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This work aims at reconstructing Petri net models for biological systems from experimental time-series data X . The reconstructed models shall reproduce the experimentally observed dynamic behavior in a simulation. For that, we consider Petri nets with priority relations among the transitions and control-arcs, to obtain additional activation rules for transitions to control the dynamic behavior. The contribution of this paper is to present an integrative reconstruction method, taking both concepts, priority relations and control-arcs, into account. Our approach is based on previous works for special cases and shows how these known steps have to be modified and combined to generate the desired integrative models, called X -deterministic extended Petri nets.

Introduction

The overal aim of systems biology is to analyze biological systems and to understand different phenomena therein as, e.g., responses of cells to environmental changes, host-pathogen interactions, or effects of gene defects. To gain the required insight into the underlying biological processes, experiments are performed and the resulting experimental data are interpreted in terms of models. Depending on the biological aim and the type and quality of the available data, different types of mathematical models are used and corresponding methods for their reconstruction have been developed.

Our work is dedicated to Petri nets, a framework which turned out to coherently model static interactions in terms of networks and dynamic processes in terms of state changes, see e.g. [START_REF]Petri nets[END_REF][START_REF] Pinney | Petri net representations in systems biology[END_REF]. A network (P, T, A, w) reflects the involved system components by places p ∈ P and their interactions by transitions t ∈ T , linked by weighted directed arcs. Each place p ∈ P can be marked with an integral number of tokens defining a system state x ∈ Z |P | + , dynamic processes are represented by sequences of state changes, performed by switching or firing enabled transitions (see Section 2).

Our central question is to reconstruct models of this type from experimental time-series data by means of an exact, exclusively data-driven approach. We base our method on earlier results from [START_REF] Durzinsky | Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks[END_REF][START_REF] Durzinsky | Reconstruction of extended Petri nets from time-series data by using logical control functions[END_REF][START_REF] Durzinsky | A combinatorial approach to reconstruct Petri nets from experimental data[END_REF][START_REF] Durzinsky | An algorithmic framework for network reconstruction[END_REF][START_REF] Marwan | A mathematical approach to solve the network reconstruction problem[END_REF][START_REF] Wagler | Prediction of network structure[END_REF]. This approach takes as input a set P of places and discrete time-series data X given by sequences (x 0 , x 1 , . . . , x k ) of experimentally observed system states. The goal is to determine all Petri nets (P, T, A, w) that are able to reproduce the data, i.e., that perform for each x j ∈ X the experimentally observed state change to x j+1 ∈ X in a simulation. Hence, in contrast to the normally used stochastic simulation, we require that for states where at least two transitions are enabled, the decision between the different alternatives is not taken randomly, but a specific transition is selected. For that, (standard) Petri nets have to be equiped with additional activation rules to force the switching or firing of special transitions (to reach x j+1 from x j ), and to prevent all others from switching. Analogously, the reconstruction approach needs to be extended accordingly. In previous works, we considered two possible types of additional activation rules.

On the one hand, in [START_REF] Marwan | A mathematical approach to solve the network reconstruction problem[END_REF][START_REF] Torres | Encoding the dynamics of deterministic systems[END_REF][START_REF] Wagler | Prediction of network structure[END_REF] the concept of priority relations among the transitions of a network was introduced in order to allow the modelization of deterministic systems (see Section 2 for more details). This leads to the notion of X -deterministic Petri nets, which show a prescribed behavior on the experimentally observed subset X of states: the reconstructed Petri nets (P, T, A, w) do not only contain enough transitions to reach the experimentally observed successors x j+1 from x j , but exactly this transition will be selected among all enabled ones in x j which is necessary to reach x j+1 .

On the other hand, in [START_REF] Durzinsky | Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks[END_REF][START_REF] Durzinsky | Reconstruction of extended Petri nets from time-series data by using logical control functions[END_REF] the concept of control-arcs was used to represent catalytic or inhibitory dependencies. Here, an enabled transition t ∈ T coupled with a read-arc (resp. an inhibitory-arc) to a place p ∈ P can switch only if a token (resp. no token) is present in p (see Section 2). This leads to the reconstruction of extended Petri nets which are catalytic conformal with X .

