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Abstract

This work aims at reconstructing Petri net models for biological systems
from experimental time-series data X ′. The reconstructed models shall re-
produce the experimentally observed dynamic behavior in a simulation. For
that, we consider Petri nets with priority relations among the transitions
and control-arcs, to obtain additional activation rules for transitions to con-
trol the dynamic behavior. The contribution of this paper is to present an
integrative reconstruction method, taking both concepts, priority relations
and control-arcs, into account. Our approach is based on previous works
for special cases and shows how these known steps have to be modified and
combined to generate the desired integrative models, called X ′-deterministic
extended Petri nets.

Keywords: Petri nets, time-series data, priority relations, control-arcs

Résumé

Ce travail a pour but de reconstruire des modèles sous forme de réseaux de
Petri pour des systèmes biologiques à partir des données expérimentales en
tant que séries temporelles X ′. Les modèles reconstruits doivent reproduire le
comportement dynamique observée expérimentalement dans une simulation.
Pour cela, nous considérons les réseaux de Petri avec des relations de priorité
entre les transitions et des arêtes de control, pour obtenir des règles d’activa-
tion supplémentaires pour les transitions afin de contrôler le comportement
dynamique du réseau. Cet article présente un procédé de reconstruction d’in-
tégratif, en prenant en compte les deux concepts, les relations prioritaires et
les arêtes de control. Notre approche est basée sur des travaux antérieurs ap-
pliqués à des cas particuliers et nous montrons comment ces deuxx conceptes
connus doivent être modifiés et combinés pour générer des modèles d’inté-
gratif souhaités, appellés "X ′-deterministic extended Petri nets".

Mots clés : Réseaux de Petri, données de séries temporelles, relations de
priorités, arêtes de control
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1 Introduction
The overal aim of systems biology is to analyze biological systems and

to understand different phenomena therein as, e.g., responses of cells to en-
vironmental changes, host-pathogen interactions, or effects of gene defects.
To gain the required insight into the underlying biological processes, experi-
ments are performed and the resulting experimental data are interpreted in
terms of models. Depending on the biological aim and the type and quality
of the available data, different types of mathematical models are used and
corresponding methods for their reconstruction have been developed.

Our work is dedicated to Petri nets, a framework which turned out to
coherently model static interactions in terms of networks and dynamic pro-
cesses in terms of state changes, see e.g. [5, 9]. A network (P, T,A, w) reflects
the involved system components by places p ∈ P and their interactions by
transitions t ∈ T , linked by weighted directed arcs. Each place p ∈ P can be
marked with an integral number of tokens defining a system state x ∈ Z|P |+ ,
dynamic processes are represented by sequences of state changes, performed
by switching or firing enabled transitions (see Section 2).

Our central question is to reconstruct models of this type from experimen-
tal time-series data by means of an exact, exclusively data-driven approach.
We base our method on earlier results from [1, 2, 3, 4, 8, 12]. This approach
takes as input a set P of places and discrete time-series data X ′ given by
sequences (x0,x1, . . . ,xk) of experimentally observed system states. The
goal is to determine all Petri nets (P, T,A, w) that are able to reproduce the
data, i.e., that perform for each xj ∈ X ′ the experimentally observed state
change to xj+1 ∈ X ′ in a simulation. Hence, in contrast to the normally used
stochastic simulation, we require that for states where at least two transitions
are enabled, the decision between the different alternatives is not taken ran-
domly, but a specific transition is selected. For that, (standard) Petri nets
have to be equiped with additional activation rules to force the switching
or firing of special transitions (to reach xj+1 from xj), and to prevent all
others from switching. Analogously, the reconstruction approach needs to be
extended accordingly. In previous works, we considered two possible types
of additional activation rules.

On the one hand, in [8, 11, 12] the concept of priority relations among the
transitions of a network was introduced in order to allow the modelization
of deterministic systems (see Section 2 for more details). This leads to the
notion of X ′-deterministic Petri nets, which show a prescribed behavior on
the experimentally observed subset X ′ of states: the reconstructed Petri nets
(P, T,A, w) do not only contain enough transitions to reach the experimen-
tally observed successors xj+1 from xj, but exactly this transition will be
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selected among all enabled ones in xj which is necessary to reach xj+1.
On the other hand, in [1, 2] the concept of control-arcs was used to

represent catalytic or inhibitory dependencies. Here, an enabled transition
t ∈ T coupled with a read-arc (resp. an inhibitory-arc) to a place p ∈ P
can switch only if a token (resp. no token) is present in p (see Section 2).
This leads to the reconstruction of extended Petri nets which are catalytic
conformal with X ′.

