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Abstract

Complex-valued data are encountered in many application areas of
signal and image processing. In the context of optimization of functions
of real variables, subspace algorithms have recently attracted much in-
terest, owing to their efficiency for solving large-size problems while
simultaneously offering theoretical convergence guarantees. The goal
of this paper is to show how some of these methods can be success-
fully extended to the complex case. More precisely, we investigate the
properties of the proposed complex-valued Majorize-Minimize Mem-
ory Gradient (3MG) algorithm. Important practical applications of
these results arise in inverse problems. Here, we focus on image recon-
struction in Parallel Magnetic Resonance Imaging (PMRI). The linear
operator involved in the observation model then includes a subsam-
pling operator over the k-space (spatial Fourier domain) the choice of
which is analyzed through our numerical results. In addition, sensi-
tivity matrices associated with the multiple coil channels come into
play. Comparisons with existing optimization methods confirm the
good performance of the proposed algorithm.
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1 Introduction

Complex-valued data are ubiquitous in signal and image processing. They
play a prominent role in applications such as digital communications, spec-
trum analysis and image recovery. As emphasized in [1], dealing with
complex-valued signals raises a number of challenging theoretical issues,
in particular owing to their existing relations with the theory of analytic
functions. Although it is always possible to transform a complex-valued
vector variable in a double-size real-valued vector, this often results in an
awkward reformulation of the problem under consideration. This also leads
to numerical solutions which may often be less efficient, especially when one
makes use of programming languages such as Matlab which are tailored for
computations with complex-valued matrices.

Problems involving complex-valued signals are often formulated as the
search for a solution satisfying some optimality conditions. Since the related
optimization problems do not usually have closed form solutions, efforts have
been dedicated to developing specific iterative algorithms for minimizing
real-valued functions of complex variables [30, 38]. However, one shortcom-
ing of existing approaches (e.g. interior point methods) is that they may
not be very efficient to deal with large-size problems. Another weakness lies
in the lack of theoretical convergence guarantees, especially in the noncon-
vex case. For example, popular methods such as the nonlinear conjugate
gradient algorithm, which may be quite effective in practice, have only been
proved to converge under restrictive assumptions [34, Chap.5]. Proximal
splitting [22] and augmented Lagrangian [3] methods offer more flexibility
for minimizing possibly nonsmooth objective functions, but they may suffer
from slow convergence. In the case of functions of real variables, a recent
majorize-minimize (MM) subspace algorithm has been proposed which over-
comes these limitations [17, 18]. This algorithm has been shown to be quite
competitive with respect to both continuous and discrete state-of-the-art
optimization techniques for solving inverse problems. Moreover, the con-
vergence of the resulting iterates is secured under weak technical assump-
tions [18]. Note that MM strategies for functions of complex variables were
already investigated in [19, 28] but they were restricted to half-quadratic
algorithms requiring the inversion of a large-size linear operator, which is
not tractable for any acquisition model.

Complex-valued data are involved in several imaging systems such as in
Magnetic Resonance Imaging (MRI) which has been at the core of many
recent works in the inverse problem community. Most of these works were
directed to the proposal of reconstruction methods for parallel MRI (PMRI)
[7, 9, 12, 31, 41]. The objective of PMRI is to reduce the acquisition time
while maintaining a good image quality. This is achieved by combining
subsampling strategies in the k-space with the use of an array of coils so
as to compensate spectral decimation with spatial diversity. Let us em-
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phasize that the design of an appropriate subsampling scheme is strongly
related to compressive sensing issues [10, 32, 36]. Reconstruction approaches
based on various variational formulations and optimization algorithms have
been proposed for processing PMRI data, most of them being restricted to
the convex case. We can mention, in particular, methods based on itera-
tive soft-thresholding [27] or more elaborate proximal algorithms [11, 12],
and augmented Lagrangian techniques [2, 7]. Note that, to the best of our
knowledge, MM subspace algorithms have never been used in the context of
PMRI.

The organization of the paper is as follows: in Section 2.1, the addressed
optimization problem is formulated in a general manner and our notation
is introduced. In Section 2.2, we recall some classical results about the
derivative of real-valued functions of complex variables, which are relevant
to this work. Section 2.3 describes the employed MM strategy in the com-
plex case. The proposed complex-valued 3MG (Majorize-Minimize Memory
Gradient) algorithm is studied. In particular, its connections with the algo-
rithm in [17, 18] for minimizing functions of real variables are discussed and
its convergence properties are analyzed. Section 3 presents the application
of our algorithm to PMRI reconstruction by first introducing the multivari-
ate model under consideration, by formulating the optimization problem,
and by providing also some details about the algorithm implementation. In
Section 3.4, a number of simulation results is provided demonstrating the
good performance of the proposed algorithm. Finally, some conclusions are
drawn in Section 4.

2 Proposed optimization method

2.1 Problem statement

In this work, we will consider the following penalized optimization problem:

minimize
x∈CN

(
F (x) = Φ(Hx− y) + Ψ(x) +

ε

2
‖x‖2

)
, (1)

where H 6= 0 is a matrix in C
Q×N , y is an observation vector in C

Q,
Φ: CQ → R, Ψ: CN → R, and ε ∈ [0,+∞).