For consistently integrating both concepts, priority relations and controlarcs, into the modeling framework, the difficulty is that both are concurrent concepts to force or prevent the switching of enabled transitions. In [START_REF] Wagler | On minimality and equivalence of Petri nets[END_REF], the notion of X -deterministic extended Petri nets is introduced as the desired output of an integrative reconstruction method. The contribution of this paper is to present the steps of such an approach, based on previous reconstruction methods for special cases [START_REF] Durzinsky | Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks[END_REF][START_REF] Durzinsky | Reconstruction of extended Petri nets from time-series data by using logical control functions[END_REF][START_REF] Durzinsky | A combinatorial approach to reconstruct Petri nets from experimental data[END_REF][START_REF] Durzinsky | An algorithmic framework for network reconstruction[END_REF][START_REF] Marwan | A mathematical approach to solve the network reconstruction problem[END_REF] , and to show how these known steps have to be modified and combined to generate the desired integrative models (see Section 3).

Petri nets and extensions

A Petri net P = (P, T, A, w) is a weighted directed bipartite graph with two kinds of nodes, places and transitions. The places p ∈ P represent the system components (e.g. proteins, enzymes, genes, receptors or their conformational states) and the transitions t ∈ T stand for their interactions (e.g., chemical reactions, activations or causal dependencies). The arcs in A ⊂ (P × T ) ∪ (T × P ) link places and transitions, and the arc weights w : A → N reflect stoichiometric coefficients of the corresponding reactions.

Each place p ∈ P can be marked with an integral number x p of tokens, and any marking defines a state x ∈ N |P | of the system. In biological systems, all components can be considered to be bounded, as the value x p of any state refers to the concentration of the studied component p ∈ P , which can only increase up to a certain maximum cap(p). This leads to a capacitated Petri net (P, cap), i.e., a Petri net P = (P, T, A, w) together with a capacity function cap : P → N, whose set of potential states is

X := {x ∈ N |P | | x p ≤ cap(p)}. A transition t ∈ T is enabled in a state x ∈ X of a capacitated Petri net if E1 x p ≥ w(p, t
) for all p with (p, t) ∈ A, and, E2 x p + w(t, p) ≤ cap(p) for all p with (t, p) ∈ A and we define T (x) := {t ∈ T : t satisfies E1, E2 in x}. An extended Petri net P = (P, T, (A ∪ A R ∪ A I ), w) is a Petri net which has, besides the (standard) arcs in A, two additional sets of so-called control-arcs: the set of read-arcs A R ⊂ P × T and the set of inhibitor-arcs A I ⊂ P × T . We denote the set of control-arcs by A C = A R ∪ A I , and the set of all arcs by

A = A ∪ A R ∪ A I .
In a capacitated extended Petri net, switching of transitions is additionally controlled by read-and inhibitor-arcs; a transition t satisfying E1 and E2 can switch only if also the following conditions hold: E3 x p ≥ w(p, t) for all p with (p, t) ∈ A R , and, E4 x p < w(p, t) for all p with (p, t) ∈ A I .

In an extended Petri net, a transition is enabled in a state x ∈ X if it satisfies E1, . . . , E4 (otherwise, it is disabled ). The switch of a transition t enabled in x leads to a successor state succ X (x) = x ∈ X whose marking is obtained by

x p :=     
x p -w(p, t), for all p with (p, t) ∈ A, x p + w(t, p), for all p with (t, p) ∈ A, x p , otherwise.

In general, there can be more than one transition satisfying E1, . . . , E4 in a state x ∈ X and we define T A (x) := {t ∈ T : t satisfies E1, . . . , E4 in x}.

The decision which transition switches is typically taken randomly (and the dynamic behavior is analyzed in terms of reachability, starting from a certain initial state). This is not appropriate for modeling biological systems which show a deterministic behavior, e.g., where a certain stimulation always results in the same response. In this case, additional activation rules are required in order to force the switch from a state x to a specific successor state succ X (x). For this purpose, priorities between the transitions of the network can be used to determine which of the transitions in T A (x) has to be taken. Note that these priorities typically reflect the rate of the corresponding reactions where the fastest reaction has highest priority. In Marwan et al. [START_REF] Marwan | A mathematical approach to solve the network reconstruction problem[END_REF] it is proposed to model such priorities with the help of partial orders on the set T of transitions of the network P. Here, a partial order O on T is a relation ≤ between pairs of elements of T respecting -reflexivity (i.e., t ≤ t holds for all t ∈ T ), -transitivity (i.e., from t ≤ t and t ≤ t follows t ≤ t for all t, t , t ∈ T ), -anti-symmetry (i.e., t ≤ t and t ≤ t implies t = t ). We call (P, O) an (extended) Petri net with priorities, if P = (P, T, A, w) is an (extended) Petri net and O a priority relation on T .

