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and nanophotonics. They can be obtained by various techniques, in particular, by pulsed laser deposition [10–12].
Usually, the sizes of nanoobjects in the array are roughly identical, which makes it possible to use the macroscopic
size of the array to study nanoobject properties through determining several first eigenfrequencies of the system
consisting of a nanotube (nanocrystal) array and a substrate. In [8, 9] we showed that the eigenfrequencies of a
single nanoobject can be determined from the examined spectrum of the “integrated (array–substrate) system” and
from the spectrum of the substrate.

The method of experimental determination of several first eigenfrequencies of nanoobjects is based on the
following idea [8, 9]. The spectrum of eigenfrequencies of the system consisting of an array of nanotubes (nanocrys-
tals) and a substrate is conventionally divided into two parts. One part of the spectrum refers to the spectrum of
eigenfrequencies of the nanoobjects. The substrate remains almost motionless as the nanoobjects oscillate at these
frequencies. The other part of the spectrum of the “integrated system” is the spectrum of eigenfrequencies close
to the eigenfrequencies of the substrate without nanoobjects. At these frequencies, the amplitude of vibrations
of nanoobjects is much smaller than the amplitude of substrate oscillations. Such a division of the spectrum of
the “integrated system” into two parts corresponding to the substrate and nanoobject spectra is only possible for
several first dozens of eigenfrequencies; at high frequencies, the shapes of natural vibrations are even more compli-
cated. The above-listed properties of the system consisting of an array of nanotubes (nanocrystals) and a substrate
were revealed in a theoretical study reported in [8, 9]. Based on the theoretical data, two modifications of the
experimental procedure for determining the eigenfrequencies of nanoobjects can be proposed.

Modification 1. Several first eigenfrequencies of the system consisting of an array of nanotubes (nanocrystals)
and a substrate are measured. Eigenfrequencies of an identical substrate without nanoobjects are measured. The two
spectra are compared. The frequencies in the spectrum of the “integrated system ”which are close to the frequencies
of the substrate without nanoobjects are of no interest. The frequencies in the spectrum of the “integrated system”
having no matches in the substrate spectrum are the frequencies of the nanoobjects.

Modification 2. The resonant frequencies of the “integrated system” are measured by registering the elec-
tromagnetic response of nanoobjects (this is possible because many nanoobjects possess piezoelectric properties).
Then, the amplitude of substrate vibrations is measured (this can be done because the substrate is a macroobject).
The resonant frequencies at which the amplitude of substrate oscillations equals zero are the eigenfrequencies of the
nanoobjects.

In the case of vertically aligned nanotubes, the method developed in [8, 9] makes it possible to evaluate the
eigenfrequencies corresponding to the first flexural eigenmodes of the nanotube. From these frequencies, the flexural
rigidity of the nanotube as a rod can be determined. For determining the flexural rigidity of the nanofilm from
which the nanotube has been rolled, one has to know the eigenfrequencies of nanotubes lying on the substrate.

Methods for fabricating various nanoobjects from multilayer semiconductor nanofilms (GaAs, InAs, GeSi,
etc.), including nanotubes aligned horizontally on the substrate, were developed in [13–15]. Effective physical
properties of such films essentially depend on their structure and on the residual stress. Semiconductor nanofilms
and nanostructures fabricated from such nanofilms are of interest in electronics. Such nanostructures cannot be
designed without taking into account mechanical stresses acting in these structures, which are responsible to a large
extent for the durability and mechanical strength of nanostructures.

The purpose of the present study was to extend the method of determining the eigenfrequencies of nanoob-
jects [8, 9] to the case of nanotubes attached horizontally to the substrate.

1. Analytical Treatment of a Model Problem. We consider a model consisting of a horizontal plate
acting as a substrate and N cylindrical shells lying on the plate, which are treated as nanoobjects (Fig. 1). The
plate of thickness H occupies the domain 0 ≤ x ≤ L, 0 ≤ z ≤ l. All shells have identical sizes (i.e., length l,
radius R, and thickness h) and are equidistantly aligned in the z direction with a gap a = L/(N + 1). We assume
all the shells to be rigidly attached to the plate.