In inverse problems, function Φ usually corresponds to a data-fidelity
term and Ψ to a regularization function. The last quadratic term plays a
role similar to an elastic net penalization [42].

We focus on the case when function Ψ takes the following form:

(∀x ∈ C
N ) Ψ(x) =

S∑

s=1

ψs(|vH
s x− cs|) (2)

where | · | denotes the complex modulus, (·)H is the matrix trans-conjugate
operation, and, for every s ∈ {1, . . . , S}, ψs : R → R, vs ∈ C

N , and cs ∈ C.
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Note that (2) models a wide range of regularization functions which are
used in practice. When the vectors (vs)16s6S correspond to local discrete
difference operators and (ψs)16s6S are identity functions, a complex-valued
variant of the anisotropic total variation measure is defined (for images, by
computing horizontal and vertical differences, we have thus S = 2N). On
the other hand, if (vs)16s6S constitutes a frame of CN , a so-called frame
analysis [25, 29, 35] penalty is obtained. In the special case when (vs)16s6S

is the canonical basis of CN (S = N), we get

(
∀x = (xn)16n6N ∈ C

N
)

Ψ(x) =
N∑

n=1

ψn(|xn − cn|). (3)

This kind of Tikhonov regularization [39] is employed to promote the close-
ness of the target signal to a reference one c = (cn)16n6N .
Notation: For every vector x ∈ C

N , xR ∈ R
N (resp. xI ∈ R

N ) denotes the
vector of real (resp. imaginary) parts of the components of x. Let x̃ ∈ R

2N

be the “concatenated” vector x̃ = [x⊤
R x⊤

I ]⊤ where (·)⊤ denotes the trans-

pose operation. We define Ψ̃ the function of real variables associated with
Ψ, i.e. (∀x ∈ C

N ) Ψ̃(x̃) = Ψ(x). A similar notation will be employed for
complex-valued matrices and other functions of complex variables. Finally,
IN denotes the N ×N identity matrix.

2.2 Complex-valued differential calculus

Let Θ be a function from C
N to C. According to Wirtinger’s calculus [1],

the derivative of Θ with respect to the conjugate of its variable is formally
defined as

(∀x ∈ C
N ) ∇Θ(x) =

1

2

(∂Θ̃(x̃)

∂xR
+ ı

∂Θ̃(x̃)

∂xI

)
. (4)

Throughout this paper, we suppose that:

Assumption 1

(i) Φ̃ is differentiable.

(ii) For every s ∈ {1, · · · , S}, ψs is a differentiable function and limt→0
t 6=0

ψ̇s(t)/t ∈
R, where ψ̇s denotes the derivative of ψs.

The definition in (4) implies that the derivative of ΦH = Φ(H · −y) is

(∀x ∈ C
N ) ∇ΦH(x) = HH∇Φ(Hx− y). (5)

Similarly, it can be deduced from (2) that

(∀x ∈ C
N ) ∇Ψ(x) =

S∑

s=1

ρ̇s(v
H
s x− cs) vs, (6)
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where, for every s ∈ {1, . . . , S}, ρs = ψs(| · |), and ρ̇s is its Wirtinger deriva-
tive. For every s ∈ {1, . . . , S} and z ∈ C, using standard rules of Wirtinger’s
calculus [26, Table A.1], we have

(∀z ∈ C) ρ̇s(z) =
1

2
z ωs(|z|), (7)

where

(∀a ∈ R) ωs(a) =





ψ̇s(a)

a
if a 6= 0

limt→0
t 6=0

ψ̇s(t)/t otherwise.
(8)

Combined with (6), this shows that

(∀x ∈ C
N ) ∇Ψ(x) =

1

2
V Diag

(
b(x)

)
(V Hx− c) (9)

where
V = [v1, . . . ,vS ] ∈ C

N×S (10)

and
b(x) = (ωs(|vH

s x− cs|))16s6S . (11)

In summary, the complex-valued derivative of F is

(∀x ∈ C
N ) ∇F (x) = HH∇Φ(Hx− y) + ∇Ψ(x) +

ε

2
x (12)

where the derivative of Ψ is given by (9).

Remark 1 In the special case of the Tikhonov regularization function (3),
(9) reduces to

(
∀x = (xn)16n6N ∈ C

N
)

∇Ψ(x) =
1

2

(
(xn−cn) ωn(|xn−cn|)

)
16n6N

. (13)

2.3 Quadratic majorization

In order to develop an efficient algorithm for solving Problem (1), we intro-
duce the following additional assumption:

Assumption 2

(i) Φ has a β-Lipschitzian derivative with β ∈ (0,+∞), i.e.

(∀z ∈ C
Q)(∀z′ ∈ C

Q) ‖∇Φ(z) − ∇Φ(z′)‖ 6 β‖z − z′‖. (14)

(ii) For every s ∈ {1, . . . , S}, ψs(
√
.) is concave on [0,+∞).