Note that priorities can prevent enabled transitions from switching: for a state x ∈ X , only a transition t ∈ T A (x) is allowed to switch or can switch if E5 there is no other transition t ∈ T A (x) with (t < t ) ∈ O.

The set of all transitions that are allowed to switch in x is denoted by

T A,O (x) := {t ∈ T : t satisfies E1, . . . , E5 in x}.
To enforce a deterministic behavior, T A,O (x) must contain at most one element for each x ∈ X to enforce that x has a unique successor succ X (x), see [START_REF] Torres | Encoding the dynamics of deterministic systems[END_REF] for more details. Extended Petri nets with priorities satisfying this property are said to be X -deterministic. For our purpose, we consider a relaxed condition, namely that T A,O (x) contains at most one element for each experimentally observed state x ∈ X , but T A,O (x) may contain several elements for non-observed states x ∈ X \ X . We call such Petri nets X -deterministic.

In this paper we consider capacitated extended Petri nets with priorities (P, cap, O): extended Petri nets P = (P, T, A, w) with a capacity function cap : P → N on their places and a partial order O ⊂ T × T on their transitions. Our goal is to reconstruct X -deterministic extended Petri nets from given experimental data X .

Reconstructing X -deterministic extended Petri nets

In this section, we describe the input, the main ideas, and the generated output of our integrative reconstruction approach.

Input

A set of components P (later represented by the set of places) is chosen which is expected to be crucial for the studied phenomenon. All known Pinvariants3 of the system (e.g., different conformational stages of a cell, a receptor, a protein) shall be collected in a set I P .

To perform an experiment, one first triggeres the system in some state x 0 (by external stimuli like the change of nutrient concentrations or the exposition to some pathogens), to generate an initial state x 1 . Then the system's response to the stimulation is observed and the resulting state changes are measured for all components at certain time points. This yields a sequence of (discrete or discretized ) states x j ∈ Z |P | reflecting the time-dependent response of the system to the stimulation in x 1 , which typically terminates in a terminal state x k where no further changes are observed. The corresponding experiment is

X (x 1 , x k ) = (x 0 ; x 1 , . . . , x k ).
Several experiments starting from different initial states in a set X ini ⊆ X , reporting the observed state changes for all components p ∈ P at certain time points, and ending at different terminal states in a set X term ⊆ X describe the studied phenomenon, and yield experimental time-series data of the form

X = {X (x 1 , x k ) : x 1 ∈ X ini , x k ∈ X term }.
Thus, the input of the reconstruction approach is given by (P, I P , X ).

Example 1. As running example, we will consider experimental biological data from the light-induced sporulation of Physarum polycephalum. The developmental decision of starving P. polycephalum plasmodia to exit the vegetative plasmodial stage and to enter the sporulation pathway is controlled by environmental factors like visible light [START_REF] Starostzik | Functional mapping of the branched signal transduction pathway that controls sporulation in Physarum polycephalum[END_REF]. One of the photoreceptors involved in the control of sporulation Spo is a phytochrome-like photoreversible photoreceptor protein which occurs in two stages P F R and P R . If the darkadapted form P F R absorbs far-red light F R, the receptor is converted into its red-absorbing form P R , which causes sporulation [START_REF] Lamparter | Spectroscopic detection of a phytochrome-like photoreceptor in the myxomycete physarum polycephalum and the kinetic mechanism for the photocontrol of sporulation[END_REF]. If P R is exposed to red light R, it is photoconverted back to the initial stage P F R , which prevents sporulation. Note that the changes between the stages P F R and P R can be experimentally observed due to a change of color. The experimental setting consists of

P = {F R, R, P F R , P R , Spo} I P = {P F R , P R } X (x 1 , x 3 ) = (x 0 ; x 1 , x 2 , x 3 ) X (x 4 , x 0 ) = (x 2 ; x 4 , x 0 ) X ini = {x 1 , x 4 } X term = {x 3 , x 0 }
as input for the algorithm, we represent all observed states schematically in Fig 1.