With the use of the tensor calculus, the governing equations of the linear shell theory can be written as [16–18]

∇ · T + ρF = ρü, ∇ · M + T× + ρL = 0,

T · a +
1
2

(M · · b)c = 4A · · ε, M t = 4C · ·κκ,

ε =
1
2

((∇u) · a + a · (∇u)t), κκ = (∇ϕ) · a +
1
2

((∇u) · · c)b,

(1)

ϕ = −n × (∇u) · n, b = −∇n, c = −a × n.
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Fig. 1. System of parallel nanotubes lying on a substrate.

Here T and M are the force and moment tensors, T× is the vector invariant of the tensor T , ρ is the surface density,
u is the displacement vector, ϕ is the rotation vector, ε is the tension–shear strain tensor in the tangent plane, κ is
the flexure-torsion strain tensor, 4A and 4C are the rigidity tensors of the shell, n is the unit vector normal to the
shell surface, a is the unit vector in the tangent plane, and ∇ is the surface gradient operator.

1.1. Flexural Vibrations of a Cylindrical Shell. To describe the shell kinematics, we use a cylindrical
coordinate system (r, θ, z) with r ≡ R. The tension–shear rigidity tensor of the shell in the tangent plane 4A is
proportional to the shell thickness h, and the flexure-torsion rigidity tensor 4C is proportional to h3. For h/R � 1
and h/L � 1, therefore, the shell can be assumed inextensible. Hence, we assume the tension–shear strain tensor
to be zero in the tangent plane:

ε = 0. (2)

In this case, we have 4A → ∞, the elasticity relation becomes meaningless, and the force tensor in the tangent
plane T ·a is determined directly from the dynamics equations with regard for the equation of strain compatibility

Δ(tr (T · a)) − (1 + ν)∇ · (∇ · (T · a)) = 0

(ν is Poisson’s ratio) The flexure-torsion rigidity tensor 4C is

4C = D
(1 + ν

2
cc +

1 − ν

2
(a2a2 + a4a4)

)
.

Here D is the flexural rigidity of the shell, a2 = eθeθ − ezez, and a4 = eθez + ezeθ.
The displacement and rotation vectors can be decomposed with respect to the basis of the cylindrical

coordinate system:

u = uθeθ + uzk + urn, ϕ = ϕθeθ + ϕzk.

Apparently, in the absence of tension–shear strains, all quantities that characterize the stress–strain state of the
shell depend only on the polar angle θ. Moreover, Eq. (2) leads to the following kinematic relations:

duθ

dθ
+ ur = 0, uz = 0, ϕθ = 0, ϕz =

1
R

(
uθ − dur

dθ

)
. (3)

The main variable is chosen to be the displacement along the normal to the shell surface ur. It can be easily shown
that the problem of free oscillations of the shell (1) in the absence of tension–shear strains reduces to the differential
equation

D

ρR4

d2

dθ2

( d2

dθ2
+ 1

)2

ur +
( d2

dθ2
− 1

)
ür = 0. (4)

The solutions of Eq. (4) have the following structure:

ur(θ, t) = Ur(θ) eiωt, Ur(θ) =
3∑

j=1

[
Aj sin (λjθ) + Bj cos (λjθ)

]
. (5)
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Here Aj and Bj are arbitrary constants and λj are the roots of the characteristic equation

λ6 − 2λ4 + (1 − Ω2)λ2 − Ω2 = 0,

where Ω = ω
√

ρ/D R2 is the dimensionless eigenfrequency whose determination requires the boundary conditions
to be formulated.

According to Eq. (5), the function Ur(θ) involves six constants. These constants are determined from the
boundary conditions, which are the conditions of periodicity

uθ(0, t) = uθ(2π, t), ur(0, t) = ur(2π, t), ϕz(0, t) = ϕz(2π, t), (6)

and from the shell-substrate matching conditions formulated below.
1.2. Flexural Vibrations of the Plate. The equations of motion for the plate are

∇ · T +
N∑

n=1

Fnδ(x − na) = ρ∗ü, ∇ · M + T× +
N∑

n=1

Lnδ(x − na) = 0, (7)

where δ(x) is the Dirac delta-function, Fn and Ln are the force and the moment acting on the plate from the side
of the nth cylindrical shell:

Fn = eθ · T (n)
∣∣∣
θ=0

, Ln = eθ · M (n)
∣∣∣
θ=0

. (8)

Assuming the plate to be inextensible and ignoring the in-plane shear strain, we bring the equations of
motion (7) and (8) to the form