(iii) There exists ω ∈ [0,+∞) such that (∀s ∈ {1, . . . , S}) (∀t ∈ (0,+∞))
0 6 ωs(t) 6 ω, where ωs is defined by (8).
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Note that Assumption 2(i) is quite standard and, in particular, it is satisfied
for least squares data fidelity terms. Assumptions 2(ii) and 2(iii) hold for
a wide class of penalty functions, e.g. ℓ2 - ℓ1 convex functions constituting
smooth approximations of the ℓ1 norm [17], or ℓ2 -ℓ0 nonconvex functions
providing smooth approximations of the ℓ0 cost [18].

The following property is the cornerstone of the proposed approach:

Proposition 1 Under Assumptions 1 and 2, for every x′ ∈ C
N ,

(∀x ∈ C
N ) F (x) 6 Θ(x,x′) (15)

where

Θ(x,x′) = F (x′)+2 Re
{
∇F (x′)H(x− x′)

}
+

1

2
(x−x′)HA(x′)(x−x′) (16)

and
A(x′) = µHHH + V Diag

(
b(x′)

)
V H + εIN (17)

with µ ∈ [2β,+∞) (the matrix V and the function b being defined by (10)
and (11), respectively).

The proof of this result is based on properties established for functions of
real variables. It is provided in A.

2.4 Subspace algorithm

Subspace algorithms consist of building a sequence (xk)k∈N according to the
following iterative scheme:

(∀k ∈ N) xk+1 = xk + Dkuk, (18)

where Dk ∈ C
N×M is a subspace search matrix and uk ∈ C

M is a multi-
variate step-size minimizing u 7→ F (xk +Dku) over C

M . The MM strategy
replaces the minimization of the original function F over the subspace with
successive minimizations of quadratic tangent majorants

u 7→ Θ(xk + Dku,xk + Dku
′) (19)

over C
M for some vector u′ ∈ C

M . The expression of Θ in Proposition 1
shows that, for a given u′, an optimal solution is

û = u′ − 2(DH
k A(xk + Dku

′)Dk)†DH
k ∇F (xk + Dku

′) (20)

where (·)† denotes the pseudo-inverse operation. The resulting complex-
valued MM subspace method for solving Problem (1) is given in Algorithm 1.

When the number M of search directions is small, the computation cost
of the multivariate step-size û in (20) is reduced since DH

k A(xk +Dku
′)Dk

is an M ×M matrix. Thus, the complexity of an iteration of the proposed
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Algorithm 1 (complex-valued 3MG)

x0 ∈ C
N ,

For all k = 0, . . .

u0
k = 0,

For all j = 1, . . . , J⌊
B

j−1
k = DH

k A(xk + Dku
j−1
k )Dk,

u
j
k = u

j−1
k − 2(Bj−1

k )†DH
k ∇F (xk + Dku

j−1
k ),

xk+1 = xk + Dku
J
k .

algorithm is quite reasonable. When M = 2, a typical choice for the search
directions is Dk = [−∇F (xk),xk −xk−1] for every k ∈ N (by setting x−1 =
0), which leads to the so-called MM Memory Gradient algorithm.

Algorithm 1 takes a form similar to the one developed in the real case
in [17]. Note however that, due to the linear transform property (37), the
function defined on R

2M associated with (19) is

ũ 7→ Θ̃(x̃k + D̃kũ, x̃k + D̃kũ
′) (21)

where

D̃k =

[
Dk,R −Dk,I

Dk,I Dk,R

]
. (22)

This means that Algorithm 1 can be viewed as a way of expressing in a
concise manner [18, Algorithm (3.16)] for minimizing F̃ over R

2N , when the
subspace search matrix at iteration k is D̃k. Therefore, it corresponds to
2M search directions in R

2N .

2.5 Convergence analysis

First of all, let us study the existence of a minimizer of function F by making
the following assumption:

Assumption 3 One of the following three conditions holds:

(i) Φ and (ψs)16s6S are lower bounded functions and ε > 0.

(ii) (a) Φ is coercive (i.e. lim‖z‖→+∞ Φ(z) = +∞).

(b) (ψs)16s6S are lower bounded functions.

(c) H is injective.

(iii) (a) Φ is coercive.

(b) For every s ∈ {1, . . . , S}, ψs is coercive.
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(c) The nullspace KerH of H and the orthogonal space
(span{v1, . . . ,vS})⊥ to the space delineated by {v1, . . . ,vS} are
such that

KerH ∩ (span{v1, . . . ,vS})⊥ = {0}. (23)

Then, we have the following property:

Proposition 2 Under Assumptions 1 and 3, Problem (1) has a solution.

For the sake of completeness, the proof is given in B although it is based on
standard optimization results.

Let us now focus our attention on the convergence properties of the algo-
rithm. A useful tool for analyzing the convergence of iterative optimization
algorithms, especially in the nonconvex case, is the Kurdyka- Lojasiewicz
inequality [4, 5, 6].

Assumption 4 F satisfies the Kurdyka- Lojasiewicz inequality i.e. for ev-
ery x̂ ∈ C

N and every bounded neighborhood B of x̂, there exist three con-
stants κ ∈ (0,+∞), ζ ∈ (0,+∞) and θ ∈ [0, 1) such that

‖∇F (x)‖ > κ|F (x) − F (x̂)|θ, (24)

for every x ∈ B such that |F (x) − F (x̂)| 6 ζ (with the convention 00 = 0).

