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We present a facial recognition technique based on facial sparse representation. A dictionary is learned from data, and patches
extracted from a face are decomposed in a sparse manner onto this dictionary. We particularly focus on the design of dictionaries
that play a crucial role in the final identification rates. Applied to various databases and modalities, we show that this approach
gives interesting performances. We propose also a score fusion framework that allows quantifying the saliency classifiers outputs
and merging them according to these saliencies.

1. Introduction

Face recognition is a topic which has been of increasing inter-
est during the last two decades due to a vast number of pos-
sible applications: biometrics, video surveillance, advanced
HMI, or image/video indexation. Although considerable
progress has been made in this domain, especially with the
development of powerful methods (such as the Eigenfaces
or the Elastic Bunch Graph Matching methods), automatic
face recognition is not enough accurate in uncontrolled envi-
ronments for a large use. Many factors can degrade the per-
formances of facial biometric system: illumination variation
creates artificial shadows, changing locally the appearance of
the face; head poses modify the distance between localized
features; facial expression introduces global changes; artefacts
wearing, such as glasses or scarf, may hide parts of the face.

For the particular case of illumination, a lot of work has
been done on the preprocessing step of the images to reduce
the effect of the illumination on the face. Another approach is
to use other imagery such as infrared, which has been showed
to be a promising alternative. An infrared capture of a face is

nearly invariant to illumination changes and allows a system
to process in all the illumination conditions, including total
darkness like night.

While visual cameras measure the electromagnetic
energy in the visible spectrum (0.4–0.7𝜇m), sensors in the
IR respond to thermal radiation in the infrared spectrum
(0.7–14.0𝜇m). The infrared spectrum can mainly be divided
into reflected IR (Figure 1(b)) and emissive IR (Figure 1(c)).
Reflected IR contains near infrared (NIR) (0.7–0.9 𝜇m)
and short-wave infrared (SWIR) (0.9–2.4 𝜇m). The ther-
mal IR band is associated with thermal radiation emitted
by the objects. It contains the midwave infrared (MWIR)
(3.0–5.0 𝜇m) and long-wave infrared (LWIR) (8.0–14.0𝜇m).
Although the reflected IR is by far the most studied, we use
thermal long-wave IR in this study.

Despite the advantages of infrared modality, infrared im-
agery has other limitations. Since a face captured under this
modality renders its thermal patterns, a temperature screen
placed in front of the face will totally occlude it. This phe-
nomenon appears when a subject simply wears glasses. In this
case, the captured face has two black holes, corresponding to
the glasses, which is far more inconvenient than in the visible
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(a) Visible (b) Reflected IR (c) Emissive IR

Figure 1: A face captured under (a) visible spectrum, (b) reflected IR spectrum, and (c) emissive IR spectrum respectively.

modality. Moreover, thermal patterns can change due to
external conditions such asweather. However, since these two
modalities do not present the same advantages/limitations,
using information of both can decrease the disadvantages of
each and globally enhance the identification rates [1].

Two main schemes are considered in a biometric system
[2].

(i) The verification (of authentication) aims to compare
the unknown face with the one of a claimed identity.
It is a one-to-one comparison scenario, which often
involves a threshold step to accept/reject the probe.

(ii) The identification aims to find an unknown identity
(probe) among a set of known identities (gallery).

Most of the approaches that have been proposed in the
literature for the face recognition problem are built with the
same three-step scheme:

(i) preprocessing of the images,
(ii) extraction of features from faces,
(iii) classification of these features.

Preprocessing Step.The first step intends to locate a face, resize
it if necessary, and apply some algorithms to enhance the
quality of the images. Illumination can also be corrected to
simplify the features extraction.

Features Extraction Step. This second step consists in extract-
ing salient features from faces. This strategy can globally be
divided into two main approaches:

(i) the local approaches, which act locally on the face by
extracting salient interest points (like eyes ormouths),
and combine them into a global model;

(ii) the global approaches which often rely on a projection
of the whole image onto a new low-dimensional space
(these methods are then named Subspace methods).

Numerous local approaches based on geometrical features
have been proposed in the literature [3–7].

The most popular local approach, named Elastic Bunch
Graph Matching (EBGM) [8], consists in modeling the sali-
ent features (like nose, mouth, etc.) by a graph. To each
node is associated a so-called jet which encodes the local
appearance around the feature obtained via aGabor filter.The
classification of a probe graph involves then a specific algo-
rithm that takes into account a geometric similarity measure
and the appearance encoded by the jets.

The main advantages of these local approaches are their
ability to deal with pose, illumination, or facial expression
variations. Nevertheless, these approaches require a good lo-
calization of the discriminant features, which can be a difficult
task in case of degradations of the image.

The global approaches often take the face image as a
whole and perform a statistical projection of the images onto
a face space. The most popular technique called Eigenfaces
(first used by Turk and Pentland [9]) is based on a principal
components analysis (PCA) of the faces. It has also been
applied to infrared faces by Chen et al. [10]. Another popular
technique is the Fisherfaces method based on a Linear
Discriminant Analysis (LDA), which divides the face images
into classes according to the Fisher criterion. It has been early
applied by Kriegman et al. [11].