For consistently integrating both concepts, priority relations and control-
arcs, into the modeling framework, the difficulty is that both are concurrent
concepts to force or prevent the switching of enabled transitions. In [13],
the notion of X ′-deterministic extended Petri nets is introduced as the de-
sired output of an integrative reconstruction method. The contribution of
this paper is to present the steps of such an approach, based on previous
reconstruction methods for special cases [1, 2, 3, 4, 8] , and to show how
these known steps have to be modified and combined to generate the desired
integrative models (see Section 3).

2 Petri nets and extensions
A Petri net P = (P, T,A,w) is a weighted directed bipartite graph with

two kinds of nodes, places and transitions. The places p ∈ P represent
the system components (e.g. proteins, enzymes, genes, receptors or their
conformational states) and the transitions t ∈ T stand for their interactions
(e.g., chemical reactions, activations or causal dependencies). The arcs in
A ⊂ (P × T ) ∪ (T × P ) link places and transitions, and the arc weights
w : A→ N reflect stoichiometric coefficients of the corresponding reactions.

Each place p ∈ P can be marked with an integral number xp of tokens, and
any marking defines a state x ∈ N|P | of the system. In biological systems,
all components can be considered to be bounded, as the value xp of any
state refers to the concentration of the studied component p ∈ P , which can
only increase up to a certain maximum cap(p). This leads to a capacitated
Petri net (P , cap), i.e., a Petri net P = (P, T,A,w) together with a capacity
function cap : P → N, whose set of potential states is X := {x ∈ N|P | | xp ≤
cap(p)}. A transition t ∈ T is enabled in a state x ∈ X of a capacitated Petri
net if
E1 xp ≥ w(p, t) for all p with (p, t) ∈ A, and,
E2 xp + w(t, p) ≤ cap(p) for all p with (t, p) ∈ A
and we define T (x) := {t ∈ T : t satisfies E1, E2 in x}.
An extended Petri net P = (P, T, (A∪AR ∪AI), w) is a Petri net which has,
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besides the (standard) arcs in A, two additional sets of so-called control-arcs:
the set of read-arcs AR ⊂ P × T and the set of inhibitor-arcs AI ⊂ P × T .
We denote the set of control-arcs by AC = AR ∪ AI , and the set of all arcs
by A = A ∪ AR ∪ AI .

In a capacitated extended Petri net, switching of transitions is addition-
ally controlled by read- and inhibitor-arcs; a transition t satisfying E1 and
E2 can switch only if also the following conditions hold:
E3 xp ≥ w(p, t) for all p with (p, t) ∈ AR, and,
E4 xp < w(p, t) for all p with (p, t) ∈ AI .

In an extended Petri net, a transition is enabled in a state x ∈ X if it
satisfies E1, . . . , E4 (otherwise, it is disabled). The switch of a transition t
enabled in x leads to a successor state succX (x) = x

′ ∈ X whose marking is
obtained by

x′p :=





xp − w(p, t), for all p with (p, t) ∈ A,
xp + w(t, p), for all p with (t, p) ∈ A,
xp, otherwise.

In general, there can be more than one transition satisfying E1, . . . , E4 in
a state x ∈ X and we define TA(x) := {t ∈ T : t satisfies E1, . . . , E4 in x}.

