equation. The spatially homogeneous Boltzmann equation takes the form (1.1)

b a ν t dt

  are defined by d dt µ t (E) = d dt µ t (E), b a ν t dt (E) = b a ν t (E) dt for all Borel sets E ⊂ R N .

27 )

 27 and 1 < s 0 < ∞ depends only on the function b and γ.

( c )

 c Let G t be a conservative measure strong solutions of equation (1.1) on the timeinterval [τ, ∞) with an initial datum

  |u|,T and C 1/ρ,|u|/ √ T ,1/T are given in (1.37)-(1.38). 1.5. Linearized collision operator and spectral gap. For any nonnegative Borel function W on R N we define the weighted Lebesgue space L

/ 2 with

 2 C ρ,|u|,T and C 1/ρ,|u|/ √ T ,1/T given in (1.35) and (1.36), and with some constant C 0 < ∞ which depends only on N , γ, and the function b (through the bounds (1.45), (1.46)). Remark 1.6.

Lemma 3 . 1 .

 31 begin by the study of the process of iteration of the collision operator and decomposition of solutions though the following lemma. Roughly speaking the strategy of the decomposition is the following. We use the Duhamel representation formula to decompose the flow associated with the equation into two parts, one of which is more regular than the initial datum, while the amplitude of the other decreases exponentially fast with time, and we repeat this process in order to increase the smoothness, starting each time a new flow having the smoother part of the previous solution as initial datum. Each time we start a new flow, we depart from the true solution, since the initial datum is not the real solution, and we keep track of this error through a Lipschitz stability estimate. Finally the times of the decomposition are chosen in such a way that the time-decay of the non-smooth parts dominates the time-growth in these Lipschitz stability errors. Let B(z, σ) be defined in (1.5) with γ ∈ (0, 2] and with the condition (1.33). Let f t ∈ L 1 2 (R N ) be a mild solution of equation (1.1). Let us define

2

 2 and so the inequality (3.13) is obvious when γ = 2. Suppose 0 < γ < 2. In this case we use the inequality |vv * | ≤ v v * and the moment production estimate (1.22) with s = 4 to get

( 3 .

 3 20)-(3.24):

then follows from ( 3 .

 3 28), (3.30) and (3.31) that

Theorem 4 . 1 (

 41 Cf. Theorem 1.2 of[START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF]). Suppose N ≥ 3 and let B(z, σ) be defined in (1.5) with γ ∈ (0, min{2, N -2}] and with the conditions (1.33)-(1.45)-(1.46). Let λ = S b,γ (1, 0, 1) > 0 be the spectral gap of the linear operator L M in (1.44) associated with B(z, σ) and the Maxwellian M

Lemma 4 . 2 (

 42 Cf. Lemma 4.6 of[START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF]). Suppose N ≥ 3 and let B(z, σ) be defined in (1.5) with γ ∈ (0, min{2, N -2}], and with the conditions (1.33)-(1.45)-(1.46). Let λ = S b,γ (1, 0, 1) > 0 be the spectral gap of the linear operator L M in (1.44) associated with B(z, σ) and the Maxwellian M

( 4 )

 4 Let f t be a conservative mild solution of equation (1.1) on [τ, ∞) with the initial datum f τ . Applying Theorem 4.1 and Lemma 4.2 to the solution t → f t+τ on [0, ∞), the exponential terms for the decay estimates of f t -M L 1 on the time interval [τ, ∞) is given by e -λ(t-τ ) .

Definition 4 . 5 .

 45 Let ρ > 0, u ∈ R N and T > 0. The Mehler transform I n [F ] of F ∈ B + ρ,u,T (R N ) is given by

Lemma 4 . 6 .

 46 Given any ρ > 0, u ∈ R N and T > 0. Let F ∈ B + ρ,u,T (R N ) and let M ∈ B + ρ,u,T (R N ) be the Maxwellian distribution. Then I n [F ] ∈ L 1 ρ,u,T (R N )and for any 0 ≤ s ≤ 2 (4.7) lim n→∞

I

  n [F ] -M L 1 s ≤ F -M salso holds true, and this together with (4.10) then proves (4.7).

τe

  -λ(t-τ ) where the coefficient 0 < C f (τ ) τ < ∞ depends only on N , γ, the function b, and f (τ ) τ L 2 . Since (4.19) implies C 6 ≤ f (τ ) τ L 2 ≤ C 7 for all τ ≥ τ 0 , it follows from Remark 1.6-(3) that sup τ ≥τ 0 C f (τ ) τ ≤ C 8 , and thus for every τ ≥ τ 0 we have (4.20) ∀ t ≥ τ, f

  u,T 2 ≤ C 1/ρ,|u|/ √ T ,1/T N (F t ) -N (M ρ,u,T ) 2 ≤ C 0 C 1/ρ,|u|/ √ T ,1/T N (F 0 ) -N (M ρ,u,T ) 1/2 2 e -λct ≤ C 0 C 1/ρ,|u|/ √ T ,1/T [C ρ,|u|,T ] 1/2 F 0 -M ρ,u,T 1/2 2 e -λct .