This inequality is satisfied by many standard functions which are used in
practice, in particular semi-algebraic functions. We recall that function F is
semi-algebraic if its graph {(x, F (x)) | x ∈ C

N} can be expressed as a finite
union of subsets defined by a finite number of polynomial inequalities (in the
real and imaginary parts of its complex variables). Semi-algebraic functions
constitute a wide class of functions. The semi-algebraicity property is stable
through standard operations (sum, product, composition,...).

Due to the relation highlighted in Section 2.4 between the complex-
valued 3MG algorithm and its real-valued counterpart, the following result
can be deduced from [18, Theorem 4.5]:

Proposition 3 Assume that there exists α ∈ (0,+∞) such that (∀x ∈ C
N )

A(x)−αIN is a positive semi-definite matrix. Then, under Assumptions 1-
4, Algorithm 1 generates a sequence (xk)k∈N converging to a critical point
of F . Moreover,

(
F (xk)

)
k∈N

is a nonincreasing sequence and (xk)k∈N has
a finite length in the sense that

+∞∑

k=0

‖xk+1 − xk‖ < +∞. (25)

Some comments can be made about this result:
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Remark 2

(i) We recall that x̂ is a critical point of F if ∇F (x̂) = 0. If F is a
convex function, Proposition 3 therefore guarantees the convergence of
Algorithm 1 to a global minimizer of F .

(ii) The positivity assumption on A(x) for x ∈ C
N is not restrictive since

(17) shows that it is satisfied in particular under one of the following
conditions:

(a) ε > 0.

(b) H is injective.

(c) Assumption 3(iii)(c) is satisfied and there exists ω ∈ (0,+∞)
such that (∀s ∈ {1, . . . , S}) (∀t ∈ (0,+∞)) ωs(t) > ω.

It is interesting to note that, in the nonconvex case, the convergence to a
global minimizer of F is also guaranteed locally:

Proposition 4 Suppose that the assumptions of Proposition 3 hold and let
(xk)k∈N be a sequence generated by Algorithm 1. There exists η ∈ (0,+∞)
such that, if

F (x0) 6 η + inf F, (26)

then (xk)k∈N converges to a solution to Problem (1).

The proof of this result is given in C.

3 Application to Parallel MRI

3.1 Model

In parallel MRI, a set of measures (dℓ)16ℓ6L is acquired from L coils. These
measures are related to the original full FOV (Field Of View) image ρ ∈ C

K

(the image being columnwise reshaped as a vector) corresponding to a spin
density. More precisely, the observation model reads:

(∀ℓ ∈ {1, . . . , L}) dℓ = ΣFSℓρ + wℓ (27)

where

• for every ℓ ∈ {1, . . . , L}, Sℓ ∈ C
K×K is a diagonal matrix modelling

the sensitivity of the coils,

• F ∈ C
K×K is a 2D discrete Fourier transform,

• Σ ∈ {0, 1}⌊K

R
⌋×K is a subsampling matrix (here, ⌊·⌋ designates the

rounding operation).



10

The ⌊K/R⌋ lines of matrix Σ are thus distinct lines of a K × K identity
matrix, R being the so-called subsampling or acceleration factor.

The noise vectors (wℓ)16ℓ6L are realizations of random vectors (Wℓ)16ℓ6L,
which can be assumed mutually statistically independent. In addition, for
every ℓ ∈ {1, . . . , L}, Wℓ is a circular complex Gaussian vector with zero-
mean and covariance matrix Λℓ.

3.2 Variational formulation

In order to provide an estimate of ρ, we propose to solve the following
optimization problem:

minimize
ρ∈E

L∑

ℓ=1

‖ΣFSℓρ− dℓ‖2
Λ

−1

ℓ

+

S∑

s=1

ψs(|fH
s ρ|) (28)

where

• (∀ℓ ∈ {1, . . . , L}) ‖ · ‖2
Λ

−1

ℓ

= (·)HΛ−1
ℓ (·),

• (∀s ∈ {1, . . . , S}) ψs : R → R and fs ∈ C
K ,

• E is a vector subspace corresponding to the range of a matrix E ∈
C
K×N with N 6 K.

The first sum in the above objective function corresponds to the negative-
log-likelihood of the noise, while the second one consists of a regularization
term. By choosing for (fs)16s6S a frame of CK (possibly redundant when
S > K) the above function introduces a so-called frame analysis penaliza-
tion [25]. The vector space E serves to incorporate some prior knowledge
about the target image. More specifically, we aim at setting to zero the
image areas corresponding to the background. This can be performed by
choosing E to be an interpolation matrix (i.e. the transpose of a subsam-
pling matrix as defined above) the zero lines of which are associated with
pixels belonging to the image background. Such an area can be identified
from the sensitivity matrices.