The decision which transition switches is typically taken randomly (and
the dynamic behavior is analyzed in terms of reachability, starting from a
certain initial state). This is not appropriate for modeling biological systems
which show a deterministic behavior, e.g., where a certain stimulation always
results in the same response. In this case, additional activation rules are
required in order to force the switch from a state x to a specific successor
state succX (x). For this purpose, priorities between the transitions of the
network can be used to determine which of the transitions in TA(x) has to be
taken. Note that these priorities typically reflect the rate of the corresponding
reactions where the fastest reaction has highest priority. In Marwan et al. [8]
it is proposed to model such priorities with the help of partial orders on the
set T of transitions of the network P . Here, a partial order O on T is a
relation ≤ between pairs of elements of T respecting

– reflexivity (i.e., t ≤ t holds for all t ∈ T ),
– transitivity (i.e., from t ≤ t′ and t′ ≤ t′′ follows t ≤ t′′ for all t, t′, t′′ ∈
T ),

– anti-symmetry (i.e., t ≤ t′ and t′ ≤ t implies t = t′).
We call (P ,O) an (extended) Petri net with priorities, if P = (P, T,A, w) is
an (extended) Petri net and O a priority relation on T .

Note that priorities can prevent enabled transitions from switching: for a
state x ∈ X , only a transition t ∈ TA(x) is allowed to switch or can switch if
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E5 there is no other transition t′ ∈ TA(x) with (t < t′) ∈ O.
The set of all transitions that are allowed to switch in x is denoted by

TA,O(x) := {t ∈ T : t satisfies E1, . . . , E5 in x}.

To enforce a deterministic behavior, TA,O(x) must contain at most one ele-
ment for each x ∈ X to enforce that x has a unique successor succX (x), see
[11] for more details. Extended Petri nets with priorities satisfying this prop-
erty are said to be X -deterministic. For our purpose, we consider a relaxed
condition, namely that TA,O(x) contains at most one element for each exper-
imentally observed state x ∈ X ′, but TA,O(x) may contain several elements
for non-observed states x ∈ X \X ′. We call such Petri nets X ′-deterministic.

In this paper we consider capacitated extended Petri nets with priorities
(P , cap,O): extended Petri nets P = (P, T,A, w) with a capacity function
cap : P → N on their places and a partial order O ⊂ T × T on their
transitions. Our goal is to reconstruct X ′-deterministic extended Petri nets
from given experimental data X ′.

3 Reconstructing X ′-deterministic extended Petri
nets

In this section, we describe the input, the main ideas, and the generated
output of our integrative reconstruction approach.

3.1 Input

A set of components P (later represented by the set of places) is chosen
which is expected to be crucial for the studied phenomenon. All known P -
invariants 3 of the system (e.g., different conformational stages of a cell, a
receptor, a protein) shall be collected in a set IP .

To perform an experiment, one first triggeres the system in some state x0

(by external stimuli like the change of nutrient concentrations or the exposi-
tion to some pathogens), to generate an initial state x1. Then the system’s
response to the stimulation is observed and the resulting state changes are
measured for all components at certain time points. This yields a sequence
of (discrete or discretized ) states xj ∈ Z|P | reflecting the time-dependent re-
sponse of the system to the stimulation in x1, which typically terminates in a

3. Laxly said, a P-invariant is a set P ′ ⊆ P of places (components) where the sum of
the number of all tokens on all the places in P ′ is constant. P-invariants are not computed
by the algorithm but must be known a priori by a biologist.
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terminal state xk where no further changes are observed. The corresponding
experiment is

X ′(x1,xk) = (x0;x1, . . . ,xk).

Several experiments starting from different initial states in a set X ′ini ⊆ X ′,
reporting the observed state changes for all components p ∈ P at certain time
points, and ending at different terminal states in a set X ′term ⊆ X ′ describe
the studied phenomenon, and yield experimental time-series data of the form

X ′ = {X ′(x1,xk) : x1 ∈ X ′ini,xk ∈ X ′term}.

Thus, the input of the reconstruction approach is given by (P, IP ,X ′).

Example 1. As running example, we will consider experimental biological
data from the light-induced sporulation of Physarum polycephalum. The de-
velopmental decision of starving P. polycephalum plasmodia to exit the veg-
etative plasmodial stage and to enter the sporulation pathway is controlled
by environmental factors like visible light [10]. One of the photoreceptors in-
volved in the control of sporulation Spo is a phytochrome-like photoreversible
photoreceptor protein which occurs in two stages PFR and PR. If the dark-
adapted form PFR absorbs far-red light FR, the receptor is converted into its
red-absorbing form PR, which causes sporulation [6]. If PR is exposed to red
light R, it is photoconverted back to the initial stage PFR, which prevents
sporulation. Note that the changes between the stages PFR and PR can be
experimentally observed due to a change of color. The experimental setting
consists of

P = {FR,R, PFR, PR, Spo}
IP = {PFR, PR}

X ′(x1,x3) = (x0; x1,x2,x3)
X ′(x4,x0) = (x2; x4,x0)

X ′
ini = {x1,x4}

X ′
term = {x3,x0}

as input for the algorithm, we represent all observed states schematically in
Fig 1.

