Polynomial bounds for small matrices - Archive ouverte HAL
Article Dans Une Revue Linear and Multilinear Algebra Année : 2014

Polynomial bounds for small matrices

Résumé

The polynomial bound of a Hilbert space operator $T$ is the quantity $K(T) = \sup\{\| p(T)\|\ p \ \hbox{\rm is \ a \ polynomial\ mapping \ the \ unit \ disc \ into\ itself} \}$. One of the Halmos "Ten problems" asked whether $K(T) < \infty$ implies that $T$ is similar to a contraction. This question was settled in the negative by Pisier after many years. The finite-dimensional version of the problem asks to what extent $K(T)$ can be exceeded by $M(T) = \infty\{\|S\|\|S^{-1}\| STS^{-1}$ is a contraction$\}$. We establish some general criteria for the equality $K(T) = M(T)$ and show that $K(T) < M(T)$ can occur even $ 3 x 3$ for matrices.
Fichier non déposé

Dates et versions

hal-00829546 , version 1 (03-06-2013)

Identifiants

Citer

Michel Crouzeix, Frank Gilfeather, John Holbrook. Polynomial bounds for small matrices. Linear and Multilinear Algebra, 2014, 62 (5), pp.614-625. ⟨10.1080/03081087.2013.777439⟩. ⟨hal-00829546⟩
181 Consultations
0 Téléchargements

Altmetric

Partager

More