By setting ρ = Ex (with x ∈ C
N ) in Problem (28) and adding an elastic

net penalization term, the problem can be recast as:

minimize
x∈CN

L∑

ℓ=1

‖ΣFSℓEx− dℓ‖2
Λ

−1

ℓ

+

S∑

s=1

ψs(|fH
s Ex|) +

ε

2
‖x‖2, (29)
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where ε ∈ [0,+∞). It thus appears as an instance of Problem (1) where

H =



H1

...
HL


 , (∀ℓ ∈ {1, . . . , L}) Hℓ = Λ

−1/2
ℓ ΣFSℓE, (30)

y =



y1
...
yL


 , (∀ℓ ∈ {1, . . . , L}) yℓ = Λ

−1/2
ℓ dℓ, (31)

(vs)16s6S = (EHfs)16s6S, (32)

cs ≡ 0, and Φ is the squared Hermitian norm of C
Q with Q = L⌊K/R⌋.

Thus, Φ satisfies Assumption 2(i) with β = 1.

3.3 Algorithm implementation

Due to the form of the minimized criterion, the proposed complex-valued
3MG algorithm is applicable to the reconstruction problem under consider-
ation, provided that functions (ψs)16s6S allow Assumptions 1-4 to be satis-
fied.

Note that, in order to facilitate the implementation of the algorithm,
some recursive relations can be exploited. For simplicity, consider the version
of 3MG with J = 1 and, for every k ∈ N, Dk = [−∇F (xk),xk − xk−1].

1

Then, at each iteration k ∈ N of the algorithm, by dropping the superscript
j, we have

(∀ℓ ∈ {1, . . . , L}) ok+1,ℓ
∆
= µ1/2Hℓ(xk+1 − xk)

= µ1/2HℓDkuk

= [mk,ℓ,ok,ℓ]uk, (33)

where µ ∈ [2,+∞) and

(∀ℓ ∈ {1, . . . , L}) mk,ℓ = −µ1/2Hℓ∇F (xk). (34)

This shows that, for every ℓ ∈ {1, . . . , L}, vector ok+1,ℓ can be computed in a
recursive manner, thus allowing to reduce the corresponding computational
cost (per iteration) to 2Q multiplications instead of NQ. A similar recursion

holds for ok+1,L+1
∆
= V H(xk+1 − xk), that is

ok+1,L+1 = [mk,L+1,ok,L+1]uk, (35)

where mk,L+1 = −V H∇F (xk).
At each iteration k of Algorithm 1, these relations allow us to compute

matrix Bk in an efficient manner. This results in the implementation of
3MG in Algorithm 2. Note that each iteration of the algorithm requires the
computation of two analysis and one synthesis frame transforms.

1Larger values of J were actually observed to lead to slower convergence.
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Algorithm 2 (3MG for PMRI reconstruction)

x0 ∈ C
N ,x−1 = 0,

For all k = 0, . . .



zk,1

...
zk,L


 =



Λ

−1/2
1 ΣFS1

...

Λ
−1/2
L ΣFSL


Exk,

∇F (xk) = EH
L∑

ℓ=1

SH
ℓ F

HΣ⊤Λ
−1/2
ℓ (zk,ℓ − yℓ) + ∇Ψ(xk) +

ε

2
xk,



mk,1

...
mk,L


 = −µ1/2



Λ

−1/2
1 ΣFS1

...

Λ
−1/2
L ΣFSL


E∇F (xk),

mk,L+1 = −V H∇F (xk),
If k = 0⌊

ok,ℓ = µ1/2zk,ℓ, ℓ ∈ {1, . . . , L},
ok,L+1 = V Hxk,

Bk =

L∑

ℓ=1

[
mH

k,ℓ

oH
k,ℓ

]
[mk,ℓ,ok,ℓ] +

[
mH

k,L+1

oH
k,L+1

]
Diag

(
b(xk)

)
[mk,L+1,ok,L+1]

+εDH
k Dk,

uk = 2B†
k

[
‖∇F (xk)‖2

−(xk − xk−1)
H∇F (xk)

]
,

xk+1 = xk + Dkuk,
ok+1,ℓ = [mk,ℓ,ok,ℓ]uk, ℓ ∈ {1, . . . , L + 1}.
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3.4 Simulation results

In our experiments, the reconstruction of sagittal views of a 3D anatomical
image is performed from noisy parallel MRI data generated according to
Model (27). The reference image ρ is defined as the reconstruction result
from a non-accelerated acquisition (R = 1) obtained with a 3 Tesla Siemens
Trio magnet having an L = 32-channel receiver coil (no parallel transmission
has been used). The data have been acquired using a 3D T1-weighted MP-
RAGE pulse sequence at a 1×1×1.1 mm3 spatial resolution (TE = 2.98 ms,
TR = 2300 ms, TI = 900 ms, flip angle = 9◦, slice thickness = 1.1 mm,
transversal orientation, FOV = 256 × 240 × 176 mm3, TR between two RF
pulses: 7.1 ms, antero-posterior phase encoding). A resampling has been
performed in the k-space by zero-filling in order to facilitate the use of fast
wavelet decompositions, so leading to a 256 × 256 image size (K = 2562).
Estimates of the sensitivity matrices (Sℓ)16ℓ6L are also available. Fig. 1
illustrates the influence of a subset of these matrices.

Different sampling patterns with R = 5 are considered for Σ, namely
regular line subsampling, uniform random, radial, spiral, with π density
[15], and polynomial decay of various orders [32] (see Fig. 2). Note that
the search for continuous trajectories going through the samples of some
distributions has been investigated in some recent works [14, 16, 33].