CΔΔw + ρ∗ẅ = −
N∑

n=1

(
T

(n)
θr

∣∣∣
θ=0

δ(x − na) + M
(n)
θz

∣∣∣
θ=0

δ′(x − na)
)
. (9)

Here w is the plate flexure (displacement in the y direction), and C and ρ∗ are the flexural rigidity of the plate and
its surface density. To close the system, we supplement it with the kinematic conditions of shell matching with the
plate

u(n)
r

∣∣∣
θ=0

= −w
∣∣∣
x=na

, u
(n)
θ

∣∣∣
θ=0

= 0, ϕ(n)
z

∣∣∣
θ=0

= −∂w

∂x

∣∣∣
x=na

(10)

and with the boundary conditions for the plate

∂2w

∂z2

∣∣∣
z=0

= 0,
∂2w

∂z2

∣∣∣
z=l

= 0,
∂3w

∂z3

∣∣∣
z=0

= 0,
∂3w

∂z3

∣∣∣
z=l

= 0 (11)

in the case of free plate edges at z = 0, l and

w
∣∣∣
x=0

= 0, w
∣∣∣
x=L

= 0,
∂w

∂x

∣∣∣
x=0

= 0,
∂w

∂x

∣∣∣
x=L

= 0 (12)

in the case of clamped edges at x = 0, L.
As we consider the free oscillations of the system, we seek for the solution of Eq. (9) in the form

w(x, z, t) = W (x, z) eiωt . (13)

Substituting the expression for flexure (13) and the expressions for the forces and moments

T
(n)
θr

∣∣∣
θ=0

= 2Rρω2
3∑

j=1

A
(n)
j

λj(λ2
j − 1)

, M
(n)
θz

∣∣∣
θ=0

=
D

R2

3∑
j=1

(λ2
j − 1)B(n)

j

obtained by integrating the equations of motion of the shells into Eq. (9), we obtain the equation

CΔΔW − ρ∗ω2W = −
N∑

n=1

3∑
j=1

( 2Rρω2

λj(λ2
j − 1)

A
(n)
j δ(x − na) +

D(λ2
j − 1)
R2

B
(n)
j δ′(x − na)

)
. (14)

It should be noted that all strains of the plate dependent on the z coordinate induce tension-compression
strains in the shells attached to the plate. In the context of the present study, these vibrations of the shells are of
no interest. Below, we consider the plate motions with all quantities characterizing its stress–strain state depending
on the x coordinate only. Such motions are admitted by the differential equation (14) and by the boundary
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conditions (11). Obviously, with the condition l � L satisfied, several first natural frequencies of plate oscillations
are caused by strains depending on the x coordinate only. Hence, instead of Eq. (14), we consider a simpler equation

CW IV
x − ρ∗ω2W = −

N∑
n=1

3∑
j=1

( 2Rρω2

λj(λ2
j − 1)

A
(n)
j δ(x − na) +

D(λ2
j − 1)
R2

B
(n)
j δ′(x − na)

)
. (15)

To proceed with further analysis, we have to determine now the constants A
(n)
j and B

(n)
j (n = 1, . . . , N).

According to Eqs. (3), (5), (6), and (10), the systems of equations from which these constants can be determined
have the form

3∑
j=1

[
A

(n)
j sin (2πλj) − B

(n)
j

(
1 − cos (2πλj)

)]
= 0,

3∑
j=1

B
(n)
j = −W

∣∣∣
x=na

,

3∑
j=1

1
λj

A
(n)
j = 0,

3∑
j=1

1
λj

[
A

(n)
j cos (2πλj) − B

(n)
j sin (2πλj)

]
= 0, (16)

3∑
j=1

λj

[
A

(n)
j

(
1 − cos (2πλj)

)
+ B

(n)
j sin (2πλj)

]
= 0,

1
R

3∑
j=1

λjA
(n)
j = W ′

x

∣∣∣
x=na

.

As all the cylindrical shells are assumed to be identical, the determinants of all N systems (16) are also identical. It
is only the right sides of systems (16) that differ from each other, because they involve displacements and derivatives
of displacements at different points of the plate. Let us consider two cases.

