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 for first-order Hamilton-Jacobi equations. This latter assumption allows to deal with equations with nonconvex Hamiltonians. We can also release the uniform parabolic requirement outside Σ. As a consequence, we prove the convergence of some everywhere degenerate second-order equations.

Introduction

The large time behavior of the solution of in the periodic setting (T N is the flat torus) was extensively studied (see the references below) in two frameworks: for first-order Hamilton-Jacobi (HJ in short) equations, i.e., when A θ ≡ 0, and for uniformly parabolic equations. It appears that there is a gap in the type of results and in their proofs which are different.

In this work, we investigate the situation in between. We obtain a new proof for the large time behavior of fully nonlinear degenerate second order equations which includes most of the two previous type of results and allows to deal with some everywhere degenerate second order equations. According to our knowldege, the only result in this direction is the one of Cagnetti et al. [START_REF] Cagnetti | A new method for large time behavior of convex Hamilton-Jacobi equations I: degenerate equations and weakly coupled systems[END_REF] where a particular case of degenerate viscous HJ equation is treated with a completely different approach.

The precise assumptions and the statements of our results are listed in the next section but let us describe the main ideas. We suppose that there exists a, possibly empty, subset Σ = {x ∈ T N : A θ (x) = 0 for all θ ∈ Θ} where the Hamiltonian H θ (x, p) satisfies some first-order type assumptions and the equation is uniformly parabolic outside Σ, i.e., for all δ > 0, there exists ν δ > 0 such that A θ (x) = σ θ (x)σ θ (x) T ≥ ν δ I for x ∈ Σ C δ := {dist(•, Σ) > δ}. Actually, we are able to replace this assumption with a weaker condition of ellipticity like for all δ > 0, there exists

ψ δ ∈ C 2 (T N ) such that sup θ∈Θ {-trace(A θ (x)D 2 ψ δ )} -C|Dψ δ | > 0 in Σ C δ := {dist(•, Σ) > δ} (1.2)
(see (2.16) for the more general assumption). It can be interpreted as follows. When considering the exit time stochastic control problem associated with the equation in (1.2), it means that the controlled process leaves Σ C δ almost surely in finite time. Assuming that there exists a solution (c, v) ∈ R × W 1,∞ (T N ) of the ergodic problem associated with (1.1), namely sup θ∈Θ {-trace(A θ (x)D 2 v) + H θ (x, Dv)} = c, x ∈ T N and that {u(•, t)+ct, t ≥ 0} enjoys suitable compactness properties in W 1,∞ (T N ), we obtain that u(x, t) + ct → u ∞ (x) in C(T N ) as t → +∞ (1.3) in the two following frameworks.

The first case is when the H θ 's are strictly convex in Σ, uniformly with respect to θ (see (2.10) and Theorems 2.1 and 2.5). A typical example, which includes the mechanical Hamiltonian |p| 2 + ℓ(x), is H θ (x, p) = a θ (x)|p| 1+α θ + b θ (x), p + ℓ θ (x), (1.4) 1 < α ≤ α θ ≤ α, 0 < a ≤ a θ (x) ≤ C, and a θ , b θ , ℓ θ are bounded Lipschitz continuous uniformly with respect to θ. Another example is the case of uniformly convex Hamiltonians for which (H θ ) pp (x, p) ≥ 2aI.

The second case is, roughly speaking, when the H θ 's satisfy inf θ∈Θ {H θ (x, µp) -µH θ (x, p)} ≥ (1µ)c for µ > 1, (x, p) ∈ T N × R N , (1.5) with a strict inequality for x ∈ Σ and p = 0 (see Assumption (2.11) and Theorems 2.2 and 2.5). This is also a convexity-like assumption close to the one introduced in Barles-Souganidis [START_REF] Barles | On the large time behavior of solutions of Hamilton-Jacobi equations[END_REF] for first-order HJ equations. This assumption may appear to be restrictive in the sense that, in general, we do not know the exact value of the ergodic constant c which appears in (1.5). The main motivations to deal with such a case are, at first, it holds for some nonconvex cases (see Example 3.4) which are a recurrent difficulty in HJ theory. Secondly, it allows to deal with Namah-Roquejoffre Hamiltonians [START_REF] Namah | Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations[END_REF] (see Section 3.4) H(x, p) = F (x, p)f (x), where F is convex (but may be not strictly convex), F (x, p) ≥ F (x, 0) = 0. When the minimum of f is achieved on Σ, we can calculate explicitely the ergodic constant, check that (1.5) holds and obtain the convergence (1.3).

Detailled examples of applications are given in Section 3 but let us give now a typical control-independent example. Consider ∂u ∂t a(x) 2 trace(σσ T D 2 u) + H(x, Du) = 0, where a ∈ W 1,∞ (T N ), σ ∈ M N is a constant matrix and H is convex on T N and strictly convex on Σ.

• When σ is invertible then the convergence (1.3) holds by Theorem 2.1 without further assumptions on a. • When a vanishes on ∂[0, 1] N , then the convergence (1.3) holds by Theorem 2.5 and Proposition 2.7, for any matrix σ (degenerate or not).

Let us recall the existing results and compare with ours. The asymptotic behavior of (1.1) was extensively studied for totally degenerate equations, i.e., first-order HJ equations for which Σ = T N , see Namah-Roquejoffre [START_REF] Namah | Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations[END_REF], Fathi [START_REF] Fathi | Sur la convergence du semi-groupe de Lax-Oleinik[END_REF], Davini-Siconolfi [START_REF] Davini | A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations[END_REF], Barles-Souganidis [START_REF] Barles | On the large time behavior of solutions of Hamilton-Jacobi equations[END_REF], Barles-Ishii-Mitake [START_REF] Barles | A new PDE approach to the large time asymptotics of solutions of Hamilton-Jacobi equations[END_REF] (and the references therein for convergence results in bounded sets with various boundary conditions or in R N ). An assumption similar to (1.5) was introduced in [START_REF] Barles | On the large time behavior of solutions of Hamilton-Jacobi equations[END_REF] to encompass all the previous works on first-order HJ equations and to extend them to some nonconvex Hamiltonians. The arguments of [START_REF] Barles | On the large time behavior of solutions of Hamilton-Jacobi equations[END_REF] were recently revisited and simplified in Barles-Ishii-Mitake [START_REF] Barles | A new PDE approach to the large time asymptotics of solutions of Hamilton-Jacobi equations[END_REF]. Due to the above works, it is therefore natural to assume the strict convexity of H θ or (1.5) on Σ, which is the area where the equation is totally degenerate, and we recover most of the previous results when taking Σ = T N .

As far as second order parabolic equations are concerned, there are less results in the periodic setting. Barles-Souganidis [START_REF] Barles | Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations[END_REF] obtained the asymptotic behavior (1.3) 

in two contexts for ∂u ∂t -∆u + H(x, Du) = 0 (x, t) ∈ T N × (0, +∞).
The first one is when the Hamiltonian H is sublinear, i.e., typically when |H(x, p)| ≤ C(1 + |p|). The second one is for superlinear Hamiltonians, i.e., typically when H(x, p) is given by (1.4) (see (3.1) for a precise assumption). Some extensions are given when -∆u is replaced by -trace(A(x, Du)D 2 u) but the convergence result holds for uniformly parabolic equations. The reason is that the proof of convergence is based on the strong maximum principle and, up to our knowledge, it is the case for all results for second order equations except in the recent work of Cagnetti et al. [START_REF] Cagnetti | A new method for large time behavior of convex Hamilton-Jacobi equations I: degenerate equations and weakly coupled systems[END_REF]. In this paper, the authors obtained the convergence (1.3) for (1.1) with assumptions very close to ours in the particular case of control-independent uniformly convex Hamiltonians (see Remark 3.9 for details). Their approach is completely different and relies strongly on the linearity with respect to D 2 u of the equation. We refer the reader to Tabet Tchamba [START_REF] Tchamba | Large time behavior of solutions of viscous Hamilton-Jacobi equations with superquadratic Hamiltonian[END_REF] and Fujita-Ishii-Loreti [START_REF] Fujita | Asymptotic solutions of viscous Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator[END_REF] and the references therein for related results of convergence for uniformly parabolic equations in different settings (bounded sets, in R N ). The main step in the proof of our results is the following. We prove that that each ũ in the ω-limit set of u + ct in C(T N × [0, +∞)) is nonincreasing in t thus ũ(x, t) → u ∞ (x) as t → +∞. The convergence (1.3) then follows easily. To prove this main step, it is enough to show that sup

x∈T N P η [ũ](x, t), with P η [ũ](x, t) = sup s≥t {ũ(x, t) -ũ(x, s) -η(s -t)}, (1.6)
is a nonpositive constant m η for every η > 0. We argue by contradiction assuming m η > 0. Since, by the stability result, ũ is still solution of (1.1), we obtain that P η [ũ] is a subsolution of a linearized equation of the form

∂U ∂t + inf θ∈Θ -tr(σ θ (x)σ θ (x) T D 2 U) -C|DU| ≤ 0 (x, t) ∈ T N × (0, +∞).
In the set Σ C , we use the ellipticity-like condition (1.2) and strong maximum principle arguments to show that the maximum in (1.6) is achieved at x ∈ Σ. In the set Σ where A θ = 0, we have formally a first-order equation. We then apply the first-order type assumptions, H θ strictly convex or satisfying (1.5), to prove that m η cannot be positive.