Finally, a circular complex Gaussian white noise with diagonal covariance
matrices Λℓ = σ2I⌊K/R⌋, ℓ ∈ {1, . . . , L}, is added to the data. The noise
variance is here equal to σ2 = 6 × 109.

Problem (28) is solved by using Algorithm 2. The convex semi-algebraic
ℓ2 - ℓ1 penalization function:

(∀t ∈ R) ψs(t) = λs(
√

1 + t2/δ2 − 1) (36)

is employed, for every s ∈ {1, · · · , S}, with λs ∈ [0,+∞) and δ ∈ (0,+∞).
Unless specifically mentioned, in the presented results, (fs)16s6S (S = K)
corresponds to an orthonormal wavelet basis using Symmlet filters of length
10 and the decomposition is performed over 3 resolution levels. For sim-
plicity, the parameters (λs)16s6S are equal to the same constant λ for the
detail coefficients, while they have been set to zero for the approximation
ones. The parameters λ and δ are tuned from one of the slices (No 82)
so as to maximize the Signal-to-Noise Ratio (SNR) between the reference
image and its reconstructed version (λ = 6 × 10−3 and δ = 1700). Fig. 3
illustrates the sensitivity of the approach with respect to the choice of these
parameters. For the other slice examples (No 70 and No 121), the values of
the parameters determined for the first slice are used.

Table 1 allows us to evaluate the reconstruction performance of 3MG
algorithm in terms of SNR for the different sampling patterns. One can ob-
serve that sampling strategies based on low-order polynomial distributions
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Figure 1: Effects of the sensitivity matrices in the spatial domain in the absence
of subsampling (R = 1): the moduli of the images corresponding to (Sℓρ)16ℓ68 are
displayed for 8 channels out of 32.
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Figure 2: Different types of subsampling.
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Figure 3: SNR vs λ when δ = 1700 (left) and SNR vs δ when λ = 6× 10−3 (right)
for slice No 82 using Poly1 sampling, 3MG algorithm and ℓ2 - ℓ1 regularization.
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Figure 4: Moduli of the original images ρ (left column) and the reconstructed
ones (right column) for slices No 70 – SNR = 21.15 dB, No 82 – SNR = 19.96 dB
and No 121 – SNR = 20.89 dB (from top to bottom) using Poly1 sampling, 3MG
algorithm and ℓ2 - ℓ1 regularization.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Figs (a)-(f) display zooms centered on the cerebellum area ([150 −
230, 100 − 180]) for the moduli of the original slice No 82 (a) and reconstructed
images using Poly1 (b, e, f), Poly5 (c) or Regular (d) subsampling, 3MG algorithm,
ℓ2 - ℓ1 regularization (a-d) or ℓ2 - ℓ0 (G) regularization (e, f), an othonormal wavelet
basis (a-e) or an overcomplete wavelet frame (f).
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Table 1: SNR values for various subsampling strategies using 3MG algorithm with
ℓ2 - ℓ1 regularization.

SNR (dB)
Sampling pattern Slide No 70 Slice No 82 Slice No 121

Poly1 21.15 19.96 20.89
Poly2 20.32 19.34 20.07
Poly3 19.43 18.53 19.18
Poly4 18.47 17.50 18.35
Poly5 17.67 16.95 17.52
Uniform 21.02 19.71 20.68
π 20.46 19.31 20.08
Radial 20.27 19.20 20.01
Spiral 20.35 19.17 20.03
Regular 19.18 18.13 18.66

as well as on the uniform or π distributions lead to higher quality recon-
structed images. The moduli of the reconstructed images for Poly1 sampling
strategy are displayed in Fig. 4. Visual comparisons between different sam-
pling schemes are also shown in Figs 5 (a)-(d). Note that these results are
obtained by setting ε to 0 in (29), since we observed that a nonzero value
does not yield a practical improvement of the algorithm performance.

We compare the proposed algorithm with state-of-the-art optimization
methods. The first one is the proximal primal-dual method first proposed
in [13] and further extended in [24, 40] (here designated by CPCV). The
second one is another proximal primal-dual approach, namely the Mono-
tone+Lipschitz Forward-Backward-Forward (M+LFBF) algorithm which was
proposed in [23] (see also [8] for extensions). The last competitor is the cele-
brated Alternating-Direction Method of Multipliers (ADMM) [2, 3, 7]. The
matrix inversion involved at each iteration of this algorithm is performed
using a few subiterations of a linear conjugate gradient method. All the
comparisons are made in terms of computation time for Matlab R2011b

codes running on a single-core Intel i7-2620M CPU@2.7 GHz with 8 Gb of
RAM, in the case of Poly1 sampling strategy.