1. The determinant of systems (16) equals zero. In this case, systems (16) have solutions only if their right
sides vanish:

W
∣∣∣
x=na

= 0, W ′
x

∣∣∣
x=na

= 0. (17)

As the size of the shells modeling the nanoobjects is much smaller than the size of the plate modeling the substrate
and the number of shells is sufficiently large, the shells can be assumed to be continuously distributed over the plate
surface. Then the discrete conditions (17) can be replaced by the continuous conditions

W (x) ≡ 0, W ′(x) ≡ 0. (18)

With conditions (18) satisfied, the plate remains motionless. The vibration frequencies determined from the condi-
tion of the zero determinant of systems (16) correspond to oscillations of cylindrical shells lying on a rigid base.

Thus, a spectrum of eigenfrequencies of nanoobject vibrations can be identified within the spectrum of the
“integrated system.” At these frequencies, the substrate remains motionless.

2. The determinant of systems (16) is other than zero. In this case, systems (16) have unique solutions.
The structure of these solutions is such that all constants A

(n)
j and B

(n)
j are linear combinations of the quantities

W |x=na and W ′
x|x=na. It can easily be shown that

3∑
j=1

2A
(n)
j

λj(λ2
j − 1)

= G1(Ω)W
∣∣∣
x=na

+ G2(Ω)RW ′
x

∣∣∣
x=na

,

3∑
j=1

(λ2
j − 1)B(n)

j = G3(Ω)W
∣∣∣
x=na

+ G4(Ω)RW ′
x

∣∣∣
x=na

.

(19)

With allowance for Eq. (19), Eq. (15) becomes

CW IV
x − ρ∗ω2W = −

N∑
n=1

[
ρω2

(
G1R W + G2R

2W ′
x

)
δ(x − na) + D

(G3

R2
W +

G4

R
W ′

x

)
δ′(x − na)

]
. (20)

If the number of cylindrical shells is sufficiently high, the shells can be assumed to be continuously distributed over
the plate surface. By averaging the right side of Eq. (20), we can simplify the mathematical formulation of the
problem and reduce it to the equation
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W IV
x − ND

CLR2
(G3W

′
x + G4RW ′′

x ) − ω2 ρ∗
C

(
W − NRρ

L ρ∗
(G1W + G2RW ′

x)
)

= 0. (21)

If the terms due to the presence of the cylindrical shells have small values, the eigenfrequencies of the “integrated
system” are close to the eigenfrequencies of the plate without shells. In order of magnitude, these terms can be
estimated as

ND

CLR2
G3W

′
x ∼ N

( h

H

)3(L

R

)2

W IV
x ,

ND

CLR
G4W

′′
x ∼ N

( h

H

)3 L

R
W IV

x ,

NRρ

Lρ∗
G1W ∼ N

h

H

R

L
W,

NR2ρ

Lρ∗
G2W

′
x ∼ N

h

H

(R

L

)2

W.

(22)

Estimates (22) show that the small value of the dynamic terms due to the presence of the shells is defined exclusively
by the small size of the shells in comparison with the plate size. For the force factors due to the presence of the
shells to be small, the shell thickness should be much smaller than the plate thickness, and the linear size of the
plate and that of the shells should be less different. In fact, the governing factor here is the low value of the quantity
N(h/H)3(L/R)2.

Two substantial distinctions between the behavior of systems with horizontally and vertically aligned nan-
otubes deserve mentioning [8]. In the case of vertically aligned nanotubes [8], the equation similar to Eq. (21)
contains only even derivatives with respect to the spatial coordinates; in addition, in the case of vibrations with
frequencies close to the eigenfrequencies of substrate oscillations, the amplitudes of nanoobject vibrations turn out
to be much smaller than those of the substrate. This is not the case for horizontally aligned nanotubes. Physically,
this difference arises because the horizontally attached nanotubes in the present work change the effective rigidity
of the plate, in contrast to [8] where the vertically aligned distributed nanotubes were assumed to exert no effect
on the effective flexural rigidity of the plate. Thus, a plate with horizontally aligned nanotubes, which possesses
such effective properties, is anisotropic and inhomogeneous.

2. Numerical Analysis of Natural Vibrations. An analytical study of the spectrum of vibrations of
the “integrated system” would be hardly possible without the assumptions made above for the strain state of the
system of interest. We use the three-dimensional theory and the finite-element method to study a system of several
parallel nanotubes lying on a substrate. As the materials of interest (GaAs, InAs, GeSi, etc.) possess piezoelectric
properties [19, 20], such a system as a whole can be considered as a composite piezoelectric solid. In the electrostatic
approximation and in the absence of mass forces, the governing equations of electroelasticity have the form [21–23]

ρü = ∇ · σ, ∇ · D = 0,

σ = C · · ε − e · E, D = e · ε + ε · E, (23)

ε =
1
2

(∇u + ∇ut), E = ∇ϕ,

where u is the displacement vector, E is the electric field intensity vector expressed in terms of the vector potential ϕ,
σ is the stress tensor, D is the electric induction vector, ε is the strain tensor, ∇ is the spatial operator of the
gradient, ρ is the density, C is the rigidity matrix, and e and ε are the piezoelectric and dielectric constants.