The main difficulty at this step is to control the second order terms in (1.1) near Σ, see the proof of Lemma 4.6 for details. The paper is organized as follows. In Section 2, we start by introducing some steady assumptions for (1.1) which are in force in all the paper. We state Theorem 2.1 (strictly convex Hamiltonians) and Theorem 2.2 (nonconvex cases) when (1.1) is uniformly parabolic outside Σ since it is a more simpler and natural case. Then we extend these results to a more degenerate framework, see Theorem 2.5. Some concrete examples are gathered in Section 3. We also introduce superlinear Hamiltonians for which all the steady assumptions of Section 2.1 are satisfied. The rest of the paper is devoted to the proofs. The strategy of proof is the same for the three convergence results. It is why the core of the paper is Section 4 where Theorem 2.1 is proved. It relies on several lemmas. Section 5 and the last Section 6 are devoted, respectively, to the proofs of Theorem 2.2 and Theorem 2.5 and their applications. Acknowledgement. We would like to thank Guy Barles for bringing to our knowledge the paper [START_REF] Barles | A new PDE approach to the large time asymptotics of solutions of Hamilton-Jacobi equations[END_REF] which allowed us to simplify our proofs. This work was partially supported by the ANR (Agence Nationale de la Recherche) through HJnet project ANR-12-BS01-0008-01 and WKBHJ project ANR-12-BS01-0020.

Statement of the results

2.1.

Setting of the problem and first assumptions. We consider

   ∂u ∂t + sup θ∈Θ {-trace(A θ (x)D 2 u) + H θ (x, Du)} = 0, (x, t) ∈ T N × (0, +∞), u(x, 0) = u 0 (x), x ∈ T N , (2.1) 
and, for λ > 0, the associate approximate stationary equation

λv λ + sup θ∈Θ {-trace(A θ (x)D 2 v λ ) + H θ (x, Dv λ )} = 0, x ∈ T N . (2.2)
The following assumptions will be in force in all the paper. The set Θ is a metric space. Let C > 0 be a fixed constant (independent of θ).

For all θ ∈ Θ, A θ = σ θ σ T θ , σ θ ∈ W 1,∞ (T N ; M N ) with |σ θ |, |Dσ θ | ≤ C; (2.3)    for all θ ∈ Θ, H θ ∈ W 1,∞ loc (T N × R N ), |H θ (x, 0)| ≤ C, for all R > 0, there exists C R > 0 independent of θ such that |H θ (x, p) -H θ (y, q)| ≤ C R (|x -y| + |p -q|), x, y ∈ T N , |p|, |q| ≤ R.
(2.4)

These assumptions are natural when dealing with Hamilton-Jacobi equations. Notice that (2.4) is automatically satisfied when there is no control. Moreover, we assume    There exists viscosity solutions u ∈ C(T N × [0, +∞)) and v λ ∈ C(T N ) of (2.1) and (2.2) respectively with

|u(x, t) -u(y, t)|, |v λ (x) -v λ (y)| ≤ C|x -y|, x, y ∈ T N , t ≥ 0, λ > 0.
(2.5)

Besides the existence of a continuous viscosity solution of the equation, we assume gradient bounds independent of t and λ. This is a crucial point and the first step when trying to prove asymptotic results. Let us give some important consequences of (2.5). At first, we have a comparison principle for (2.1) and (2.2). By the comparison principle (for instance for (2.1)), we mean that, if u 1 and u 2 are respectively USC subsolution and LSC supersolution of (2.1) and either u 1 or u 2 satisfies the Lipschitz continuity of (2.5) then

u 1 -u 2 ≤ sup T N {(u 1 -u 2 ) + (•, 0)}.
In particular, we have uniqueness of the solutions of (2.1)-(2.2) in the class of functions satisfying the Lipschitz continuity of (2.5). The second consequence is that we can solve the ergodic problem associated with (2.1). More precisely, there exists a unique c ∈ R and v ∈ W 1,∞ (T N ) solutions of

sup θ∈Θ {-trace(A θ (x)D 2 v) + H θ (x, Dv)} = c, x ∈ T N . (2.6)
A byproduct is |u(x, t)+ct| ≤ C. The proofs of these results are classical (see for instance [START_REF] Barles | Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations[END_REF][START_REF] Ley | Lipschitz estimates for elliptic weakly coupled systems of hamilton-jacobi equations and applications to large time behavior[END_REF]) so we skip them. In Section 3, we introduce superlinear Hamiltonians for which the above assumptions are satisfied. Since the above basic assumptions will be used in all our results, for shortness, we introduce a steady assumption collecting them Assumptions (2.3), (2.4), (2.5) hold. (2.7) We recall that

Σ = {x ∈ T N : A θ (x) = σ θ (x)σ T θ (x) = 0 for all θ ∈ Θ}, (2.8)
and, for the two first convergence results which follow, we assume a nondegeneracy assumption for σ θ holds outside Σ: for all δ > 0, there exists ν δ > 0 such that for all θ ∈ Θ A

θ (x) = σ θ (x)σ θ (x) T ≥ ν δ I for x ∈ Σ C δ := {dist(•, Σ) > δ}.
(2.9)

This assumption is replaced by a weaker one in Section 2.4.

2.2.

A convergence result for strictly convex Hamiltonians. The main assumption in this section is For all x ∈ Σ, 0 < λ < 1 and p, q ∈ R N such that p = q,

inf θ∈Θ {λH θ (x, p) + (1 -λ)H θ (x, q) -H θ (x, λp + (1 -λ)q)} > 0. (2.10)
This condition is a strict convexity assumption on the H θ 's on Σ uniformly with respect to θ.

Theorem 2.1. Suppose (2.7), (2.9), (2.10) hold and that H θ (x, •) is convex for every x ∈ T N . Then u(x, t) + ct → u ∞ (x) in C(T N ) when t → +∞, where u is the solution of (2.1) and u ∞ is a solution of (2.6).

Section 4 is devoted to the proof.

2.3.

A convergence result for non necessarily convex Hamiltonians. We will assume the following for the Hamiltonians H θ 's. Recall that c denotes the ergodic constant in (2.6). There exists µ 0 > 1 such that

             (i) H θ (x, µp) -µH θ (x, p) ≥ (1 -µ)c for all (x, p) ∈ T N × R N , 1 < µ < µ 0 , (ii) There exists a, possibly empty, compact set K of Σ such that (a) H θ (x, p) ≥ c for all (x, p) ∈ K × R N , (b) for all x ∈ Σ, p ∈ R N , 1 < µ ≤ µ 0 , if d(x, K) = 0, p = 0, then inf θ∈Θ {H θ (x, µp) -µH θ (x, p)} > (1 -µ)c. (2.11) 
Theorem 2.2. Suppose that (2.7), (2.9) and (2.11) hold. Then u(x, t) + ct → u ∞ (x) in C(T N ) when t → +∞, where u is the solution of (2.1) and u ∞ is a solution of (2.6).

The proof of this theorem is done in Section 5.

We make some comments about the assumptions. Conditions (2.11)(i) and (2.11)(ii)(b) are some kind of convexity requirements but it may apply to some nonconvex Hamiltonians (see Section 3). Taking, p = 0 in (2.11)(i), we obtain

H θ (x, 0) ≤ c, x ∈ T N , θ ∈ Θ, (2.12)
which implies that v ≡ 0 is a subsolution of (2.6).

Assumption (2.11) may be seen restrictive. Indeed, in general one does not know the exact value of the ergodic constant c so it is difficult to check that (2.11) holds. We have three motivations to state such a result. At first, there are some interesting cases for which we can calculate the exact value of c and (2.11) holds (see Proposition 2.3). It allows to treat some Namah-Roquejoffre type Hamiltonians, see Section 3.4. Secondly, this assumption encompasses nonconvex Hamiltonians (see Section 3) and such nonconvex cases are hard to deal with. Finally, it is worth pointing out that, when there exist C 2 subsolutions of (2.6), then Theorem 2.1 appears as an immediate corollary of Theorem 2.2 (see Remark 2.4).

Proposition 2.3. Assume (2.7) and

H θ (x, p) ≥ H θ (x, 0) for (x, p) ∈ Σ × R N , θ ∈ Θ. (2.13)
If, in addition, either

sup x∈T N ,θ∈Θ H θ (x, 0) = sup x∈Σ,θ∈Θ H θ (x, 0) (2.14)
holds or (2.9) and

H θ (x, µp) -µH θ (x, p) ≥ (1 -µ)H θ (x, 0) for (x, p) ∈ T N × R N , θ ∈ Θ, µ > 1, (2.15) hold, then c = sup x∈Σ,θ∈Θ H θ (x, 0).
This proposition, the proof of which is given in Section 5, is used to apply Theorem 2.2 for Hamiltonians of Namah-Roquejoffre type in Section 3. We see that the value of the ergodic constant is affected by the second-order terms in the sense that it is not the same as for (2.1) with σ θ ≡ 0. Assumption (2.14) requires that the supremum of H θ (•, 0) is actually achieved where the diffusion vanishes. Assumption (2.15) holds automatically when H θ is convex.