Note that the nonlinear versions Kernel-PCA andKernel-
LDA have been, respectively, applied in [12, 13].

The main drawback of the global approaches is their
sensitivity to the illumination changes for the visible light
modality and the thermal distribution of the face over
time for the infrared modality. When the illumination (or
the thermal distribution) of a face changes, its appearance
undergoes a nonlinear transformation, and due to the linear
projection often performed by these global approaches, the
classification can fail. In the case of nonlinear projections, the
choice of the kernel is critical and is a nontrivial problem.
Moreover, as pointed out in [14], nonlinear dimensionality
reduction methods can perform poorly on natural datasets.
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Classification Step. The last step consists in classifying the ex-
tracted features. There are plenty of methods, simple ones
based on distances between features via classification algo-
rithms such as the Nearest Neighbor [15], others based on
learningmethods such as support vectormachine [16] or neu-
ral networks [17]. However, these last methods have a signifi-
cant drawback: they learn to recognize a fix number of identi-
ties, that is, classes. As the number of classes may vary by
adding new identities to the system, for example, the design
of the learning machine has to be updated and the learning
recomputed. More recently, a seminal paper [18] has intro-
duced a novel classification method relying on parsimony.
The algorithm, named SRC for Sparse Representation-based
Classification, decomposes in a sparsemanner a probe feature
vector 𝑦 ∈ R𝑚 onto a dictionary 𝐴 ∈ R𝑚×𝑛 composed of
the 𝑛 feature vectors of the gallery. As it mainly relies on a
sparse decomposition problem, this algorithm requires 𝑚 <

𝑛 in order to have an underdetermined system and a unique
sparsest solution. More recent algorithms that use sparse
decompositions have been proposed in the literature, such as
robust sparse [19], group sparse [20], or structure sparse [21].
To ensure 𝑚 < 𝑛, these algorithms first proceed to a dimen-
sion reduction via PCA (Eigenfaces) or other dimensionality
reduction techniques. In our work, the extracted features of
a face image are sparse and have a higher dimension than
the images. Since the number of vectors of the gallery is
less than the dimension of the vectors, such sparse-based
classification algorithms cannot be used. Moreover, these
classification algorithms make the assumption that a probe
face lies onto a subspace specific to each individual. This
assumption involves many faces of the same individual in
the gallery, which is not the case of the databases used in
our experiments. Finally, these algorithms are unusable in
case of a one-to-one face comparison since the number of
columns of 𝐴 is 1. For all these reasons, this paper focuses
on the feature extraction andmakes use of the simpleNearest
Neighbor algorithm as classifier.

This paper only considers the identification scheme.
Assuming that the searched identity is always in the gallery,
we focus on the rank-1 identification rates.

Contributions.This paper is a direct extension of our previous
work [22]. A parameter exploration on the main parameters
that pilot the dictionary design is presented. These learned
dictionaries play a crucial role in the efficiency of the
extracted features and then in the final identification rates.We
propose also a framework for the fusion of different matchers
at the score level. Based on a saliency function, it weights the
outputs of a classifier without any assumptions.

The rest of the paper is organized as follows: Section 2 is
dedicated to the proposed sparse features extraction method.
Section 3 is devoted to the proposed score-based fusion
method. Experimental results on various face datasets are
presented in Section 4. Finally we present our conclusions
and further work in Section 5.

2. Features Extraction

In this section, we present the proposed methodology for the
features extraction and the fusion steps. After a brief recall of

notations and definitions of the sparse decomposition theory,
we detail the proposed scheme for the face features extraction
and the fusion framework.

2.1. Notations andDefinitions. An atom is an elementary basis
element of a signal or an image. A collection of atoms (Φ

𝑖
) is

called a dictionaryΦ.
In this paper, the considered dictionaries are 𝑁 × 𝑀

matrices where the𝑀 columns represent the atoms (of size
𝑁) of the dictionary. When 𝑟 = 𝑀/𝑁 > 1, the dictionary
is overcomplete (with redundancy term 𝑟). In such a case,
given a signal x ∈ R𝑁, the equation x = Φ𝜆 leads to an
underdetermined system with an infinite set of solutions for
𝜆.

2.1.1. Sparse Decomposition. Given a signal 𝑥 ∈ R𝑁 (or an
image of size√𝑁×√𝑁), we are looking for its decomposition
according to a dictionary Φ composed of 𝑀 vectors 𝜙

𝑚

recovering R𝑁. Let us define first the L
𝑝
norm of a vector

x

‖x‖
𝑝
= (∑

𝑖

𝑥𝑖


𝑝

)

1/𝑝

(1)

with the particular case of the “L
0
norm” (defined as the

number of nonzero elements of x):

‖x‖
0
= ∑

0≤𝑖<𝑁

𝑎
𝑖
, where 𝑎

𝑖
= {

1, if 𝑥
𝑖
̸= 0,

0, otherwise. (2)

When the dictionary is over-complete (𝑀 > 𝑁), there are an
infinite set of coefficients 𝛼

𝑖
that may be used to decompose

the signal onto the dictionary:

x =
𝑀

∑

𝑚=1

𝛼
𝑚
𝜙
𝑚
. (3)

In the sparse decomposition framework, the optimal solution
is the one with the minimum of non-zeros elements (or the
maximum of zeros elements). In this case, the problem is
written:

min
𝜆

‖𝜆‖
0

such that x =
𝑀

∑

𝑚=1

𝜆
𝑚
𝜙
𝑚
. (4)

Unfortunately, this problem is NP-hard.
Two approaches can be used to tackle this problem.