The boundary conditions for Eqs. (23) are set as follows. Let the body surface Γ consist of two parts,
Γ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅. The displacements u0 are set on the boundary Γ1 and the forces f are set on the
boundary Γ2. The boundary conditions are defined by the formulas

u
∣∣∣
Γ1

= u0, n · σ
∣∣∣
Γ2

= f . (24)

The mechanical boundary conditions (24) are supplemented by the boundary conditions associated with electrical
properties. Let Γ = Γ3 ∪ Γ4 (Γ3 ∩ Γ4 = ∅), with the electrical potential ϕ0 set on Γ3 and the surface charge q set
on Γ4. Then, we obtain

ϕ
∣∣∣
Γ3

= ϕ0, n · D
∣∣∣
Γ4

= q. (25)

For the natural vibrations to be analyzed, a solution of the homogeneous boundary-value problem (23)–(25)
is sought (at f = 0 and q = 0) in the form u = U eiωt, etc.

296



Fig. 2 Fig. 3

Fig. 2. Eigenmodes localized in nanotubes.

Fig. 3. Eigenmode corresponding to the first flexural mode of the substrate.

The modal analysis of a three-dimensional system consisting of a plate and parallel nanotubes attached to
this plate was performed with the ANSYS software package.

A series of computational experiments was performed with the number of nanotubes varied from one to ten
and different geometries of the system (substrate-to-nanofilm thickness ratio, nanotube radius-to-substrate length
ratio, etc.). Calculations for different types of substrate fixation were also performed. All components of the system
of interest were modeled with linearly elastic three-dimensional anisotropic solids. For the tubes, finite elements
corresponding to a piezoelastic material were employed. The calculations were performed for materials commonly
used in fabrication of substrates and nanotubes [13–15]. The properties of the materials were borrowed from [19, 20].
The calculations showed that, irrespective of the type of substrate fixation, the spectrum of the “integrated system”
displayed the same behavior; namely, the problem parameters could be chosen such that the eigenfrequencies of
the nanotubes and those of the substrate could be identified in the overall spectrum. The latter finding provides
numerical support to the theoretical analysis performed above.

Some results calculated for a free substrate with three nanotubes are presented below. The substrate was a
sapphire crystal, and the physical characteristics of gallium arsenide were adopted for the nanotubes. The geometric
parameters of nanotubes were taken from [13, 14].

Some eigenmodes of vibrations are shown in Figs. 2–5. Figure 6 shows the distribution of eigenfrequencies
in the order of their numbers. For the chosen values of parameters, only three modes of natural vibrations of the
substrate were found to be within the frequency range under consideration. Figure 2 shows the eigenmodes that
correspond to natural vibrations localized in the nanotubes. The eigenfrequencies of these vibrations correspond to
the first eigenfrequency of the nanotube attached to the substrate with a certain portion of its side surface. These
frequencies correspond to several first points in Fig. 6. The substrate is seen to be almost motionless in such modes,
whereas the nanotubes perform oscillations making the cross-sectional shape of the nanotubes elliptical. Thus, these
first frequencies allow the flexural rigidity of the film forming the nanotubes to be evaluated.

Figure 3 shows the eigenmode of vibrations of the nanotube corresponding to the first flexural mode of
substrate vibrations. In contrast to the data of [8, 9], where the vertically aligned nanoobjects with such modes
moved almost as absolutely rigid solids, this mode of vibrations in the case considered corresponds to nanotube
deformation, which is fairly natural if the character of nanotube attachment and their lower rigidity are taken into
account.