Remark 2.4. We sketch the proof of the fact that, if there exists a C 2 subsolution of (2.6), then Theorem 2.1 is a corollary of Theorem 2.2. Assuming that u is the solution of (2.1) under the assumptions of Theorem 2.1 and v is a C 2 subsolution of (2.6), we set

w = u + ct -v. Then w is the bounded solution of ∂w ∂t -trace(A(x)D 2 w) + H(x, Dv + Dw) -H(x, Dv) -g(x) = 0, where g(x) := trace(A(x)D 2 v) -H(x, Dv) + c ≥ 0 is continuous since v is C 2 . Introducing the new Hamiltonian G(x, p) = H(x, p + Dv) -H(x, Dv) -g(x)
, it is not difficult to check that the strict convexity assumption (2.10) for H implies that G satisfies (2.11) with c = 0 and K = ∅ (for p bounded which is enough since u and v are Lipschitz continuous in x). We then apply Theorem 2.2 to the new equation to obtain the large time behavior of u. Actually, it is possible to generalize such a proof when there exists a C 1,1 subsolution of (2.6) but the proof is much more involved. We mention this slight extension because it is known (Bernard [START_REF] Bernard | Existence of C 1,1 critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds[END_REF]) that there exists C 1,1 subsolutions of (2.6) for first order HJ (i.e., when Σ = T N ) under general assumptions.

2.4.

A more general result of convergence. We now generalize the two previous results when (2.9) is replaced by a weaker assumption. The proof of the results of this section are given in Section 6. Before stating our main assumption, let us introduce some notations. We denote by π : R N → T N the canonical projection and we add a superscript ∼ to the coset representatives of the objects defined on T N . For instance, Σ is a 1-periodic subset of R N such that π( Σ) = Σ and σθ (x) = σ θ (π(x)) for any x ∈ R N .

We assume, for some C > 0,

           For all δ > 0, there exists ψδ ∈ C 2 (R N ) and an open set Ω δ ⊂⊂ R N such that [0, 1] N ⊂ Ω δ , ψδ ≤ 0 in Ω δ , ψδ ≥ 0 in Ω C δ , inf θ∈Θ {-trace( Ãθ (x)D 2 ψδ (x))} -C|D ψδ (x)| > 0 for x ∈ ΣC δ ∩ Ω δ , where Σδ = {x ∈ R N : dist(x, Σ) ≤ δ}.
(2.16) Theorem 2.5. We assume that either the assumptions of Theorem 2.2 or the assumptions of Theorem 2.1 hold, where (2.9) is replaced by (2.16) in both cases. Then u(x, t) + ct converges uniformly to a solution v(x) of (2.6) when t → +∞.

The difference with the previous theorems is that we do not assume the uniform ellipticity assumption (2.9). We consider the weaker assumption (2. [START_REF] Tchamba | Large time behavior of solutions of viscous Hamilton-Jacobi equations with superquadratic Hamiltonian[END_REF]) instead (see Proposition 2.6). This latter assumption allows to deal with some fully nonlinear everywhere degenerate equations. It is written in a tedious way since, in some cases, we need to construct a supersolution which is not 1-periodic (and therefore it is not a function on T N ).

Proposition 2.6. If Σ = ∅ and (2.9) holds, then (2.16) holds.

It follows that Theorems 2.1 and 2.2 are corollary of Theorem 2.5 when Σ = ∅. We can apply the theorem to obtain the convergence for some everywhere degenerate equations. Let us give an application.

Proposition 2.7. Assume (2.3), (2.4), (x, θ) ∈ T N × Θ → σ θ (x) is continuous, Θ is compact, (2.17) 1≤i≤N {x = (x 1 , • • • , x N ) ∈ T N : x i = 0} ⊂ Σ (2.18) and x∈Σ C ,θ∈Θ ker(σ θ (x)) ∩ S N -1 = S N -1 := {x ∈ R N : |x| = 1}. (2.19)
Then Assumption (2.16) holds.

The assumption (2.18) means that the boundary of the cube [0, 1] N is contained in Σ; more generally, we need the connected components of ΣC to be bounded in R N . In Σ C , ker(σ θ (x)) is at most an hyperplane. The assumption (2.19) means that the union of these hyperplanes does not fulfill the whole space. Some concrete examples of applications are given in Section 3.

Applications and examples

3.1. Superlinear Hamiltonians. We first introduce an assumption on the H θ 's, called superlinear in [START_REF] Barles | Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations[END_REF], under which the steady assumptions of Section 2.1 hold.

   There exists 

L 1 ≥ 1 such that if |p| ≥ L 1 , then L 1 (H θ ) p p -H θ -|2σ θ (σ T θ ) x ||p| -|H θ (•, 0)| ∞ -|(H θ ) x | -N|(σ θ ) x | 2 ∞ |p|} ≥ 0, for a.e. (x, p) ∈ T N × R N , θ ∈ Θ. ( 3 
(c, v) ∈ R × W 1,∞ (T N ).
The main ingredients in the proof of this result are gradient bounds for the solutions of (2.1) and (2.2) uniform in t and λ respectively. We refer the reader to Barles-Souganidis [START_REF] Barles | Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations[END_REF] and [START_REF] Ley | Lipschitz estimates for elliptic weakly coupled systems of hamilton-jacobi equations and applications to large time behavior[END_REF].

We give some examples of Hamiltonians satisfying both the assumption of Theorem 3.1 and (2.10).

Example 3.2. (strictly convex Hamilton-Jacobi-Bellman equations) We suppose that (2.3) holds and

H θ (x, p) = a θ (x)|p| 1+α θ + b θ (x), p + ℓ θ (x), 1 < α ≤ α θ ≤ α, 0 < a ≤ a θ (x) ≤ C, |a θ (x)|, |b θ (x)|, |ℓ θ (x)|, |a θ (x)-a θ (y)|, |b θ (x)-b θ (y)|, |ℓ θ (x)-ℓ θ (y)| ≤ C, x, y ∈ T N . Example 3.3. (uniformly convex Hamilton-Jacobi-Bellman equations) We suppose that (2.3)- (2.4) hold and (H θ ) pp (x, p) ≥ h > 0, |(H θ ) x | ≤ C(1 + |p| 2 ).
We now give an example such that the assumptions of Theorem 3.1 still holds but the Hamiltonian is not convex anymore and satisfies (2.11).

Example 3.4. (nonconvex equations) We adapt an example from [START_REF] Barles | On the large time behavior of solutions of Hamilton-Jacobi equations[END_REF]. We consider (2.1) without control with

H(x, p) = ψ(x, p)F (x, p |p| ) -f (x), (3.2) where f ∈ W 1,∞ (T N ) is nonnegative, F ∈ W 1,∞ (T N ×R N ) is strictly positive and ψ(x, p) = |p + h(x)| 2 -|h(x)| 2 , with h ∈ W 1,∞ (T N ; R N ). Notice that H ∈ W 1,∞ (T N × R N ) is not convex in general. We suppose that A = σσ T satisfies (2.3) and {x ∈ T N : f (x) = |h(x)| = |σ(x)| = 0} = ∅. (3.3)
Arguing as in the proof of Proposition 2.3, we can show that c = 0 (we cannot applying Proposition 2.3 directly since (2.13) does not hold).

We now prove that H satisfies (2.11) with K = ∅. For every µ > 1, we have

H(x, µp) -µH(x, p) = (µ 2 -µ)|p| 2 F (x, p |p| ) + (µ -1)f (x) ≥ 0, so (2.
11)(i) holds. If p = 0, the above inequality is strict and therefore (2.11)(ii)(b) holds.

3.2.

Second-order equations satisfying (2.9) or (2.16).

Example 3.5. Without control, we choose σ ∈ W 1,∞ (T N ; M n ) with for each x ∈ T N , either σ(x) = 0 or σ(x) is invertible. Then (2.3) and (2.9) hold. A particular case is σ(x) = a(x)σ where a ∈ W 1,∞ (T N ) and σ ∈ M n is a constant invertible matrix.

Example 3.6. With control, we can deal with some cases of fully nonlinear equations. For instance, consider σ θ (x) = a(x)σ θ , where a ∈ W 1,∞ (T N ) as in Example 3.5 and there exists ν > 0 such that, for all θ ∈ Θ, σθ ∈ M n and σθ σT θ ≥ νI. Then (2.3) and (2.9) hold. It is worth noticing that, in the two examples above, we may have the two following particular cases: a > 0 on T N and the equation is uniformly parabolic, or a = 0 on T N and the equation is a first-order HJ equation.

We 

(x) = a(x)σ where a ∈ W 1,∞ (T N ) is such that ∂[0, 1] N ⊂ {a = 0} and σ ∈ M n is any nonzero constant degenerate matrix.
With control, we can take σ θ (x) = a(x)σ θ where a satisfies the same assumptions in the control-independent case and (σ θ ) θ∈Θ is a finite set of nonzero constant degenerate (in this case Θ = {1, 2, • • • , k}). In both case, (2.18)-(2.19) holds.

Example 3.8. For simplicity, we consider a control-independent example. Assume that

σ = (σ ij ) 1≤i,j≤N ∈ W 1,∞ (T N ; M N ) is such that ∂[0, 1] N ⊂ {σ 11 = 0} ⊂ Σ = {σ = 0}.
Then, for all x ∈ Σ C , σ(x)e 1 = 0, where e 1 = (1, 0, • • • 0). Therefore (2.19) holds. Remark 3.9. When Σ = T N or Σ = ∅, these convergence results were obtained in [START_REF] Fathi | Sur la convergence du semi-groupe de Lax-Oleinik[END_REF][START_REF] Namah | Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations[END_REF][START_REF] Barles | On the large time behavior of solutions of Hamilton-Jacobi equations[END_REF][START_REF] Davini | A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations[END_REF] and [START_REF] Barles | Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations[END_REF] respectively. In the particular case of control-independent C 2 uniformly convex Hamiltonian (see Example 3.3) with σ(x) = a(x)I with a ∈ C 2 (T N ) (see Example 3.5), the result is proven in [START_REF] Cagnetti | A new method for large time behavior of convex Hamilton-Jacobi equations I: degenerate equations and weakly coupled systems[END_REF] by using a nonlinear adjoint method. Notice that, on the one side, we can deal with fully nonlinear equations and, on the other side, we only require the Hamiltonians to be uniformly convex on Σ.