In the best case, two consecutively measured states xj,xj+1 ∈ X ′ are also
consecutive system states, i.e., xj+1 can be obtained from xj by switching a
single transition in T . This is, however, in general not the case (and depends
on the chosen time points to measure the states in X ′), but xj+1 is obtained
from xj by a switching sequence of some length, where the intermediate
states are not reported in X ′.

For a successful reconstruction approach, the data X ′ need to satisfy two
properties: reproducibility and monotonicity. The data X ′ are reproducible
if for each xj ∈ X ′ there is a unique observed successor state succX ′(xj) =
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xj+1 ∈ X ′. Moreover, the data X ′ are monotone 4 if for each pair (xj,xj+1) ∈
X ′, the possible intermediate states xj = y1,y2, ...,ym+1 = xj+1 satisfy

y1p ≤ y2p ≤ . . . ≤ ymp ≤ ym+1
p for all p ∈ P with xjp ≤ xj+1

p and
y1p ≥ y2p ≥ . . . ≥ ymp ≥ ym+1

p for all p ∈ P with xjp ≥ xj+1
p .

Whereas reproducability is obviously necessary, it was shown in [3] that
monotonicity has to be required or, equivalently, that all essential responses
are indeed reported in the experiments. Due to monotonicity, a capacity
cap(p) can be determined from X ′ for each p ∈ P by cap(p) = max{xp : x ∈
X ′}, but is not required for the reconstruction.

3.2 Output

A capacitated extended Petri net with priorities (P , cap,O) with P =
(P, T,A, w) fits the given data X ′ when it is able to perform every observed
state change from xj ∈ X ′ to succX ′(xj) = xj+1 ∈ X ′. This can be inter-
preted as follows. With P , an incidence matrix M(P) ∈ Z|P |×|T | is associ-
ated, where each row corresponds to a place p ∈ P of the network, and each
column M(P)·t to the update vector rt of a transition t ∈ T :

rtp =M(P)pt :=





−w(p, t) if (p, t) ∈ A,
+w(t, p) if (t, p) ∈ A,
0 otherwise.

Reaching xj+1 from xj by a switching sequence using the transitions from
a subset T ′ ⊆ T is equivalent to obtain the state vector xj+1 from xj by
adding the corresponding columns M(P)·t of M(P) for all t ∈ T ′:

xj +
∑

t∈T ′

M(P)·t = xj+1.

Hence, T has to contain enough transitions to perform all experimentally ob-
served switching sequences. The underlying standard network P = (P, T,A,w)
is conformal with X ′ if, for any two consecutive states xj, succX ′(xj) =
xj+1 ∈ X ′, the linear equation system

xj+1 − xj =M(P)λ

has an integral solution λ ∈ N|T | such that λ is the incidence vector of a
sequence (t1, ..., tm) of transition switches, i.e., there are intermediate states
xj = y1,y2, ...,ym+1 = xj+1 with yl +M(P)·tl = yl+1 for 1 ≤ l ≤ m.

4. Meaning that all essential responses are indeed reported in the experiments. The
necessity of monotone data is shown in [3].
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The extended Petri net P = (P, T,A, w) is catalytic conformal with X ′ if
tl ∈ TA(yl) for each intermediate state yl, and the extended Petri net with
priorities (P ,O) is X ′-deterministic if {tl} = TA,O(y

l) holds for all yl.
The desired output of the reconstruction approach consists of the set of

all X ′-deterministic extended Petri nets (P , cap,O) (all having the same set
P of places and the same capacities cap deduced from X ′).

3.3 Representation of the observed responses

To solve the problem of representing the observed responses by switching
sequences, we propose the following approach, based on previous works in
[4, 8].