F 0 2 = 1 0M( 1 , 1 0M 1 0M

 21111 ρ 0 (1 + N T 0 + |u 0 | 2 ). We need to estimate M G 0 -M F 0 2 . Let us define M(ρ, u, T ; v) = (2π) -N/2 ρT -N/2 exp -|v -u| 2 2Tand let us compute                 ∂ ∂ρ M(ρ, u, T ; v) = M(1, u, T ; v), ∇ u M(ρ, u, T ; v) = M(ρ, u, T ; v) v -, u, T ; v).If we set∀ θ ∈ [0, 1], ρ(θ) = θρ + (1θ)ρ 0 , u(θ) = θu + (1θ)u 0 , T (θ) = θT + (1θ)T 0 , then |M(ρ, u, T ; v) -M(ρ 0 , v 0 , T 0 ; v)| ≤ |ρρ 0 | u(θ), T (θ); v) dθ + |uu 0 | (ρ(θ), u(θ), T (θ); v) |vu(θ)| T (θ) dθ + |T -T 0 | (ρ(θ), u(θ), T (θ); v) (N/2 + 1) T (θ) + |vu(θ)| 2 2T (θ) 2 dθ.

  (R N ) is eternal, i.e. defined for all t ∈ R, then it has to be stationary and F t = M for all t ∈ R.

	In particular we have
	(iii) [Eternal measure solutions are stationary.] If a conservative measure strong solu-
	tion F t of equation (1.1) in B + ρ,u,T

  Nγ .Next let us prove(3.22). By Theorem 2.7 (see (2.52),(2.53)) and using (3.21) with n = N γ we have

we obtain (3.21) with β * = β

  Combining (4.35), (4.36) and (4.34) we obtain (4.37)∀ t ≥ 0, F t -M 2 ≤ C 0 F 0 -M

				1/2 2 e -λt .
	(4.33)				dF t (v),
	(4.34)	lim k→∞	f k,0 -M L 1 2	= F 0 -M 2 .
	Using the formulation (1.13) of the norm • 2 , we conclude from (4.33) that
	(4.35)		∀ t ≥ 0,	F t -M 2 ≤ lim sup
				1/2 L 1 2	e -λt .

k→∞ f k,t -M L 1 2 .

On the other hand, applying (4.14) to f k,t , we have

(4.36) ∀ t ≥ 0, k = 1, 2, 3, . . . , f k,t -M L 1 2 ≤ C 0 f k,0 -M

  (t) ≤ A, a.e. t ∈ (0, ∞).

					with γ = 2 that
	d dt U ε Since the function log log 1 U ε (t) = -log 1 U ε (t) -1 1 U ε (t) • d dt
			t → log log	1 U ε (t)	
	is absolutely continuous on every bounded interval of [0, ∞), it follows that for all t > 0
	log log	1 U ε (t)	≤ log log	1 U ε (0)	+ At,	i.e. U

ε (t) ≥ (U ε (0)) e At .
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Since t → F t -M γ is bounded and, by Hölder inequality, (5.3)

it follows from (5.1)- (5.3) that t → F t -M 0 is Lipschitz continuous and

a.e. t ∈ (0, ∞).

Next, thanks to the exponential decay of the Maxwellian, we show that F t -M 2 can be controlled by F t -M 0 (see e.g. (5.9) below). In fact we show that this property holds for all measure F ∈ B + 1,0,1 (R N ). To do this, let (M -F ) + be the positive part of M -F , i.e., (M -

From these we have (5.5) d|M

where the inequality part is due to F ≥ 0. Now since F, M have the same mass and energy, it follows from (5.5) and

Applying Jensen inequality to the convex function x → exp(δx/2) and the measure (M -F ) + and assuming (M -F ) + 0 > 0 we have

On the other hand we have

and thus, from (5.6)-(5.8), we deduce

i.e.

(5.9)

If we adopt the convention x log(1/x) = 0 for x = 0, the inequality (5.9) also holds for

Now let us go back to the solution F t . To avoid discussing the case F t -M 0 = 0 for some t, we consider

Using the inequality

x ≤ 2y log 1 y and (5.9) (with F = F t ), we then obtain

.

Thus by (5.4) we deduce

Case 1: 0 < γ < 2. In this case we have, by (5.10),

for almost every t ∈ (0, ∞). Observe that the function

is absolutely continuous on every bounded interval of [0, ∞). It follows that (5.11)

Next, using the convexity inequality

Thus, from (5.11), we obtain