When the assumption (3.1) does not hold, we need to prove a priori the existence of Lipschitz solutions to (2.1) and (2.6) before applying a convergence result. For instance, if (2.5) holds for (3.4) 

2 ∆u + (1 -a(x))|Du| 2 = f (x), (x, t) ∈ T N × (0, +∞), (3.4)
where a, f ∈ W 1,∞ (T) and a is defined by

a(x) =      1 -|x| if x ∈ [0, 1 4 ], 0 if x ∈ [ 1 4 , 3 4 ], |x| -1 if x ∈ [ 3 4 , 1]. Then H(x, p) = (1 -a(x))|p| 2 is striclty convex on Σ = [ 1 4 , 3 4 
] and (2.10) holds. We end this section by a counter-example. 

∂u ∂t -trace(A(x)D 2 u) + H(Du) = 0, (x, t) ∈ T 2 × (0, +∞), u(x, 0) = sin(x 1 + x 2 ), x = (x 1 , x 2 ) ∈ T 2 ,
where

A = a(x) 2 1 -1 -1 1 and H(p) = 1 √ 2 |p + (1, 1)| -1.
The solution of (3.5) is u(x, t) = sin(x 1 + x 2t) and convergence fails as t → +∞. In this example, A(x) is degenerate and H is convex but does not satisfy neither (2.10) nor (2.11). where

A θ = σ θ σ T θ satisfies (2.3),      f θ ∈ W 1,∞ (T N ), F θ ∈ W 1,∞ loc (T N × R N ) is convex in p, F θ (x, p) ≥ F θ (x, 0) = 0, K := {x ∈ Σ : f θ (x) = min y∈T N ,θ∈Θ f θ (y)} = ∅ (3.7) and for x ∈ Σ \ K, inf θ∈Θ f θ (x) > inf y∈T N ,θ∈Θ f θ (y). (3.8)
We call such kind of Hamiltonians of Namah-Roquejoffre type, see [START_REF] Namah | Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations[END_REF][START_REF] Barles | On the large time behavior of solutions of Hamilton-Jacobi equations[END_REF].

When F is strictly convex in p, then the convergence result for (3.6) can be obtained with the use of Theorem 2.1. Here, we want to deal with the typical Hamiltonian which appears in [START_REF] Namah | Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations[END_REF], that is, F θ (x, p) = a θ (x)|p|, which is not strictly convex and does not satisfy (3.1). It is why we assume here a priori that (2.5) holds for (3.6).

From Proposition 2.3, we obtain c =min x∈Σ,θ∈Θ f θ (x). Therefore, for x ∈ K, we have H θ (x, 0) = -f θ (x) = c and (2.11)(ii)(a) holds. By (3.7), we have, for all x ∈ T N , µ > 1,

H θ (x, µp) -µH θ (x, p) = F θ (x, µp) -µF θ (x, p) -(1 -µ)f θ (x) ≥ -(1 -µ) min T N ,Θ f θ = -(1 -µ) min Σ,Θ f θ .
Therefore (2.11)(i) holds. By (3.8), (2.11)(ii)(b) holds. Therefore, assuming (2.5) for (3.6) and (3.7), (3.8), then we obtain the convergence from Theorem 2.2 when A θ satisfies (2.9) and from Theorem 2.5 when A θ satisfies the conditions of Examples 3.7 or 3.8.

Proof of Theorem 2.1

At first, we notice that we can assume without loss of generality that c = 0 in (2.6). Indeed, by a change of function u(x, t) → u(x, t) + ct, the new function satisfies (2.1) where H θ is replaced with H θc and, if H θ satisfies the strict convexity assumption (2.10), then H θc still satisfies (2.10). So, we suppose that c = 0 and the solution u(x, t) of (2.1) is bounded. We aim at proving that u(x, t) converges uniformly to some function u ∞ (x), which is a solution of (2.6) with c = 0 by the stability result. In the following, v is a Lipschitz continuous solution of (2.6) with c = 0.

Following the ideas of [START_REF] Barles | A new PDE approach to the large time asymptotics of solutions of Hamilton-Jacobi equations[END_REF][START_REF] Nguyen | Some results on the large time behavior of weakly coupled systems of first-order hamilton-jacobi equations[END_REF], for η > 0, µ > 1 and (x, t) ∈ T N × (0, +∞), we introduce

P ηµ [u](x, t) = sup s≥t {u(x, t) -v(x) -µ(u(x, s) -v(x)) -µη(s -t)}, (4.1) 
and

(4.2) M ηµ [u](t) = sup x∈T N ,s≥t {u(x, t) -v(x) -µ(u(x, s) -v(x)) -µη(s -t)} = sup x∈T N P ηµ [u](x, t).
Lemma 4.1. The function P ηµ [u](x, t) is a subsolution of the Hamilton-Jacobi inequality

min U(x, t) , ∂U ∂t + inf θ∈Θ -trace(A θ (x)D 2 U) -C|DU| ≤ 0 in T N × (0, +∞), (4.3)
where C is a constant independent of x, t (given in (4.14)).

Proof of Lemma 4.1. For simplicity, we set U(x, t) := P ηµ [u](x, t).

Let any

φ 0 ∈ C 2 (T N × (0, ∞)) such that (x 0 , t 0 ), t 0 > 0, is a strict maximum point of U -φ 0 in T N × [t 0 -δ, t 0 + δ] for some small δ > 0. If U(x 0 , t 0 ) ≤ 0, then (4.
3) is automatically satisfied. We therefore assume that U(x 0 , t 0 ) > 0 to continue.

For x, y, z ∈ T N and 0 ≤ t ≤ s, we consider

Φ(x, y, z, t, s) = u(x, t) -v(z) -µ(u(y, s) -v(z)) -φ(x, y, z, t, s), (4.4) with (4.5) φ(x, y, z, t, s) = µη(s -t) + α 2 (|x -y| 2 + |x -z| 2 + |y -z| 2 ) + |s -s 0 | 2 + φ 0 (x, t),
where s 0 is the point where the maximum is achieved in (4.1). The function Φ achieves its maximum over (T N ) 3 × {(t, s) : s ≥ t, t ∈ [t 0δ, t 0 + δ]} at (x, ȳ, z, t, s) because u, v are bounded continuous. We obtain some classical estimates when α → ∞,

               Φ(x, ȳ, z, t, s) → U(x 0 , t 0 ) -φ 0 (x 0 , t 0 ), α(x -ȳ), α(x -z) α(ȳ -z) → 0, (x, t, s) → (x 0 , t 0 , s 0 ) since (x 0 , t 0 , s 0 ) is a strict maximum point of U(x, t) -φ 0 (x, t) -|s -s 0 | 2 , s > t since U(x 0 , t 0 ) > 0. (4.6)
In the sequel, all the derivatives of φ are calculated at (x, ȳ, z, t, s) so we skip this dependence for simplicity.

The theory of second order viscosity [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] yields, for every α > 1, the existence of symmetric matrices X, Y, Z such that where B = D 2 φ 0 (x, t). It follows from (4.8) and (4.9) that

(φ t , D x φ, X) ∈ J 2,+ u(x, t), ( -φ s µ , -D y φ µ , -Y µ ) ∈ J 2,-u(y, s), (4.7) ( D z φ µ -1 , Z µ -1 ) ∈ J 2,+ v(x), -(α 2 + |A|)I ≤   X 0 0 0 Y 0 0 0 Z   ≤ A + 1 α 2 A 2 , A = D 2 φ(x, ȳ, z, t, s).
-C(α 2 +|B|)I ≤ X 0 0 0 Y 0 0 0 Z ≤ Cα 2 A+B + C( |B| 2 α 2 I +AB + BA). (4.10)
Since ũ is solution of (2.1) and v is solution of (2.6), the following viscosity inequalities hold,

                   -µη + ∂φ 0 ∂t (x, t) + sup θ∈Θ -trace(A θ (x)X) + H θ x, p + q + Dφ 0 (x, t) ≤ c, -η + 2(s -s 0 ) + sup θ∈Θ {-trace(A θ (ȳ) -Y µ ) + H θ (ȳ, p µ )} ≥ c, sup θ∈Θ {-trace(A θ (z) Z µ -1 ) + H θ (z, -q µ -1 )} ≤ c, (4.11) 
where p = 2α 2 (xȳ) + 2α 2 (zȳ) and q = 2α 2 (xz) + 2α 2 (ȳz). (4.12)

In the sequel, o(1) → 0 as α → +∞ uniformly with respect to θ. Using (2.4), (4.6) and the boundedness of |p|, |q| since u, v are Lipschitz continuous with respect to x (see (2.5)), it follows

                 ∂φ 0 ∂t (x 0 , t 0 ) -µη + sup θ∈Θ {-trace(A θ (x)X) + H θ (x 0 , p + q)} -C|Dφ 0 (x 0 , t 0 )| ≤ c + o(1), -µη + sup θ∈Θ {trace(A θ (ȳ)Y ) + µH θ (x 0 , p µ )} ≥ µc + o(1), sup θ∈Θ {-trace(A θ (z)Z) + (µ -1)H θ (x 0 , -q µ -1 )} ≤ (µ -1)c + o(1). (4.13)
Notice that the above constant C may be chosen as