Extraction of difference vectors. As initial step, extract the observed
changes of states from the experimental data. For that, define the set

D :=
{
dj = xj+1 − xj : xj+1 = succX ′(xj) ∈ X ′

}
.

Example 2. From our running example in Fig. 1 we obtain D = {d1, d2, d4}
with d1 = x2 − x1 = (−1, 0,−1, 1, 0)T , d2 = x3 − x2 = (0, 0, 0, 0, 1)T and
d4 = x0 − x4 = (0,−1, 1,−1, 0)T .

Generating the complete list of all X ′-deterministic extended Petri nets
P = (P, T,A, w) includes finding the corresponding standard networks and
their incidence matrices M ∈ Z|P |×|T |.

The first step is to describe the set of potential update vectors which
might constitute the columns of M .

Representation of difference vectors. Recall that two consecutively
measured states xj,xj+1 ∈ X ′ are not necessarily consecutive system states,
i.e., xj+1 may be obtained from xj by a switching sequence of some length,
where the intermediate states are not reported in X ′. Due to monotonicity,
the values of the elements cannot oscillate in the intermediate states between
xj and xj+1. Moreover, for any P -invariant P ′ ∈ IP , all suitable update
vectors have to satisfy

∑
p∈P ′ rp = 0. Hence, it suffices to represent any

dj ∈ D using only vectors from the following set

Box(dj) =




r ∈ Z|P | :

0 ≤ rp≤ djp if djp > 0
djp ≤ rp≤ 0 if djp < 0

rp=0 if djp = 0∑
p∈P ′ rp=0 ∀P ′ ∈ IP




\ {0}.
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Remark 1. In previous approaches [4], none of the reconstructed (standard)
networks must contain a transition enabled at any of the observed terminal
states xk ∈ X ′term; hence all such vectors in Box(dj) could be removed. This
is not the case for extended Petri nets as desired output of the reconstruction,
since the corresponding transitions can be disabled due to control-arcs. Here,
we only exclude the zero vector 0 as trivial update vector. Next, we determine
for any dj ∈ D, the set λ(dj) of all integral solutions of the equation system

dj =
∑

rt∈ Box(dj)

λtr
t, λt ∈ Z+.

By construction, Box(dj) and λ(dj) are always non-empty since dj itself
is always a solution due to the required reproducibility of the input data X ′
(which particularly includes dj 6= 0 for all dj ∈ D). For each λ ∈ λ(dj),
construct the (multi-)set

R(dj,λ) = {rt ∈ Box(dj) : λt 6= 0}

of update vectors used for this solution λ.
Exampke 3. For D from Exp. 3.3, the update vectors for a decomposition

are Box(d1) = {d1, r1, r2}, Box(d2) = {d2} and Box(d4) = {d4, r3, r4} with
vectors r1 = (−1, 0, 0, 0, 0)T , r2 = (0, 0,−1, 1, 0)T , r3 = (0,−1, 0, 0, 0)T and
r4 = (0, 0, 1,−1, 0)T .

Hence, the possible decomposition of the responses are d1 = d1 = r1+r2,
d2 = d2 and d4 = d4 = r3 + r4 and the resulting sets are

R(d1,λ1) = {d1},R(d1,λ2) = {r1, r2},
R(d2,λ) = {d2},
R(d4,λ1) = {d4},R(d4,λ2) = {r3, r4}.

3.4 Priority conflicts.

To compose all possible standard networks, we have to select exactly one
solution λ ∈ λ(dj) for each dj ∈ D and to take the union of the corresponding
sets R(dj,λ) in order to yield the columns M·t = rt of an incidence matrix
M of a conformal network. To ensure that the generated conformal networks
can be made X ′-deterministic, we proceed as follows.

Sequences and their conflicts. Every permutation π = (rt1 , . . . , rtm) of
the elements of a set R(dj,λ) gives rise to a sequence of intermediate states
xj = y1,y2, ...,ym,ym+1 = xj+1 with

σπ,λ(x
j,dj) =

(
(y1, rt1), (y2, rt2), . . . , (ym, rtm)

)
.
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By construction, every such sequence σ respects monotonicity and induces a
priority relation Oσ, since it implies which transition ti is supposed to have
highest priority (and thus switches) for every intermediate state yi.