One of the potential advantages of CPCV, M+LFBF and ADMM is
their ability to tackle convex optimization problems involving nonsmooth
functions. In our experiments, they are thus employed to solve Problem
(29) in the case when an ℓ1 sparsity promoting regularization is used, that
is, for every s ∈ {1, . . . , S}, ψs = λ′s| · | with λ′s ∈ [0,+∞). Similarly to the
ℓ2 - ℓ1 penalization, the parameters (λ′s)16s6S have been chosen equal to the
same constant λ′ for the detail coefficients, while they have been set to zero
for the approximation ones. Although the ℓ2 - ℓ1 function can be viewed
as a smoothed approximation of the ℓ1 norm, it is worth noticing that the
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Table 2: Reconstruction results for several optimization and regularization strate-
gies using two different decompositions (Poly1 subsampling pattern).

Decomposition Algorithm Penalization SNR (dB)
Slice No 70 Slice No 82 Slice No 121

M+LFBF ℓ1 21.15 19.96 20.89
CPCV ℓ1 21.15 19.96 20.89
ADMM ℓ1 21.15 19.96 20.89

Wavelet basis 3MG ℓ2 - ℓ1 21.15 19.96 20.89
3MG ℓ2 - ℓ0 (H) 21.09 20.05 20.97
3MG ℓ2 - ℓ0 (W) 21.21 20.17 21.10
3MG ℓ2 - ℓ0 (G) 21.33 20.27 21.20

Redundant 3MG ℓ2 - ℓ1 21.67 20.46 21.39
wavelet frame 3MG ℓ2 - ℓ0 (G) 22.10 20.94 21.84

resulting SNR values reported in Table 2 are identical for both functions.
Moreover, as illustrated by Figs 6 and 7, the proposed algorithm benefits
from a faster convergence. Note that in the latter plot showing the con-
vergence profile of the iterates, the asymptotic solution x̂ was precomputed
using a large number of iterations.

A further advantage of 3MG is that it allows the use of nonconvex pe-
nalizations. We indicate results obtained for some ℓ2 - ℓ0 penalizations,
namely

• Hyberbolic tangent (H) potential: (∀t ∈ R) ψs(t) = λs tanh
(

t2

2δ2

)

• Welsch potential (W): (∀t ∈ R) ψs(t) = λs

(
1 − exp(− t2

2δ2
)
)

• Geman-McClure (G) potential: (∀t ∈ R) ψs(t) = λs(2δ
2 + t2)−1t2,

where λs ∈ [0,+∞) and δ ∈ (0,+∞). For these functions, the Kurdyka- Lo-
jasiewicz inequality is satisfied. In addition, it was shown in [18, Proposi-
tion 2] that the corresponding global minimizer tends to a minimizer of an
ℓ0 penalized criterion when δ → 0. In Table 2, it can be noticed a quantita-
tive gain in terms of reconstruction quality with respect to the convex case
although the visual improvements are hardly noticeable (see Fig. 5(e)).

Finally, we evaluate the improvements resulting from the use of an un-
decimated wavelet decomposition carried out over 3 resolutions, still using
Symmlet 10 filters. According to our observations, the reconstructed im-
ages appear to be a little bit less noisy (see Fig. 5(f)) than when a wavelet
basis representation is used. However, it must be pointed out that the
reconstruction quality improvement comes at the expense of an increased
computational load: the convergence time is about five time larger in our
experiments.
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Figure 6: SNR evolution as a function of computation time using 3MG, M+LFBF
[23], CPCV [13, 24] and ADMM for slice No 82.
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Figure 7: Error ‖xk − x̂‖ (in log scale) as a function of computation time using
3MG, M+LFBF [23], CPCV [13, 24] and ADMM for slice No 82.
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4 Conclusion

In this paper, we have proposed an extension of the 3MG algorithm for
the solution of large-size optimization problems involving functions of com-
plex variables. We have shown that the proposed algorithm is guaranteed
to converge under weak assumptions. Its good numerical performance has
been demonstrated in the context of complex-valued image reconstruction
from actual parallel MRI data. In particular, comparisons with recent op-
timization methods have demonstrated the good convergence properties of
our algorithm. In addition, we have shown that both convex and nonconvex
penalty functions can be considered. We would like to emphasize that the
proposed approach makes it possible to employ more sophisticated (non nec-
essarily tight) frame representations [29] than the wavelet decompositions
used in our experiments. Moreover, our method can deal with any kind
of subsampling strategy. Thus, it can handle sampling schemes currently
under development so as to better take into account physical constraints of
PMRI systems [14, 16].
Finally, although the focus in this work has been put on PMRI reconstruc-
tion, the proposed algorithm is applicable to a range of inverse problems
involving complex-valued data, e.g. spectrum analysis problems [20, 21].