C = sup θ∈Θ |(H θ ) p | L ∞ (T N ×R) , with R = sup t≥0 |Du(•, t)| L ∞ (T N ) + |Dv| L ∞ (T N ) . (4.14)
Summing the inequalities leads to

∂φ 0 ∂t (x 0 , t 0 ) + inf θ∈Θ -trace(A θ (x)X + A θ (ȳ)Y + A θ (z)Z) (4.15) +H θ (x 0 , p + q) + (µ -1)H θ (x 0 , -q µ -1 ) -µH θ (x 0 , p µ ) -C|Dφ 0 (x 0 , t 0 )| ≤ o(1).
From (4.9) and (4.10), using classical computations [12, p.74], we obtain

(4.16) trace(A θ (x)X + A θ (ȳ)Y + A θ (z)Z) ≤ Cα 2 trace (σ θ (x) -σ θ (ȳ)) T (σ θ (x) -σ θ (ȳ)) + (σ θ (x) -σ θ (z)) T (σ θ (x) -σ θ (z)) +(σ θ (z) -σ θ (ȳ)) T (σ θ (z) -σ θ (ȳ)) +trace (A θ (x)B) + C |B| 2 α 2 + trace ((2A θ (x)-A θ (ȳ)-A θ (z))B) . Since B = D 2 φ 0 (x 0 , t 0 ), |B| ≤ C, σ θ is Lispchitz continuous by (2.3) and x, ȳ, z → x 0 , we obtain -trace(A θ (x)X + A θ (ȳ)Y + A θ (z)Z) ≥ -tr(A θ (x 0 )D 2 φ 0 (x 0 , t 0 )) + o(1). (4.17)
Since H θ is convex and p/µ = (p + q)/µq/µ, we have

H θ (x 0 , p + q) + (µ -1)H θ (x 0 , -q µ -1 ) -µH θ (x 0 , p µ ) ≥ 0. (4.18)
Using these previous estimates for (4.15) and letting α → +∞, we obtain 

∂φ 0 ∂t (x 0 , t 0 ) + inf θ∈Θ -tr(A θ (x 0 )D 2 φ 0 (x 0 , t 0 )) -C|Dφ 0 (x 0 , t 0 )| ≤ 0,
Let J = {t ∈ [0, +∞) : M ηµ [u](t) > 0}. If J = ∅, then M + ηµ [u](t)
= 0 for all t and the conclusion follows. If J = ∅, then, by continuity, there exists t 0 < t 1 such that [t 0 , t 1 ] ⊂ J.

By (4.19) M ηµ [u] ′ (t) ≤ 0 in the viscosity sense on (t 0 , t 1 ). Therefore, t → M ηµ [u](t) is nonincreasing on [t 0 , t 1 ]. Necessarily, inf J = 0 and t → M ηµ [u](t) is nonincreasing on [0, sup J). If sup J = +∞, then t → M ηµ [u](t)
> 0 is nonincreasing on [0, +∞) and the conclusion follows. If sup J < +∞, then M + ηµ [u](t) = 0 on [sup J, +∞) and therefore the limit is 0.

The strategy of the proof of Theorem 2.1 is to obtain m η1 = 0. An immediate consequence is that t → u(x, t) is nondecreasing for every x. The conclusion follows easily, see the end of this section.

So, from now on, we argue by contradiction assuming that

m η1 > 0. (4.20)
The following result makes the link between m ηµ and m η1 . Lemma 4.3. For all ǫ > 0, there exists µ ǫ > 1 such that, for 1 ≤ µ ≤ µ ǫ , we have

P ηµ [u](t) ≥ P η1 [u](t) -ǫ, t ≥ 0. (4.21)
In particular, there exists µ η > 1 such that for 1 < µ < µ η , we have

M ηµ [u](t) ≥ m η1 2 > 0, t ≥ 0. (4.22)
Proof of Lemma 4.3. Let x ∈ T N , t ≥ 0. There exists s 1 ≥ t such that

P η1 [u](x, t) = u(x, t) -µu(x, s 1 ) -µη(s 1 -t) ≥ u(x, t) -µu(x, s 1 ) ≥ -C since u is bounded. We deduce η(s 1 -t) ≤ C. Therefore P ηµ [u](x, t) -P η1 [u](x, t) ≥ (µ -1)(v(x) -u(x, s 1 ) -η(s 1 -t)) ≥ -C(µ -1).
To prove (4.22), it is enough to notice that, since m η1 > 0 by (4.20), then M η1 [u](t) is positive nonincreasing and bigger to m η1 . It is then sufficient to choose ǫ = m η1 /2.

From now on, we choose 1 < µ < µ η , where µ η is given by Lemma 4.3, in order that

M ηµ [u](t) > 0. Lemma 4.4. There exists t n → +∞ such that u(•, •+t n ) converges in W 1,∞ (T N ×[0, +∞))
to a solution ũ of (2.1). The function P ηµ [ũ](x, t) is a still a subsolution of (4.3) and

M ηµ [ũ](t) = m ηµ > 0 is independent of t.
Proof of Lemma 4.4. By (2.5), {u(•, t), t ≥ 0} is relatively compact in W 1,∞ (T N ). Let any sequence t n → +∞ such that u(•, t n ) converges. By the comparison principle for (2.1), we have, for any n, p ≥ 0,

|u(x, t + t n ) -u(x, t + t p )| ≤ |u(•, t n ) -u(•, t p )| ∞ , x ∈ T N , t ≥ 0. Therefore (u(•, • + t n )) n is a Cauchy sequence in W 1,∞ (T N × [0, +∞)). So it converges to some function ũ ∈ W 1,∞ (T N × [0, +∞))
, which is still a solution of (2.1) by classical stability results.

We observe that

M ηµ [u](t + t n ) = sup x∈T N ,s≥t {u(x, t + t n ) -v(x) -µ(u(x, s + t n ) -v(x)) -µη(s -t)}. Since M ηµ [u](t + t n ) → m ηµ as n → +∞, M ηµ [ũ](t) = m ηµ is independent of t.
Finally, since P ηµ [u](x, t + t n ) converges uniformly to P ηµ [ũ](x, t) as n → +∞, we obtain that P ηµ [ũ] is still a subsolution of (4.3) Lemma 4.5. For any τ > 0, max x∈T N ,t≥0

P ηµ [ũ](x, t) = M ηµ [ũ](τ ) = m ηµ = P ηµ [ũ](x τ , τ ) for x τ ∈ Σ if Σ = ∅. (4.23) If Σ = ∅, then m η1 = 0.
The point in this result is that the maximum of P ηµ [ũ](τ ) is achieved at some point x τ ∈ Σ.

Proof of Lemma 4.5. Let τ > 0 and suppose that x τ defined by (4.23) lies in T N -Σ. We write U(x, t) = P ηµ [ũ](x, t) for simplicity. Since M ηµ [ũ](t) is independent of t, we have

U(x τ , τ ) = max x∈T N , t≥0 U(x, t) = m ηµ .
We aim at applying the strong maximum principle of Da Lio [START_REF] Lio | Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations[END_REF] for viscosity solutions. Let δ > 0 and Σ δ = {dist(•, Σ) ≥ δ}. We consider the connected component

C δ of x τ in Σ C δ ∩ {U(•, τ ) > 0}. From Lemmas 4.3 and 4.4, U is a subsolution of ∂U ∂t + G(x, DU, D 2 U) ≤ 0 in int(C δ ) × (τ -τ /2, τ + τ /2),
where

G(x, p, X) = inf θ∈Θ -tr(A θ (x)X) -C|p|.
From (2.9),

G(x, p, X + Y ) -G(x, p, Y ) ≤ -ν δ trace(Y ), X, Y ∈ S N , Y ≥ 0, x ∈ C δ , p ∈ R N
and G(x, λp, λX) = λG(x, p, X) for λ > 0. From [8, Th. 2.1], we infer that U is constant and equal to m ηµ in ∂(C δ × {t = τ }). Moreover, since m ηµ > 0, necessarily ∂C δ ⊂ Σ δ .

It follows that there exists x τ δ such that U(x τ δ , τ ) = m ηµ and dist(x τ δ , Σ) = δ. Letting δ → 0 and extracting subsequences if necessary, we find y τ ∈ ∂Σ such that U(y τ , τ ) = P ηµ [ũ](y τ , τ ) = m ηµ .

In the case Σ = ∅, we obtain that P ηµ [ũ](x, t) = m ηµ in T N × [0, +∞). Letting µ → 1, we get P η1 [ũ](x, t) = m η1 > 0 in T N × [0, +∞). Let s(t) be the point where the maximum is achieved in P η1 [ũ](x, t). We have

P η1 [ũ](x, t) + P η1 [ũ](x, s(t)) = 2m η1 = u(x, t) -u(x, s(s(t))) -η(s(s(t)) -t) ≤ m η1
which leads to a contradiction with (4.20) and implies m η1 = 0.

We now obtain the desired contradiction with (4.20). The following result is is one the key step in the proof of Theorem 2.1.