To impose valid priority relations O among all transitions of the recon-
structed networks, we have to take priority conflicts between priority relations
Oσ induced by different sequences σ into account.

Two sequences σ and σ′ are in priority conflict if there are update vectors
rt 6= rt

′ and intermediate states y,y′ such that t, t′ ∈ T (y) ∩ T (y′) and
(y, rt) ∈ σ but (y′, rt′) ∈ σ′ (since this implies t > t′ in Oσ but t′ > t in Oσ′).

We have a weak priority conflict (WPC) if y 6= y′ and a strong priority
conflict (SPC) if y = y′. Note that a WPC can be resolved by adding
appropriate control-arcs, whereas a SPC cannot be resolved that way (see
section 3.5).

Note that we have a strong priority conflict between the trivial sequence
σ(xk,0) for any terminal state xk ∈ X ′term and any sequence σ containing xk
as intermediate state. Such sequences σ are not catalytic conformal due to
[2].

Example 4. From the running example, we obtain the following sequences

σ1(x
1,d1) = ((x1,d1))

σ2(x
1,d1) = ((x1, r1), (x0, r2))

σ3(x
1,d1) = ((x1, r2), (x5, r1))

σ(x2,d2) = ((x2,d2))

σ1(x
4,d4) = ((x4,d4))

σ2(x
4,d4) = ((x4, r3), (x2, r4))

σ3(x
4,d4) = ((x4, r4), (x6, r3))

σ(x3, 0) and σ(x0, 0)

where x5 = (1, 0, 0, 1, 0)T and x6 = (0, 1, 1, 0, 0)T . Between these sequences,
we have SPCs and WPCs as indicated in Fig. 2.

Construction of the priority conflict graph. To reflect the weak and
strong priority conflicts between all possible sequences resulting from X ′, we
construct a priority conflict graph G = (VD ∪ Vterm, ED ∪ EW ∪ ES) where
the nodes correspond to sequences and the edges to priority conflicts:

– VD contains for all xj ∈ X ′ \ X ′term and the difference vector dj =
succX ′(xi) − xi, for all λ ∈ λ(dj) and all permutations π of R(dj,λ)
the sequence σπ,λ(xj,dj).

– Vterm contains for all xk ∈ X ′term the trivial sequence σ(xk,0).
– ED contains all edges between two sequences σ, σ′ stemming from the

same difference vector.
– ES reflects all strong priority conflicts between sequences σ, σ′ stem-

ming from distinct difference vectors.
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– EW reflects all weak priority conflicts between sequences σ, σ′ stemming
from distinct difference vectors.

The edges in ED induce a clique partition Q of G in as many cliques 5 as
there are observed states in X ′ \ X ′term resp. difference vectors in D: VD =
Q1 ∪ . . . ∪Q|D|. Moreover, each node in Vterm corresponds to a clique of size
1, so that G is partitioned into |X ′| many cliques.

Example 5. The resulting priority conflict graph G of the running example
is shown in Fig. 2.

Selection of suitable sequences. To obtain a network explaining all ob-
servations, we have to select one sequence per difference vector dj, i.e., exactly
one node from each clique Qj ∈ Q. To encode the priority conflicts involving
terminal states, we require also to select all trivial sequences σ(xk,0), i.e., all
nodes from Vterm. Thus, we are interested in subsets S ⊆ VD of cardinality
|D| such that |S∩Qj| = 1 for each Qj ∈ Q, and no SPCs occur in S ⊆ Vterm.
The set of all such solutions S ∪ Vterm can be encoded by all vectors x ∈
{0, 1}|VD∪Vterm| satisfying

∑
σ∈Qj

xσ = 1 ∀Qj ∈ Q
xσ = 1 ∀σ ∈ Vterm

xσ + xσ′ ≤ 1 ∀σσ′ ∈ ES
xσ ∈ {0, 1} ∀σ ∈ VD ∪ Vterm.

Example 6. From G in Exp. 3.4, we obtain the following feasible subsets
Si ∪ Vterm

S1 = {σ1(x1,d1), σ(x2,d2), σ1(x
4,d4)}, S3 = {σ1(x1,d1), σ(x2,d2), σ3(x

4,d4)},
S2 = {σ3(x1,d1), σ(x2,d2), σ1(x

4,d4)}, S4 = {σ3(x1,d1), σ(x2,d2), σ3(x
4,d4)}.