In the best case, two consecutively measured states x j , x j+1 ∈ X are also consecutive system states, i.e., x j+1 can be obtained from x j by switching a single transition in T . This is, however, in general not the case (and depends on the chosen time points to measure the states in X ), but x j+1 is obtained from x j by a switching sequence of some length, where the intermediate states are not reported in X .

For a successful reconstruction approach, the data X need to satisfy two properties: reproducibility and monotonicity. The data X are reproducible if for each x j ∈ X there is a unique observed successor state succ X (x j ) =

x j+1 ∈ X . Moreover, the data X are monotone4 if for each pair (x j , x j+1 ) ∈ X , the possible intermediate states x j = y 1 , y 2 , ..., y m+1 = x j+1 satisfy y 1 p ≤ y 2 p ≤ . . . ≤ y m p ≤ y m+1 p for all p ∈ P with x j p ≤ x j+1 p and y 1 p ≥ y 2 p ≥ . . . ≥ y m p ≥ y m+1 p for all p ∈ P with x j p ≥ x j+1 p . Whereas reproducability is obviously necessary, it was shown in [START_REF] Durzinsky | A combinatorial approach to reconstruct Petri nets from experimental data[END_REF] that monotonicity has to be required or, equivalently, that all essential responses are indeed reported in the experiments. Due to monotonicity, a capacity cap(p) can be determined from X for each p ∈ P by cap(p) = max{x p : x ∈ X }, but is not required for the reconstruction.

Output

A capacitated extended Petri net with priorities (P, cap, O) with P = (P, T, A, w) fits the given data X when it is able to perform every observed state change from x j ∈ X to succ X (x j ) = x j+1 ∈ X . This can be interpreted as follows. With P, an incidence matrix M (P) ∈ Z |P |×|T | is associated, where each row corresponds to a place p ∈ P of the network, and each column M (P) •t to the update vector r t of a transition t ∈ T :

r t p = M (P) pt :=      -w(p, t) if (p, t) ∈ A, +w(t, p) if (t, p) ∈ A, 0 otherwise.
Reaching x j+1 from x j by a switching sequence using the transitions from a subset T ⊆ T is equivalent to obtain the state vector x j+1 from x j by adding the corresponding columns M (P) •t of M (P) for all t ∈ T :

x j + t∈T M (P) •t = x j+1 .
Hence, T has to contain enough transitions to perform all experimentally observed switching sequences. The underlying standard network P = (P, T, A, w) is conformal with X if, for any two consecutive states x j , succ X (x j ) = x j+1 ∈ X , the linear equation system

x j+1 -x j = M (P)λ
has an integral solution λ ∈ N |T | such that λ is the incidence vector of a sequence (t 1 , ..., t m ) of transition switches, i.e., there are intermediate states

x j = y 1 , y 2 , ..., y m+1 = x j+1 with y l + M (P) •t l = y l+1 for 1 ≤ l ≤ m.
The extended Petri net P = (P, T, A, w) is catalytic conformal with X if t l ∈ T A (y l ) for each intermediate state y l , and the extended Petri net with priorities (P, O) is X -deterministic if {t l } = T A,O (y l ) holds for all y l .

The desired output of the reconstruction approach consists of the set of all X -deterministic extended Petri nets (P, cap, O) (all having the same set P of places and the same capacities cap deduced from X ).

Representation of the observed responses

To solve the problem of representing the observed responses by switching sequences, we propose the following approach, based on previous works in [START_REF] Durzinsky | An algorithmic framework for network reconstruction[END_REF][START_REF] Marwan | A mathematical approach to solve the network reconstruction problem[END_REF].

Extraction of difference vectors. As initial step, extract the observed changes of states from the experimental data. For that, define the set

D := d j = x j+1 -x j : x j+1 = succ X (x j ) ∈ X .
Example 2. From our running example in Fig. 1 we obtain

D = {d 1 , d 2 , d 4 } with d 1 = x 2 -x 1 = (-1, 0, -1, 1, 0) T , d 2 = x 3 -x 2 = (0, 0, 0, 0, 1) T and d 4 = x 0 -x 4 = (0, -1, 1, -1, 0) T .
Generating the complete list of all X -deterministic extended Petri nets P = (P, T, A, w) includes finding the corresponding standard networks and their incidence matrices

M ∈ Z |P |×|T | .
The first step is to describe the set of potential update vectors which might constitute the columns of M .