A Proof of Proposition 1

Assumption 2(i) is equivalent to say that the function Φ̃ of real variables
associated with Φ has a (2β)-Lispchitzian gradient. It can be noticed that,
for every x ∈ C

N and z ∈ C
Q

z = Hx ⇔ z̃ = H̃x̃ (37)

where

H̃ =

[
HR −HI

HI HR

]
. (38)

We recall here that HR ∈ R
Q×N (resp. HI ∈ R

Q×N) denotes the real (resp.
imaginary) part of the matrix H. We have thus

(∀x ∈ C
N ) Φ(Hx− y) = Φ̃(H̃x̃− ỹ). (39)

In addition, for every s ∈ {1, . . . , S} and x ∈ C
N ,

ψs(|vH
s x− cs|) = ψs(‖Ṽsx̃− c̃s‖) (40)

where

Ṽs =

[
v⊤
s,R v⊤

s,I

−v⊤
s,I v⊤

s,R

]
(41)
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and c̃s = [cs,R, cs,I ]
⊤. We deduce then from [18, Lemma 1] that, for every

x′ = (x′n)16n6N ∈ C
N ,

(∀x ∈ C
N ) F (x) = F̃ (x̃) 6 Θ̃(x̃, x̃′) (42)

where

Θ̃(x̃, x̃′) = F̃ (x̃′) + ∇F̃ (x̃′)⊤(x̃− x̃′) +
1

2
(x̃− x̃′)⊤Ã(x̃′)(x̃− x̃′) (43)

Ã(x̃′) = µH̃⊤H̃ +

S∑

s=1

bs(x
′)Ṽ ⊤

s Ṽs + εI2N (44)

and, for every s ∈ {1, . . . , S}, bs(x
′) = ωs(‖Ṽsx̃− c̃s‖) = ωs(|vH

s x− cs|). We
have then

Θ̃(x̃, x̃′) = F̃ (x̃′) + ∇F̃ (x̃′)⊤(x̃− x̃′) + µ
(
H̃(x̃− x̃′)

)⊤
H̃(x̃− x̃′)

+
1

2

S∑

s=1

bs(x
′)
(
Ṽs(x̃− x̃′)

)⊤
Ṽs(x̃− x̃′) +

ε

2
‖x̃− x̃′‖2. (45)

By using the fact that

(
∀(a,a′) ∈ (CN )2

)
Re{aHa′} = ã⊤ã′, (46)

and by employing the definition of the Wirtinger derivative in (4) and the
linear transform property in (37)-(38), we get

∇F̃ (x̃′)⊤(x̃− x̃′) = 2Re{∇F (x′)H(x− x′)} (47)
(
H̃(x̃− x̃′)

)⊤
H̃(x̃− x̃′) = Re

{(
H(x− x′)

)H
H(x− x′)

}

= (x− x′)HHHH(x− x′) (48)

and

S∑

s=1

bs(x
′)
(
Ṽs(x̃− x̃′)

)⊤
Ṽs(x̃− x̃′)

=
S∑

s=1

bs(x
′)
(
vH
s (x− x′)

)∗
vH
s (x− x′)

= (x− x′)H
( S∑

s=1

bs(x
′)vsv

H
s

)
(x− x′)

= (x− x′)HV Diag
(
b(x′)

)
V H(x− x′). (49)

The majorization in (15) and (16) readily follows.
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B Proof of Proposition 2

Proof : Under Assumptions 3(iii)(a) and 3(iii)(b),

(z, t) =
(
z, (ts)16s6S

)
7→ Φ(z − y) +

S∑

s=1

ψ(|ts − cs|)

is coercive. Assumption 3(iii)(c) means that KerH∩Ker(V H) = {0}, which
is equivalent to the fact that HHH +

∑S
s=1 vsv

H
s = HHH + V V H is in-

vertible. Consequently, if ‖x‖ → +∞ and
[
z

t

]
=

[
H

V H

]
x (50)

then
‖z‖2 + ‖t‖2 = xH(HHH + V V H)x > λmin‖x‖2 → +∞, (51)

where λmin > 0 is the smallest eigenvalue of HHH + V V H. This allows us
to deduce that F is coercive. In addition, according to Assumption 1, F is
a continuous function. The existence of a minimizer then follows from [37,
Theorem 1.9].

The same conclusion holds under Assumption 3(i) or 3(ii) which also
ensures the coercivity of F .

C Proof of Proposition 4

According to Proposition 2, there exists x̂ ∈ C
N such that F (x̂) = inf F .

Furthermore, we have shown in B that F is coercive. This implies that, for
every υ ∈ (0,+∞),

B = {x ∈ C
N | F (x) 6 F (x̂) + υ} (52)

is a bounded set. Thus, according to Assumption 4, there exist κ ∈ (0,+∞),
ζ ∈ (0,+∞) and θ ∈ [0, 1) such that (24) holds for every x ∈ B such that
|F (x) −F (x̂)| 6 ζ. Since x̂ is a global minimizer of F , the latter inequality
is equivalent to F (x) 6 F (x̂) + ζ. Let us now set η = min{υ, ζ}.

According to Proposition 2,
(
F (xk)

)
k∈N

is a nondecreasing sequence.
Then, if (26) is satisfied, (∀k ∈ N) F (xk) 6 F (x̂) + η and

‖∇F (xk)‖ > κ|F (xk) − F (x̂)|θ. (53)

In addition, Proposition 2 allows us to claim that (xk)k∈N converges to a
critical point x̂′ of F . It can be deduced from the continuity of F that
F (xk) → F (x̂′) and the closedness property of the gradient implies that
∇F (xk) → ∇F (x̂′) = 0. Hence, by taking the limit in (53), we get

κ|F (x̂′) − F (x̂)|θ = 0 (54)

which shows us that F (x̂′) = F (x̂), that is the limit x̂′ of (xk)k∈N is a global
minimizer of F .
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