Composition of conformal networks. Every selected subset S ∪ Vterm
corresponds to a standard network PS = (P, TS, AS, w) which is conformal
with X ′ (but not yet necessarily X ′-deterministic):

– we obtain the columns of the incidence matrix MS of the network by
taking the union of all sets R(dj,λ) corresponding to the sequences
σ = σπ,λ(x

j,dj) selected by σ ∈ S;
– there might be weak priority conflicts σσ′ ∈ EW for nodes σ, σ′ ∈ S ∪
Vterm which have to be resolved subsequently by inserting appropriate
control-arcs.

5. A clique is a subset of mutually adjacent nodes.
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Example 7. We apply the method only to the feasible set S1 ∪ Vterm from
Exp. 3.4 (all solutions for S2 ∪ Vterm, S3 ∪ Vterm and S4 ∪ Vterm are presented
in Exp. 3.6). We construct the standard network presented in Fig. 3 with
TS1 = {d1,d2,d4}. There is a priority conflict between σ(x2,d2) and σ(x0, 0)
due to d2, 0 ∈ T (x2) ∩ T (x0).

3.5 Inserting control-arcs.

For each of the yet reconstructed standard networks PS = (P, TS, AS, w)
resulting from a selected subset S from the previous reconstruction step, we
have to determine appropriate control-arcs in order to resolve weak priority
conflicts corresponding to edges σσ′ ∈ EW with σ, σ′ ∈ S ∪ Vterm (if any),
in order to turn PS into a catalytic conformal extended Petri net PS =
(P, TS,AS, w).

Recall that we have a weak priority conflict between two sequences σ and
σ′ if there are update vectors rt 6= rt

′ and intermediate states y 6= y′ with
t, t′ ∈ T (y)∩T (y′) such that (y, rt) ∈ σ but (y′, rt′) ∈ σ′. This weak priority
conflict has to be resolved by adding appropriate control-arcs such that

– the update vector rt becomes a transition t with t ∈ TA(y) but t 6∈
TA(y

′) (or vice versa) if y,y′ 6∈ X ′term or
– the update vector rt becomes a transition t with t ∈ TA(y) which is

disabled by control-arcs in y′ if y′ ∈ X ′term.

Inserting control-arcs This task can be done by using similar techniques
as proposed in [1, 2]. Let P (y,y′) be the set of places where y and y′ differ,
i.e., P (y,y′) = {p ∈ P : yp 6= y′p}. In order to disable transition t resulting
from rt at y′, we can include either

– a read-arc (p, t) ∈ AR with weight w(p, t) > y′p for some p ∈ P (y,y′)
with yp > y′p or

– an inhibitor-arc (p, t) ∈ AI with weight w(p, t) < yp for some p ∈
P (y,y′) with yp < y′p.

Each of the so-determined control-arcs defines a transition t with the desired
properties (inheriting the standard arcs from rt and having either a read-arc
or an inhibitor-arc as described above).

Remark 2. In case of a SPC involving states y = y′, the set P (y,y′) becomes
empty and it is, therefore, not possible to resolve a SPC by control-arcs.

For every reconstructed standard network PS = (P, TS, AS, w) and any
subset P ′ ⊆ P containing exactly one place from P (y,y′) for every weak

12



priority conflict, we get a catalytic conformal extended Petri net PS,P ′ =
(P, TS,AS,P ′ , w) by inserting the respective control-arcs for all p ∈ P ′.

Example 8. We define control-arcs to resolve the WPC between σ(x2,d2)
and σ(x0, 0) for the network PS1 . We obtain

P (x2,x0) = {PFR, PR} by x2 = (0, 0,0,1, 0)T and x0 = (0, 0,1,0, 0)T .

Any non-empty subset of P (x2,x0) can be used to disable d2 at x0 ∈ X ′term.
For PFR, x2

PFR
< x0

PFR
holds, leading to an inhibitor-arc (PFR,d

2) ∈ AS1,P ′ ,
and for PR, x2

PR
> x0

PR
holds, leading to a read-arc (PR,d

2) ∈ AS1,P ′ both
with weignt 1. The two possible alternatives are presented in Fig. 4.