Representation of difference vectors. Recall that two consecutively measured states x j , x j+1 ∈ X are not necessarily consecutive system states, i.e., x j+1 may be obtained from x j by a switching sequence of some length, where the intermediate states are not reported in X . Due to monotonicity, the values of the elements cannot oscillate in the intermediate states between x j and x j+1 . Moreover, for any P -invariant P ∈ I P , all suitable update vectors have to satisfy p∈P r p = 0. Hence, it suffices to represent any d j ∈ D using only vectors from the following set

Box(d j ) =        r ∈ Z |P | : 0 ≤ r p ≤ d j p if d j p > 0 d j p ≤ r p ≤ 0 if d j p < 0 r p = 0 if d j p = 0 p∈P r p = 0 ∀P ∈ I P        \ {0}.
Remark 1. In previous approaches [START_REF] Durzinsky | An algorithmic framework for network reconstruction[END_REF], none of the reconstructed (standard) networks must contain a transition enabled at any of the observed terminal states x k ∈ X term ; hence all such vectors in Box(d j ) could be removed. This is not the case for extended Petri nets as desired output of the reconstruction, since the corresponding transitions can be disabled due to control-arcs. Here, we only exclude the zero vector 0 as trivial update vector. Next, we determine for any d j ∈ D, the set λ(d j ) of all integral solutions of the equation system

d j = r t ∈ Box(d j ) λ t r t , λ t ∈ Z + .
By construction, Box(d j ) and λ(d j ) are always non-empty since d j itself is always a solution due to the required reproducibility of the input data X (which particularly includes d j = 0 for all d j ∈ D). For each λ ∈ λ(d j ), construct the (multi-)set

R(d j , λ) = {r t ∈ Box(d j ) : λ t = 0}
of update vectors used for this solution λ.

Exampke 3. For D from Exp. 3.3, the update vectors for a decomposition are Box(d 1 ) = {d 1 , r 1 , r 2 }, Box(d 2 ) = {d 2 } and Box(d 4 ) = {d 4 , r 3 , r 4 } with vectors r 1 = (-1, 0, 0, 0, 0) T , r 2 = (0, 0, -1, 1, 0) T , r 3 = (0, -1, 0, 0, 0) T and r 4 = (0, 0, 1, -1, 0) T .

Hence, the possible decomposition of the responses are d 1 = d 1 = r 1 +r 2 , d 2 = d 2 and d 4 = d 4 = r 3 + r 4 and the resulting sets are

R(d 1 , λ 1 ) = {d 1 }, R(d 1 , λ 2 ) = {r 1 , r 2 }, R(d 2 , λ) = {d 2 }, R(d 4 , λ 1 ) = {d 4 }, R(d 4 , λ 2 ) = {r 3 , r 4 }.

Priority conflicts.

To compose all possible standard networks, we have to select exactly one solution λ ∈ λ(d j ) for each d j ∈ D and to take the union of the corresponding sets R(d j , λ) in order to yield the columns M •t = r t of an incidence matrix M of a conformal network. To ensure that the generated conformal networks can be made X -deterministic, we proceed as follows.

Sequences and their conflicts. Every permutation π = (r t 1 , . . . , r tm ) of the elements of a set R(d j , λ) gives rise to a sequence of intermediate states x j = y 1 , y 2 , ..., y m , y m+1 = x j+1 with σ π,λ (x j , d j ) = (y 1 , r t 1 ), (y 2 , r t 2 ), . . . , (y m , r tm ) .

By construction, every such sequence σ respects monotonicity and induces a priority relation O σ , since it implies which transition t i is supposed to have highest priority (and thus switches) for every intermediate state y i .

To impose valid priority relations O among all transitions of the reconstructed networks, we have to take priority conflicts between priority relations O σ induced by different sequences σ into account.

Two sequences σ and σ are in priority conflict if there are update vectors r t = r t and intermediate states y, y such that t, t ∈ T (y) ∩ T (y ) and (y,

r t ) ∈ σ but (y , r t ) ∈ σ (since this implies t > t in O σ but t > t in O σ ).
We have a weak priority conflict (WPC) if y = y and a strong priority conflict (SPC) if y = y . Note that a WPC can be resolved by adding appropriate control-arcs, whereas a SPC cannot be resolved that way (see section 3.5).

Note that we have a strong priority conflict between the trivial sequence σ(x k , 0) for any terminal state x k ∈ X term and any sequence σ containing x k as intermediate state. Such sequences σ are not catalytic conformal due to [START_REF] Durzinsky | Reconstruction of extended Petri nets from time-series data by using logical control functions[END_REF].