Lemma 4.6. If, for some τ > 0, max

x∈T N ,t≥0 P ηµ [ũ](x, t) = M ηµ [ũ](τ ) = m ηµ = P ηµ [ũ](x τ , τ ) for x τ ∈ Σ, then m ηµ = 0.
Proof of Lemma 4.6. We fix τ > 0 and we assume that

m ηµ = M ηµ [ũ](τ ) = ũ(x τ , τ ) -v(x τ ) -µ(ũ(x τ , s τ ) -v(x τ )) -µη(s τ -τ ), with x τ ∈ Σ,
and we recall that, by contradiction, we assume m ηµ > 0. Notice that τ is a strict maximum

point of t → M ηµ [ũ](t) -|t -τ | 2 in (0, +∞) since M ηµ [ũ](t) is constant.
We define Φ, φ as in (4.4)-(4.5) by replacing s 0 with s τ in φ and choosing φ 0 (x, t) = xx τ + |tτ | 2 , where x = ǫ 2 + |x| 2 for some fixed ǫ > 0.

Exactly as in the proof of Lemma 4.3, the function Φ achieves its maximum over (T N ) 3 × {(t, s) : s ≥ t, t ∈ [t 0δ, t 0 + δ]} at (x, ȳ, z, t, s) and (4.6) are replaced with

           Φ(x, ȳ, z, t, s) → m ηµ -ǫ, α(x -ȳ), α(x -z) , α(ȳ -z) → 0, (x, ȳ, z, t, s) → (x τ , x τ , x τ , τ, s τ ) s > t since M ηµ [ũ](τ ) = m ηµ > 0. (4.24) Formulas (4.7)-(4.10) still hold with B = D 2 xx • -x τ (x) = x -x τ -1 (I -x-xτ x-xτ ⊗ x-xτ x-xτ ). Noticing that |B| ≤ ǫ -1 , we may refine (4.10) -C(α 2 + 1 ǫ )I ≤   X 0 0 0 Y 0 0 0 Z   ≤ Cα 2   2I -I -I -I 2I -I -I -I 2I   + C( 1 α 2 ǫ 2 + 1 ǫ )I. (4.25)
In the sequel, o(1) denotes a function which tends to 0 as α → +∞ for fixed ǫ > 0, uniformly with respect to θ.

The viscosity inequalities (4.11) and (4.13) hold with ∂φ 0 ∂t (x, t) = 2( tτ ), Dφ 0 (x, t) =

x-xτ

x-xτ = o(1),            -µη + sup θ∈Θ {-trace(A θ (x)X) + H θ (x τ , p + q)} ≤ o(1), -µη + sup θ∈Θ {trace(A θ (ȳ)Y ) + µH θ (x τ , p µ )} ≥ o(1), sup θ∈Θ {-trace(A θ (z)Z) + (µ -1)H θ (x τ , -q µ -1 )} ≤ o(1), (4.26) 
with p, q defined in (4.12), and (4.15) reads now

inf θ∈Θ {-trace(A θ (x)X + A θ (ȳ)Y + A θ (z)Z) + H θ } ≤ o(1).
where we set

H θ := H θ (x τ , p + q) + (µ -1)H θ (x τ , -q µ -1 ) -µH θ (x τ , p µ ).
From (4.16), we get

inf θ∈Θ {-trace(A θ (x)X + A θ (ȳ)Y + A θ (z)Z)} ≥ o(1). (4.27) It then follows inf θ∈Θ H θ ≤ o(1). (4.28)
From the convexity of H θ , we know that H θ ≥ 0 (see (4.18)) but we need a strict inequality to reach a contradiction.

Up to extract subsequences, we may assume that lim α→∞ p = p and lim α→∞ q = q, (recall that p and q are given by (4.12) and are bounded since ũ, v are Lipschitz continuous).

We distinguish two cases depending on the above limit. First case. We suppose that p µ + q µ -1 = 0.

Letting α → +∞ in (4.28) and recalling that x τ ∈ Σ, we obtain a contradiction thanks to the strict convexity of H θ . More precisely, we apply (2.10) with λ := 1/µ and P = Q given by P := p + q, Q := -q/(µ -1). Second case. One necessarily has

p µ = -q µ -1 =: p ǫ = p ǫ (η, µ, ǫ). (4.29)
Notice that, in this case, lim α→∞ H θ = 0 and therefore the strict convexity of the H does not play any role.

From (4.25), we have |X|, |Y |, |Z| ≤ C(α 2 + (αǫ) -2 + ǫ -1 ). Hence |trace(σ θ (x)σ θ (x) T X)| ≤ |σ θ (x)| 2 |X| = |σ θ (x) -σ θ (x τ )| 2 |X| (4.30) ≤ C(α 2 + 1 α 2 ǫ 2 + 1 ǫ )|x -x τ | 2 ,
where we used the fact that σ(x τ ) = 0 since x τ ∈ Σ. We estimate the rate of convergence of the term |xx τ |. Since Φ achieves its maximum at (x, ȳ, z, t, s), we have

ũ(x, t) -v(z) -µ(ũ(ȳ, s) -v(z)) -µη(s -t) -x -x τ ≥ Φ(x, ȳ, z, t, s) ≥ M η,µ [ũ](τ ) -ǫ.

This implies

ǫ 2 + |x -x τ | 2 = x -x τ ≤ ũ(x, t) -v(z) -µ(ũ(ȳ, s) -v(z)) -µη(s -t) -M η,µ [ũ](τ ) + ǫ = [ũ(x, t) -ũ(z, t)] + µ[ũ(z, s) -ũ(ȳ, s)] +[ũ(z, t) -v(z) -µ(ũ(z, s) -v(z)) -µη(s -t)] -M η,µ [ũ]( t) + ǫ ≤ [ũ(x, t) -ũ(z, t)] + µ[ũ(z, s) -ũ(ȳ, s)] + ǫ ≤ C(|x -ȳ| + |x -z|) + ǫ,
where we used the fact that M η,µ [ũ](t) = m ηµ for all t > 0 and ũ is Lipschitz continuous. So,

|x -x τ | 2 ≤ C(|x -ȳ| 2 + |x -z| 2 ) + Cǫ(|x -ȳ| + |x -z|).
It is worth noticing that C depends only on ũ. Recalling that α 2 |x -ȳ|, α 2 |x -z| are bounded and plugging the above estimates in (4.30), we get

trace(A θ (x)X) = o(1) + O(ǫ),
where, for fixed ǫ > 0, o(1) → 0 as α → +∞ and O(ǫ) → 0 as ǫ → 0. Both error terms are uniform in θ. In the same way, we obtain trace(A θ (ȳ)Y ) , trace(A θ (z)Z) = o(1) + O(ǫ).

Sending α to +∞ in (4.26), we have

         -µη + sup θ∈Θ {H θ (x τ , p ǫ )} + O(ǫ) ≤ 0, -µη + sup θ∈Θ {µH θ (x τ , p ǫ )} + O(ǫ) ≥ 0, sup θ∈Θ {(µ -1)H θ (x τ , p ǫ )} + O(ǫ) ≤ 0
(we recall that p ǫ is defined in (4.29)). Up to a subsequence if necessary, we can assume that p ǫ → p 0 when ǫ → 0. So, we get

         -µη + sup θ∈Θ {H θ (x τ , p 0 )} ≤ 0, -µη + sup θ∈Θ {µH θ (x τ , p 0 )} ≥ 0, sup θ∈Θ {(µ -1)H θ (x τ , p 0 )} ≤ 0.
This implies µη = 0, which is a contradiction. It ends the proof.

End of the proof of Theorem 2.1. We obtained that m η1 = 0. From m η1 = 0, we infer ũ(x, t)ũ(x, s)η(st) ≤ 0, for all x ∈ T N and s ≥ t ≥ 0.

Letting η tend to 0, we obtain ũ(x, t)ũ(x, s) ≤ 0.

The uniform convergence of (u(•,

t n + •)) n to ũ ∈ W 1,∞ (T N × [0, +∞)) (see Lemma 4.4) yields -o n (1) + ũ(x, t) ≤ u(x, t + t n ) ≤ o n (1) + ũ(x, t) in T N × (0, ∞).
Since ũ is nondecreasing in t, there exists

u ∞ ∈ W 1,∞ (T N ) such that ũ(•, t) → u ∞ (•)
uniformly as t tends to infinity. Taking Barles-Perthame half relaxed limits, we obtain

-o n (1) + u ∞ (x) ≤ lim inf t→+∞ * u(x, t) ≤ lim sup t→+∞ * u(x, t) ≤ o n (1) + u ∞ (x) x ∈ T N .
Letting n tend to infinity, we derive lim inf

t→+∞ * u(x, t) = lim sup t→+∞ * u(x, t) = u ∞ (x), x ∈ T N ,
which yields the uniform convergence of u(•, t) to u ∞ in T N as t tends to infinity. By the stability result, u ∞ is a solution of (2.6) with c = 0. It ends the proof of Theorem 2.1.

Proof of Theorem 2.2 and Proposition 2.3

The proof of Theorem 2.2 follows the same ideas as the one of Theorem 2.1 with minor adaptations. It is actually easier, since, from (2.12), we choose v = 0 in (4.1)-(4.2) which allows to simplify several arguments. We only provide the proof of the main changes which consist, on the one side, in taking into account the set K which appears in (2.11) and, on the other side, in the proof of Lemma 4.6.

As in the proof of Theorem 2.1, we start with a change of function u → u + ct which allows to deal with bounded functions u, ũ and c = 0. Lemma 5.1. For every x 0 ∈ K, The function t → u(x 0 , t) is nonincreasing.