3.6 Determining priority relations

To generate the required priorities for each of the yet reconstructed ex-
tended networks PS,P ′ = (P, TS,AS,P ′ , w), we only need to set the priorities
among all the transitions in TS according to the sequences selected for S.

Recall that every σ ∈ S stands for a sequence

σ = σπ,λ(x
j,dj) =

(
(y1, rt1), (y2, rt2), . . . , (ym, rtm)

)

which induces a priority relation Oσ indicating that the transition ti resulting
from rti is supposed to have highest priority at yi. That is, Oσ is defined by

Oσ =
{
ti > t : t ∈ TAS,P ′ (y

i) \ ti, 1 ≤ i ≤ m
}
.

By construction, there are no priority conflicts in the extended network PS,P ′

between Oσ and Oσ′ for any σ, σ′ ∈ S, thus we obtain the studied partial
order

OS,P ′ =
⋃

σ∈S

Oσ.

This implies finally that every extended network PS,P ′ = (P, TS,AS,P ′ , w) to-
gether with the partial order OS,P ′ constitutes an X ′-deterministic extended
Petri net fitting the given data X ′.

Example 9. For the running example, it is left to determine the prior-
ity relations. For the extended Petri nets PS1,P ′ , we can easily verify that
TAS1,P

′ (x) contains exactly one transition for all x ∈ X ′, so no priorities are
implied and OS1,P ′ = ∅ follows. For the Petri nets coming from the other
sets S2, S3, S4, all possible minimal X ′-deterministic extended Petri nets are
depicted in Fig. 5, 6 and 7.
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4 Concluding remarks
To summarize, we present in this paper the steps of an integrative re-

construction method to generate all possible X ′-deterministic extended Petri
nets from monotone and reproducible experimental time-series data X ′.

This approach is based on previous works for special cases: the recon-
struction of standard networks [4], standard networks with priorities [8] and
extended Petri nets [1, 2]. Here, we modify and generalize the previous
methods by

– adjusting the representation of the observed difference vectors dj to the
case of extended networks with priorities (where dj might be enabled
at a terminal state in X ′term),

– refining the idea from [8] to construct a priority conflict graph by distin-
guishing weak and strong priority conflicts (where only strong conflicts
affect the selection),

– generalizing the method from [1, 2] such that weak priority conflicts
can be resolved by inserting control-arcs (where arbitrary arcs weights
can occur).

Note that a preprocessing (to test the experimental data X ′ for repro-
ducibility and, if necessary, to handle infeasible situations) can be handled
similar as in [4] and a postprocessing (to keep only "minimal" solutions in
the sense that all other X ′-deterministic extended Petri nets fitting the data
contain the returned ones) is presented in [13].

In total, this integrative approach is promising for the reconstruction of
networks fully fitting the experimentally observed phenomena.

Our further goal is to make the new approach accessible by a suitable
implementation, e.g., using Answer Set Programming as in the case of the
reconstruction of standard networks with priorities [7].
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Figure 1: A scheme illustrating the experimental time-series data described in
Exp. 3.1 concerning the light-induced sporulation of Physarum polycephalum,
where the entries of the state vectors are interpreted as shown on the left
(dashed arrows represent stimulations, solid arrows responses).
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Figure 2: The conflict graph resulting from the sequences listed in Exp. 3.4,
where bold edges indicate SPCs, thin edges WPCs and gray boxes the clique
partition.
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Figure 3: Standard network PS1 = (P, TS1 , AS1 , w) from solution S1

(Exp. 3.4)
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Figure 4: The two catalytic conformal networks resulting from PS1 in Exp. 3.5
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Figure 5: From S2, two catalytic conformal networks PS2 result, both with
priority relations O2 = {(r2 > r1)}.
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Figure 6: From S3, four minimal catalytic conformal networks PS3 result, all
with priority relations O3 = {(r4 > r3)}.
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Figure 7: From S4, four minimal catalytic conformal networks PS4 result, all
with priority relations O4 = {(r2 > r1), (r4 > r3)}.
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