Example 4. From the running example, we obtain the following sequences

σ 1 (x 1 , d 1 ) = ((x 1 , d 1 )) σ 2 (x 1 , d 1 ) = ((x 1 , r 1 ), (x 0 , r 2 )) σ 3 (x 1 , d 1 ) = ((x 1 , r 2 ), (x 5 , r 1 )) σ(x 2 , d 2 ) = ((x 2 , d 2 )) σ 1 (x 4 , d 4 ) = ((x 4 , d 4 )) σ 2 (x 4 , d 4 ) = ((x 4 , r 3
), (x 2 , r 4 )) σ 3 (x 4 , d 4 ) = ((x 4 , r 4 ), (x 6 , r 3 )) σ(x 3 , 0) and σ(x 0 , 0) where x 5 = (1, 0, 0, 1, 0) T and x 6 = (0, 1, 1, 0, 0) T . Between these sequences, we have SPCs and WPCs as indicated in Fig. 2.

Construction of the priority conflict graph. To reflect the weak and strong priority conflicts between all possible sequences resulting from X , we construct a priority conflict graph

G = (V D ∪ V term , E D ∪ E W ∪ E S )
where the nodes correspond to sequences and the edges to priority conflicts:

-V D contains for all x j ∈ X \ X term and the difference vector d j = succ X (x i ) -x i , for all λ ∈ λ(d j ) and all permutations π of R(d j , λ) the sequence σ π,λ (x j , d j ). -V term contains for all x k ∈ X term the trivial sequence σ(x k , 0). -E D contains all edges between two sequences σ, σ stemming from the same difference vector. -E S reflects all strong priority conflicts between sequences σ, σ stemming from distinct difference vectors.

-E W reflects all weak priority conflicts between sequences σ, σ stemming from distinct difference vectors. The edges in E D induce a clique partition Q of G in as many cliques 5 as there are observed states in X \ X term resp. difference vectors in D:

V D = Q 1 ∪ . . . ∪ Q |D| . Moreover, each node in V term corresponds to a clique of size 1, so that G is partitioned into |X | many cliques.
Example 5. The resulting priority conflict graph G of the running example is shown in Fig. 2.

Selection of suitable sequences. To obtain a network explaining all observations, we have to select one sequence per difference vector d j , i.e., exactly one node from each clique Q j ∈ Q. To encode the priority conflicts involving terminal states, we require also to select all trivial sequences σ(x k , 0), i.e., all nodes from V term . Thus, we are interested in subsets

S ⊆ V D of cardinality |D| such that |S ∩ Q j | = 1 for each Q j ∈ Q, and no SPCs occur in S ⊆ V term .
The set of all such solutions S ∪ V term can be encoded by all vectors x ∈ {0, 1} |V D ∪Vterm| satisfying

σ∈Q j x σ = 1 ∀Q j ∈ Q x σ = 1 ∀σ ∈ V term x σ + x σ ≤ 1 ∀σσ ∈ E S x σ ∈ {0, 1} ∀σ ∈ V D ∪ V term .
Example 6. From G in Exp. 3.4, we obtain the following feasible subsets

S i ∪ V term S 1 = {σ 1 (x 1 , d 1 ), σ(x 2 , d 2 ), σ 1 (x 4 , d 4 )}, S 3 = {σ 1 (x 1 , d 1 ), σ(x 2 , d 2 ), σ 3 (x 4 , d 4 )}, S 2 = {σ 3 (x 1 , d 1 ), σ(x 2 , d 2 ), σ 1 (x 4 , d 4 )}, S 4 = {σ 3 (x 1 , d 1 ), σ(x 2 , d 2 ), σ 3 (x 4 , d 4 )}.
Composition of conformal networks. Every selected subset S ∪ V term corresponds to a standard network P S = (P, T S , A S , w) which is conformal with X (but not yet necessarily X -deterministic):

-we obtain the columns of the incidence matrix M S of the network by taking the union of all sets R(d j , λ) corresponding to the sequences σ = σ π,λ (x j , d j ) selected by σ ∈ S; -there might be weak priority conflicts σσ ∈ E W for nodes σ, σ ∈ S ∪ V term which have to be resolved subsequently by inserting appropriate control-arcs.

5.