Proof of Lemma 5.1. Let x 0 ∈ K, t 0 ≥ 0 and we assume by contradiction that there exists s 0 > t 0 such that u(x 0 , s 0 ) > u(x 0 , t 0 ). Consider, for ǫ, α > 0,

sup x∈T N ,t≥t 0 {u(x, t) -u(x 0 , t 0 ) - |x -x 0 | 2 ǫ 2 -α(t -t 0 )}. (5.1)
Since u is bounded, this supremum is positive and is achieved at some (x, t) with t > t 0 for ǫ, α > 0 small enough. By classical estimates, |x-x 0 | 2 ǫ 2 → 0 as ǫ → 0. Since u is a viscosity subsolution of (2.1), we obtain

α + sup θ∈Θ {-trace(A θ (x) 2I ǫ 2 ) + H θ (x, p)} ≤ 0, (5.2)
with p = 2 x-x 0 ǫ 2 . On the one side, since u(•, t) is Lipschitz continuous, p is bounded and, up to extract a subsequence as ǫ → 0, we may assume that p → p. On the other side, since x → x 0 ∈ K ⊂ Σ and σ θ satisfies (2.3),

|trace(A θ (x) 2I ǫ 2 | ≤ |σ θ (x)| 2 ǫ 2 ≤ C |x -x 0 | 2 ǫ 2 .
From (5.2), sending ǫ → 0, we obtain

α + sup θ∈Θ H θ (x, p) ≤ 0,
which is a contradiction with (2.11)(ii)(a) (with c = 0). Therefore, for all s 0 ≥ t 0 , we have u(x 0 , s 0 ) ≤ u(x 0 , t 0 ).

A consequence of Lemma 5.1 is that u(x, t) converges on K and therefore ũ(x, t) is independent of t, for any x ∈ K, where ũ is defined in the statement of Lemma 4.4. Assuming, in the proof of Theorem 2.1, that m η1 > 0 (and therefore m ηµ > 0 for µ close to 1), we obtain from the very definition of P ηµ [ũ] that dist(x τ , K) = 0 for µ close enough to 1, (

where x τ ∈ T N is the point where the maximum is achieved in M ηµ [ũ](τ ).

Proof of Lemma 4.6 under the assumptions of Theorem 2.2. deptra Let us note that Lemma 4.5 is still true under the assumptions of Theorem 2.2, so we can assume that x τ ∈ Σ.

Since v = 0 in (4.1)-(4.2), we may choose Z = 0 in (4.25), and q = 0 in (4.12). The viscosity inequalities (4.26) reads Taking into account this estimate, by sending α → ∞ and then ǫ → 0 in the second inequality in (5.4) , we get

           -µη + sup
-µη + sup θ∈Θ {µH θ (x τ , 0)} ≥ 0,
which is a contradiction with the third inequality in (5.4).

Proof of Proposition 2.3.

Consider the solution v ǫ λ of λv ǫ λ + sup |e|≤ǫ, θ∈Θ {-trace(A θ (x + e)D 2 v ǫ λ ) + H θ (x + e, Dv ǫ λ )} = 0, x ∈ T N . It follows from [2, Lemma 2.7] that v λǫ = ρ ǫ * v ǫ λ
, where ρ ǫ is a standard mollifier, is a C ∞ subsolution of (2.2). Moreover, from [2, Theorem A.1], we have λ|v λv λǫ | ≤ Cǫ. Therefore, we have in the classical sense at any x ∈ T N ,

λv λǫ (x) + sup θ∈Θ {-trace(A θ (x)D 2 v λǫ (x)) + H θ (x, Dv λǫ (x))} ≤ 0.
We can write this inequality at any x ∈ Σ where trace(A θ (x)D 2 v λǫ (x)) = 0. It follows We prove now the opposite inequality under either (2.15) or (2.14). Under Assumption (2.14). Let v λ be the solution of (2.2) and x λ ∈ T N such that v λ (x λ ) = min T N v λ . We have λv λ (x λ ) + sup θ H θ (x λ , 0) ≥ 0. Taking a subsequence λ → 0 such that λv λ → -c, we get Noticing that Ĥθ still satisfies (2.15), we have

-λv λ (x) + Cǫ ≥ -λv λǫ (x) ≥ sup θ∈Θ H θ (x, Dv λǫ (x)) ≥ sup θ∈Θ H θ (x, 0), using (2.
c ≤ sup x∈T N ,θ∈Θ H θ (x, 0) = sup x∈Σ,θ∈Θ H θ (x, 0) by (2.13). Under Assumption (2.15). We set Ĥθ (x, p) = H θ (x, p) -C where C > 0 is big enough in order that Ĥθ (x, 0) ≤ 0. It follows that, if v λ is a solution of (2.2), then vλ = v λ + C/λ is a solution of λv λ + sup θ∈Θ {-trace(A θ (x)D 2 vλ ) + Ĥθ (x, Dv λ )} = 0 (5.
λ(1 -γ) min T N vλ/γ + λ(γv λ/γ ) (5.7) + sup θ∈Θ {-trace(A θ (x)D 2 (γv λ/γ )) + Ĥθ (x, D(γv λ/γ )) -(1 -γ) Ĥθ (x, 0)} ≥ 0.
Subtracting (5.6) and (5.7), we get, for

w λγ = vλ -γv λ/γ , 0 ≥ λ(γ -1) min T N vλ/γ + λw λγ + inf θ∈Θ {-trace(A θ D 2 w λγ ) + Ĥθ (x, Dv λ ) -Ĥθ (x, D(γv λ/γ )) + (1 -γ) Ĥθ (x, 0)} ≥ λ(γ -1) min T N vλ/γ + λw λγ + inf θ∈Θ {-trace(A θ D 2 w λγ ) + (1 -γ) Ĥθ (x, 0)} -C|Dw λγ |.
Therefore

λw λγ + inf θ∈Θ {-trace(A θ D 2 w λγ )} -C|Dw λγ | ≤ (γ -1) sup θ∈Θ Ĥθ (x, 0) -λ min T N vλ/γ . (5.8)
Recalling that Ĥθ (x, 0) ≤ 0 and vλ/γ ≥ 0, the right-hand side of (5.8) is nonnegative. By the strong maximum principle, we obtain max x∈T N w λγ = w λγ (x 0 ) with x 0 ∈ Σ. (5.9) Writing (5.8) at x 0 , we obtain

λw λγ (x 0 ) ≤ (γ -1) sup x∈Σ,θ∈Θ Ĥθ (x, 0) -λ min T N vλ/γ . It follows λv λ (x 0 ) -γ 2 λ γ v λ/γ (x 0 ) ≤ (γ -1) sup x∈Σ,θ∈Θ H θ (x, 0) -γ min T N λ γ v λ/γ .
Sending λ → 0, up to take subsequences, we obtain c ≤ sup x∈Σ,θ∈Θ H θ (x, 0). 

-tr(A θ (x)D 2 U ) -C|DU|} ≤ 0, x ∈ T N . (6.1)
Notice that one still has max T N U = m ηµ > 0.

Step 1. argmax U ∩ Σ = ∅ thanks to (2.16). We argue by contradiction assuming that there exists δ > 0 such that argmax U ⊂ Σ C δ , where Σ δ = {dist(•, Σ) ≤ δ}. It follows that there exists ρ δ > 0 such that

m ηµ = U(x) = max T N U = max Σ C δ U ≥ max Σ δ U + ρ δ , for some x ∈ Σ C δ . (6.2)
Let Ũ be a 1-periodic function of R N such that U (π(x)) = Ũ(x) for all x ∈ R N and Σδ = {dist(•, Σ) ≤ δ}. From (6.2) and by 1-periodicity, we infer

m ηµ = Ũ(x) = max R N Ũ = sup ΣC δ Ũ ≥ sup Σδ Ũ + ρ δ , for some x ∈ ΣC δ ∩ [0, 1] N .
For this δ > 0, we consider the C 2 supersolution ψδ and Ω δ given by (2.16). Notice that, up to divide ψδ by a constant, we can assume that | ψδ | ≤ 1 in Ω δ . We claim that, for ε > 0 small enough, The claim is proved for ε small enough.

Since Ũ (x δ ) > 0, the differential inequality holds in (6.1) in the viscosity sense at xδ . Using ε ψδ as a test-function for Ũ , we obtain inf θ∈Θ {-trace( Ãθ (x δ )D 2 ψδ (x δ ))} -C|D ψδ (x δ )| ≤ 0, which contradicts (2.16). Therefore, there exists xδ ∈ Σ δ such that U (x δ ) = m ηµ . Letting δ → 0 and extracting subsequences if necessary, we can find x ∈ argmax U ∩ Σ.

Step 2. Up to replace ũ by an accumulation point as in Lemma 4.4, we may assume that P ηµ [ũ] achieves its maximum at (x, 1), x ∈ Σ. From the previous step, we have U (x) = m ηµ for some x ∈ Σ. By definition of the half-relaxed limit, there exists t n → +∞ and x n → x such that U(x n , t n ) → m ηµ . Let tn = t n -1. Up to extract subsequences as in the proof of Lemma 4.4, we may assume that ũ(x, t+ tn ) converges uniformly in W 1,∞ (T N ×[0, +∞)) to some function û. Therefore P ηµ [ũ](x, t + tn ) converges uniformly to P ηµ [û](x, t). It follows P ηµ [ũ](x n , tn + 1) = U(x n , t n ) → P ηµ [û](x, 1) = m ηµ .

The functions û, P ηµ [û] inherit the properties of ũ, P ηµ [ũ] respectively and it is sufficient to prove the convergence of û to obtain the convergence of ũ and u.