The next modes of natural vibrations refer to a more complex pattern of motion. Figure 4 shows the mode
in which the substrate oscillates at the third eigenfrequency, while the nanotubes oscillate at a frequency typical
of high-frequency vibrations of a single nanotube. This mode corresponds to the last point in Fig. 6. Since the
nanotubes distributed over the substrate change not only the mass of the system as a whole but also the effective
rigidity of the system, it is not only the shape of vibrations that undergoes changes in the case of the modes shown
in Fig. 4; in addition, the eigenfrequencies of the “integrated system” differ from the eigenfrequencies of both the
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Fig. 4 Fig. 5

Fig. 4. High-frequency eigenmode corresponding to integrated substrate and nanotube vibrations.

Fig. 5. Eigenmode localized in a single nanotube.

n

w

1 3 5 7 9 11 13 15 17 19 21 23 25 27

1
4

6

8

10

2

2

Fig. 6. Eigenfrequencies of the “integrated system” ω versus their number n: 1) eigenfrequencies at
which notable substrate motions are observed; 2) eigenfrequencies at which the substrate is almost
motionless, while the nanotubes perform oscillations.

substrate and the nanotube. For the first frequencies, the eigenfrequencies of the “integrated system” agree well
with the corresponding partial eigenfrequencies of the substrate and the single nanotube.

A numerical analysis also predicts the presence of natural vibrations localized predominantly in one nanotube
(Fig. 5). It is worth noting that such vibrations are less interesting from the viewpoint of their experimental
detection. In this respect, of greater interest are the localized modes of vibrations in which all nanotubes or the
majority of nanotubes oscillate, especially in the case of measurement of electric fields excited in the vicinity of the
system (the field strength is higher in the case of a system of oscillating nanotubes). Hence, the effectiveness of the
proposed method increases with increasing number of nanotubes on the substrate.

Thus, like in [8, 9], we managed to choose geometric parameters of the “integrated system,” such that the
overall spectrum could be divided into eigenfrequencies caused by natural vibrations of nanotubes and eigenfrequen-
cies of the substrate. In contrast to the vertical array of nanocrystals considered previously, the eigenfrequencies of
the substrate and nanotubes here are integrated to a greater extent. The possibility of identifying several first eigen-
frequencies of the nanotube from the overall spectrum depends more on the system geometry and its mechanical
properties. Thus, in the problem under consideration, computer modeling enables optimization of the experimental
scheme to be used in actual tests.

Like the data in Sec. 1, the results of the present numerical analysis allow us to conclude that modifications
proposed in the introduction make it possible to detect natural vibrations of an “integrated system” consisting of
a substrate and piezoactive nanotubes lying on this substrate.
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3. Conclusions. A method for experimental determination of the flexural rigidity of nanoshells is devel-
oped. This method comprises the following steps: 1) excitation of nanoshell vibrations with the shell strain being
due to material bending only, the tension and shear being zero or negligibly small; 2) measurement of the first
eigenfrequencies of nanoshell oscillations; 3) calculation of the flexural rigidity of the nanoshell from its eigenfre-
quencies. The main difficulty in practical implementation of the method is the measurement of the eigenfrequency
of a single nanoobject.

A method is proposed which enables determination of the first eigenfrequencies of a single nanotube through
comparisons of the spectrum of eigenfrequencies of a system consisting of an array of nanoobjects and a substrate
with the spectrum of the substrate. The method proved to be most effective and accurate if the first eigenfrequencies
of the nanoobjects are comparable with the first eigenfrequencies of the substrate. Thus, the governing factor in using
this method is a good choice of proportions between the geometric and physical characteristics of the nanoobjects
and the substrate.

The main restriction on application of the method is the frequency range of measuring instruments. If the
eigenfrequencies of nanoobjects are too high, such frequencies cannot be registered. It should be noted simultane-
ously that identical semiconductor nanofilms can be used to create structures of different shapes, such as tubes or
cylindrical helical shells [13]. Apparently, such structures have identical flexural rigidities, and the eigenfrequencies
of helical shells are notably lower than the eigenfrequencies of tubes [24]. The relation between the eigenfrequencies
of helical shells and their length is the same as in the case of rods; hence, by increasing the length of helical shells,
one can shift their eigenfrequencies to the range of working frequencies of measuring instruments.

This work was supported by the Russian Foundation for Basic Research (Grant Nos. 05-01-00094-a and
06-01-00452-a), by the Foundation for Supporting National Science, by the Program of the President of the Russian
Federation for Supporting the Leading Scientific Schools (Grant No. NSh-4518.2006.1), and by the Program of the
President of the Russian Federation for Supporting Young Scientists (Grant No. MD-4829.2007.1).
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