A clique is a subset of mutually adjacent nodes.

Example 7. We apply the method only to the feasible set S 1 ∪ V term from Exp. 3.4 (all solutions for S 2 ∪ V term , S 3 ∪ V term and S 4 ∪ V term are presented in Exp. 3.6). We construct the standard network presented in Fig. 3 with

T S 1 = {d 1 , d 2 , d 4 }.
There is a priority conflict between σ(x 2 , d 2 ) and σ(x 0 , 0) due to d 2 , 0 ∈ T (x 2 ) ∩ T (x 0 ).

Inserting control-arcs.

For each of the yet reconstructed standard networks P S = (P, T S , A S , w) resulting from a selected subset S from the previous reconstruction step, we have to determine appropriate control-arcs in order to resolve weak priority conflicts corresponding to edges σσ ∈ E W with σ, σ ∈ S ∪ V term (if any), in order to turn P S into a catalytic conformal extended Petri net P S = (P, T S , A S , w).

Recall that we have a weak priority conflict between two sequences σ and σ if there are update vectors r t = r t and intermediate states y = y with t, t ∈ T (y)∩T (y ) such that (y, r t ) ∈ σ but (y , r t ) ∈ σ . This weak priority conflict has to be resolved by adding appropriate control-arcs such that -the update vector r t becomes a transition t with t ∈ T A (y) but t ∈ T A (y ) (or vice versa) if y, y ∈ X term or -the update vector r t becomes a transition t with t ∈ T A (y) which is disabled by control-arcs in y if y ∈ X term .

Inserting control-arcs This task can be done by using similar techniques as proposed in [START_REF] Durzinsky | Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks[END_REF][START_REF] Durzinsky | Reconstruction of extended Petri nets from time-series data by using logical control functions[END_REF]. Let P (y, y ) be the set of places where y and y differ, i.e., P (y, y ) = {p ∈ P : y p = y p }. In order to disable transition t resulting from r t at y , we can include either -a read-arc (p, t) ∈ A R with weight w(p, t) > y p for some p ∈ P (y, y ) with y p > y p or -an inhibitor-arc (p, t) ∈ A I with weight w(p, t) < y p for some p ∈ P (y, y ) with y p < y p . Each of the so-determined control-arcs defines a transition t with the desired properties (inheriting the standard arcs from r t and having either a read-arc or an inhibitor-arc as described above).

Remark 2. In case of a SPC involving states y = y , the set P (y, y ) becomes empty and it is, therefore, not possible to resolve a SPC by control-arcs.

For every reconstructed standard network P S = (P, T S , A S , w) and any subset P ⊆ P containing exactly one place from P (y, y ) for every weak priority conflict, we get a catalytic conformal extended Petri net P S,P = (P, T S , A S,P , w) by inserting the respective control-arcs for all p ∈ P .

Example 8. We define control-arcs to resolve the WPC between σ(x 2 , d 2 ) and σ(x 0 , 0) for the network P S 1 . We obtain P (x 2 , x 0 ) = {P F R , P R } by x 2 = (0, 0, 0, 1, 0) T and x 0 = (0, 0, 1, 0, 0) T .

Any non-empty subset of P (x 2 , x 0 ) can be used to disable d 2 at x 0 ∈ X term . For P F R , x 2 P F R < x 0 P F R holds, leading to an inhibitor-arc (P F R , d 2 ) ∈ A S 1 ,P , and for P R , x 2 P R > x 0 P R holds, leading to a read-arc (P R , d 2 ) ∈ A S 1 ,P both with weignt 1. The two possible alternatives are presented in Fig. 4.

Determining priority relations

To generate the required priorities for each of the yet reconstructed extended networks P S,P = (P, T S , A S,P , w), we only need to set the priorities among all the transitions in T S according to the sequences selected for S.

Recall that every σ ∈ S stands for a sequence σ = σ π,λ (x j , d j ) = (y 1 , r t 1 ), (y 2 , r t 2 ), . . . , (y m , r tm ) which induces a priority relation O σ indicating that the transition t i resulting from r t i is supposed to have highest priority at y i . That is, O σ is defined by

O σ = t i > t : t ∈ T A S,P (y i ) \ t i , 1 ≤ i ≤ m .
By construction, there are no priority conflicts in the extended network P S,P between O σ and O σ for any σ, σ ∈ S, thus we obtain the studied partial order O S,P = σ∈S O σ .