Proof of Proposition 2.6. Since Σ = ∅, by translation, we can assume without loss of generality that 0 ∈ Σ, where Σ ⊂ R N is a coset representative of Σ ∈ T N . Let δ > 0 and Σ δ = {dist(•, Σ) ≤ δ}. From (2.9), we have inf We then consider the classical smooth test function which is used to prove the strong maximum principle, that is ψδ (x) = e -γ δ r 2 δe -γ δ |x| 2 , where we fix r δ > √ N , Ω δ := B(0, r δ ) and γ δ > 0 will be chosen later. We have ψδ < 0 in B(0, r δ ) ⊃ [0, 1] N , ψδ ≥ 0 in B(0, r δ ) C and -1 < ψδ ≤ e -γr 2 δ . For x ∈ ΣC δ ∩ B(0, r δ ), using (2. Using (2.17), we check easily that K δ is a compact subset of S N -1 . Since K 0 = S N -1 by (2.19), there exists ξ δ ∈ S N -1 and ǫ δ > 0 such that 

C δ ∩ K δ = ∅,

  (A θ (x)D 2 u) + H θ (x, Du)} = 0, (x, t) ∈ T N × (0, +∞), u(x, 0) = u 0 (x), x ∈ T N ,(1.1)

3. 3 .

 3 Application to convergence results. In the following cases, there exist solutions to (2.1) and (2.6) (i.e., (2.5) holds) and we have a convergence result:• Applying Theorem 2.1 when the H θ 's are given by Examples 3.2 or 3.3 and the diffusion matrices are given by Examples 3.5 or 3.6. • Applying Theorem 2.2 when the H θ 's given by Example 3.4 and the diffusion matrices are given by Examples 3.5 or 3.6. • Applying Theorem 2.5 when the H θ 's are given by Examples 3.2, 3.3 or 3.4 and the diffusion matrices are given by Examples 3.7 or 3.7.

3. 4 .

 4 The Namah-Roquejoffre case. Consider ∂u ∂t + sup θ∈Θ {-trace(A θ (x)D 2 u) + F θ (x, Du)f θ (x)} = 0, (x, t) ∈ T N × (0, +∞), (3.6)

( 5 . 4 )

 54 θ∈Θ{-trace(A θ (x)X) + H θ (x τ , p)} ≤ o(1),-µη + sup θ∈Θ {trace(A θ (ȳ)Y ) + µH θ (x τ , p µ )} ≥ o(1), sup θ∈Θ H θ (x τ , 0) ≤ o(1).Notice that the third inequality is nothing than (2.12) (with c = 0 after our change of function). Subtracting the two first inequalities from (4.27) yieldinf θ∈Θ {H θ (x τ , p) -µH θ (x τ , p µ )} ≤ o(1). (5.5) As in the corresponding proof in Section 4, we distinguish two cases depending on lim α→+∞ p = p (up to subsequences if necessary). First Case. If p = 0. Letting α → +∞ in (5.5) and recalling (5.3), we obtain a contradiction with (2.11)(ii)(b). Second Case. If p = 0. Proceeding similarly as in the second case of the proof of Lemma (4.6), we obtain |trace(A θ (ȳ)Y )| = o(1) + O(ǫ).

  [START_REF] Ley | Lipschitz estimates for elliptic weakly coupled systems of hamilton-jacobi equations and applications to large time behavior[END_REF]. Sending λ → 0 and then ǫ → 0, we obtain-λv λ (x) → c ≥ sup θ∈Θ H θ (x, 0), for any x ∈ Σ.Hence c ≥ sup x∈Σ,θ∈Θ H θ (x, 0).

6 )

 6 and vλ ≥ 0. For any γ > 1, we have λ γ vλ/γ + sup θ∈Θ {-trace(A θ (x)D 2 vλ/γ ) + Ĥθ (x, Dv λ/γ )} = 0, equivalently, λv λ/γ + sup θ∈Θ {-trace(A θ (x)D 2 (γv λ/γ )) + γ Ĥθ (x, Dv λ/γ )} = 0.

  sup R N { Ũε ψδ } = Ũ(x δ )ε ψδ (x δ ) with xδ ∈ ΣC δ ∩ Ω δ and Ũ (x δ ) > 0.Indeed, using that | ψδ | ≤ 1 in Ω δ and ψδ ≥ 0 on Ω C δ , we have supR N { Ũε ψδ } ≥ Ũ (x)ε ψδ (x) δε ≥ sup Σδ { Ũε ψδ } + ρ δ -2ε > sup Σδ { Ũε ψδ } for ε small enough. Since Ũ is 1-periodic, ψδ ≤ 0 on Ω δ ⊃ [0, 1] N and ψδ ≥ 0 on Ω C δ , it follows sup R N { Ũε ψδ } = max Ω δ { Ũε ψδ } = Ũ(x δ )ε ψδ (x δ ) with xδ ∈ Ω δ ∩ ΣC δ .Moreover Ũ (x δ ) ≥ Ũ(x)ε ψδ (x) + ε ψδ (x δ ) ≥ m ηµ -2ε.

  ΣC δ |σ θ (x)x| 2 = inf ΣC δ ν(x)|x| 2 =: ν δ > 0.

  3), we have -trace(σ θ (x)σ θ (x)T D 2 ψδ (x)) -C|D ψδ (x)| = 2γ δ e -γ δ |x| 2 2γ δ |σ θ (x)x| 2trace(σ θ (x)σ θ (x) T ) -C|x| ≥ 2γ δ e -γ δ |x| 2 2γ δ ν δ -C 2 -Cr δ > 0 if γ δ big enough. Therefore (2.16) holds.Proof of Proposition 2.7. For δ > 0 and Σ δ = {dist(•, Σ) ≤ δ}, we defineK δ := x∈Σ C δ ,θ∈Θ ker(σ θ (x)) ∩ S N -1 ⊂ K 0 := x∈Σ C ,θ∈Θker(σ θ (x)) ∩ S N -1 .

1

 1 with C δ := {ζ ∈ S N -1 : ζ, ξ δ ≥ 1ǫ δ }.(6.3) For λ > 0, let y δ = λξ δ ∈ R N . We have, for all x ∈ [0, 1] N ,y δx |y δ -x| , ξ δ = λ |λξ δ -x| -x, ξ δ |λξ δ -x| ≥ ǫ δ for λ = λ δ big enough. Therefore { y δ -x |y δ -x| : x ∈ [0, 1] N } ⊂ C δ . Using (6.3), (2.17) and the periodicity of the coset representatives σθ , Σ of σ θ , Σ, it follows thatν δ := inf x∈ ΣC δ ∩[0,1] N ,θ∈Θ |σ θ (x)(y δx)| > 0.For x ∈ R N , we defineφ(x) = φ δ (x) := -e γ|x-y δ | 2 -γR , R := 2|y δ | 2 + 2N + 1, γ > 0.Notice that φ is smooth on R N and -1 < φ < 0 for all γ > 0. We have, for allx ∈ ΣC δ ∩ [0, 1] N , -trace(σ θ (x)σ θ (x) T D 2 φ(x)) -C|Dφ(x)| = 2γ|φ(x)| trace(σ θ (x)σ θ (x) T ) + 2γ trace(σ θ (x)σ θ (x) T (xy δ ) ⊗ (xy δ )) -C|xy δ | ≥ 2γ|φ(x)|(2γν 2 δ -C(r + |y δ |)) > 0 for γ = γ δ,r big enough. Therefore φ is a smooth supersolution of the equation in(2.16) in ΣC δ ∩ (0, 1) N . We now define ψδ , Ω δ on the following way. We set ψδ (x) = φ(x) for x ∈ ΣC δ/2 ∩ [0, 1] N Now, from (2.18), we have {dist(•, ∂[0, 1] N ) ≤ δ/4} ∩ ΣC δ/2 = ∅ so we can extend ψδ in a smooth way in [0, 1] N such that ψδ (x) = 0 forx ∈ {dist(•, ∂[0, 1] N ) ≤ δ/4} ∩ [0, 1] N and | ψδ | ≤ 1 in [0, 1] N .We then extend ψ outside [0, 1] N by 0. We set Ω δ := {dist(•, ∂[0, 1] N ) < δ/4}. It is straightforward that the function ψδ satisfies (2.16).

  now give some examples for which (2.18)-(2.19) hold (and so (2.16) holds thanks to Proposition 2.7).

	Example 3.7. A first control-independent case is σ

  in Example 3.10 below, then we have the convergence by applying Theorem 2.1. An other important case is given in Section 3.4.

	Example 3.10. Consider
	∂u ∂t	-a(x)

  The function M + ηµ [u](t) is nonincreasing, so it converges to some constant m ηµ ≥ 0 as t → +∞.Proof of Lemma 4.2. At first, it is easy to check that M ηµ [u] is continuous and, from Lemma 4.1, by classical computations, M ηµ [u] is a viscosity subsolution of min{M ηµ [u](t), M ηµ [u] ′ (t)} ≤ 0 on (0, +∞).

	We set M + ηµ [u](t) = max{0, M ηµ [u](t)}.
	Lemma 4.2. (4.19)
	which is exactly what we need.
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 6 Proof of Theorem 2.5 and Propositions 2.6 and 2.7Proof of Theorem 2.5. The proof follows exactly the same line as those of Theorems 2.1 and 2.2. The only difference is the proof of Lemma 4.5 which is given below.Proof of Lemma 4.5 when (2.16) holds. We write U = P ηµ [ũ] for simplicity. Since U is bounded, we can consider the half-relaxed limit

	U (x) = lim sup	U(y, t).
	y→x,t→+∞	
	From Lemma 4.1 and by the stability result, U is a viscosity subsolution of
	min{U , inf θ∈Θ