This implies finally that every extended network P S,P = (P, T S , A S,P , w) together with the partial order O S,P constitutes an X -deterministic extended Petri net fitting the given data X .

Example 9.

For the running example, it is left to determine the priority relations. For the extended Petri nets P S 1 ,P , we can easily verify that T A S 1 ,P (x) contains exactly one transition for all x ∈ X , so no priorities are implied and O S 1 ,P = ∅ follows. For the Petri nets coming from the other sets S 2 , S 3 , S 4 , all possible minimal X -deterministic extended Petri nets are depicted in Fig. 5, 6 and 7.

Concluding remarks

To summarize, we present in this paper the steps of an integrative reconstruction method to generate all possible X -deterministic extended Petri nets from monotone and reproducible experimental time-series data X .

This approach is based on previous works for special cases: the reconstruction of standard networks [START_REF] Durzinsky | An algorithmic framework for network reconstruction[END_REF], standard networks with priorities [START_REF] Marwan | A mathematical approach to solve the network reconstruction problem[END_REF] and extended Petri nets [START_REF] Durzinsky | Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks[END_REF][START_REF] Durzinsky | Reconstruction of extended Petri nets from time-series data by using logical control functions[END_REF]. Here, we modify and generalize the previous methods by -adjusting the representation of the observed difference vectors d j to the case of extended networks with priorities (where d j might be enabled at a terminal state in X term ), -refining the idea from [START_REF] Marwan | A mathematical approach to solve the network reconstruction problem[END_REF] to construct a priority conflict graph by distinguishing weak and strong priority conflicts (where only strong conflicts affect the selection), -generalizing the method from [START_REF] Durzinsky | Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks[END_REF][START_REF] Durzinsky | Reconstruction of extended Petri nets from time-series data by using logical control functions[END_REF] such that weak priority conflicts can be resolved by inserting control-arcs (where arbitrary arcs weights can occur). Note that a preprocessing (to test the experimental data X for reproducibility and, if necessary, to handle infeasible situations) can be handled similar as in [START_REF] Durzinsky | An algorithmic framework for network reconstruction[END_REF] and a postprocessing (to keep only "minimal" solutions in the sense that all other X -deterministic extended Petri nets fitting the data contain the returned ones) is presented in [START_REF] Wagler | On minimality and equivalence of Petri nets[END_REF].

In total, this integrative approach is promising for the reconstruction of networks fully fitting the experimentally observed phenomena.

Our further goal is to make the new approach accessible by a suitable implementation, e.g., using Answer Set Programming as in the case of the reconstruction of standard networks with priorities [START_REF] Durzinsky | Automatic network reconstruction using asp[END_REF]. 
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Figure 1 :

 1 Figure 1: A scheme illustrating the experimental time-series data described in Exp. 3.1 concerning the light-induced sporulation of Physarum polycephalum, where the entries of the state vectors are interpreted as shown on the left (dashed arrows represent stimulations, solid arrows responses).
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 2113111442443442 Figure 2: The conflict graph resulting from the sequences listed in Exp. 3.4, where bold edges indicate SPCs, thin edges WPCs and gray boxes the clique partition.

Figure 3 : 1 (

 31 Figure 3: Standard network P 1 = (P, T S 1 , A S 1 , w) from solution S 1 (Exp. 3.4)

Figure 4 :

 4 Figure 4: The two conformal networks resulting from P S 1 in Exp. 3.5

Figure 5 :

 5 Figure 5: From S 2 , two catalytic conformal networks P S 2 result, both with priority relations O 2 = {(r 2 > r 1 )}.

Figure 6 :

 6 Figure 6: From S 3 , four minimal catalytic conformal networks P S 3 result, all with priority relations O 3 = {(r 4 > r 3 )}.

Figure 7 :

 7 Figure 7: From S 4 , four minimal catalytic conformal networks P S 4 result, all with priority relations O 4 = {(r 2 > r 1 ), (r 4 > r 3 )}.

Laxly said, a P-invariant is a set P ⊆ P of places (components) where the sum of the number of all tokens on all the places in P is constant. P-invariants are not computed by the algorithm but must be known a priori by a biologist.

Meaning that all essential responses are indeed reported in the experiments. The necessity of monotone data is shown in[START_REF] Durzinsky | A combinatorial approach to reconstruct Petri nets from experimental data[END_REF].
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