(i) The first one consists in a modification of the penalty
term (‖x‖

0
) such that the problem becomes convex.

Also known as Basis Pursuit (BP) [23] when turning
the “L

0
” into an L

1
norm, this approach gives

equal results to the original problem under certain
conditions (see [24] for more details). The problem
becomes then

min
𝜆

(



x −
𝑀

∑

𝑚=1

𝜆
𝑚
𝜙
𝑚



2

2

+ 𝜇‖𝜆‖
1
) . (5)
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Numerous algorithms have been developed for this
problem resolution (also known under the name
Lasso for Least Absolute Shrinkage and Selection
Operator) based on the interior point method [25] or
on iterative thresholding [26].

(ii) The second method usually used in the community
is based on greedy algorithms that build iteratively
a sparse representation of a signal [27]. The class of
Matching Pursuit (MP) algorithms selects at each iter-
ation the atom that minimizes the residual between
the signal and the reconstruction obtained at the
last iteration. More details on the well-known variant
Orthogonal Matching Pursuit can be found in [28].

2.1.2. Dictionary Learning. An overcomplete dictionary Φ
that leads to sparse representations can be chosen as a pre-
defined set of functions adapted to the signal. For certain
class of signals, this choice is appealing because it leads to
simple and fast algorithms for the evaluation of the sparse
decomposition. This is the case for overcomplete wavelets,
curvelets, ridgelets, bandelets, Fourier transforms and more.
Due to the morphological diversity contained in a natural
image, it is often preferable to concatenate such basis to obtain
the dictionary. Another way of constructing the dictionary is
to learn it directly from data.

Many methods have been developed to perform this task
such as those based on maximum likelihood [29–31], the one
named Modeling of Optimal Directions (MOD) [32, 33], or
those based on the a posteriori maximum [34, 35].

In this paper, we use the K-SVD algorithm proposed in
[36] based on a singular value decomposition, which can be
viewed as a generalization of the 𝐾-means, hence its name.
Starting from a random initialization of the atoms, learning
the dictionary proceeds in an iterative way, alternating the
two steps:

(i) minimize (5) with respect to x keeping the dictionary
elements 𝜙

𝑚
constant;

(ii) update the atoms 𝜙
𝑚
of the dictionary with x found at

previous step.

2.2. Features Extraction Methodology. In this paper, we use
sparse decompositions as features for the face identification.
An appealing way would be to directly decompose faces
onto a dictionary learned with a set of faces. This scheme is
however impractical in practice for the following reasons.

(i) As a good sparse decomposition involves an overcom-
plete dictionary, one has to dispose of a dictionary
whose size is at least equal to the signal dimension.
As the signal (an image) is high-dimensional, the
dictionary would be huge, and the decomposition
would be very slow.

(ii) Because of the morphological diversity contained in
the images of faces, a sparse decomposition would be
more efficient when processed on a learned dictio-
nary, which involves a number of training samples at
least equal to the size of the dictionary.

≈ −0.11x

−0.05x

+0.03x

−0.01x

−0.01x

+0x other atoms

Figure 2: Schematic view of the feature extraction process.

For example, with images sizes of 40 × 50 (which is
small for the face recognition task), the minimum number
of atoms as well as the minimum number of training samples
would be 2000. Moreover, within the K-SVD algorithm, one
has to apply a singular value decomposition on matrices
whose height is equal to the atoms dimension, which can
be impractical in case of high-dimensional data. For these
reasons, the sparse decomposition is processed on parts of the
images.

Once the preprocessing is applied, the sparse features
extraction of a face image acts in 3 steps:

(i) the image is splitted into 𝑛 nonoverlapping square
patches of size Γ × Γ;

(ii) each patch is independently decomposed into a sparse
vector x

𝑘
(𝑘 ∈ {1 ⋅ ⋅ ⋅ 𝐾}) onto a dictionary Φ by

minimizing (5);
(iii) the sparse vectors x

𝑘
are concatenated to form the

final sparse feature vector x of the face.

A schematic view of the feature extraction process is shown
in Figure 2.

In a first time, the dictionary used for the decomposition
of the patches is learned from data with the algorithms OMP
for the sparse code computation and K-SVD to update of the
atoms.

In a second time, the features are computed with the
algorithm FISTA proposed in [37] based on a two-step
iterative soft-thresholding, which is a fast algorithm that
solves (5).
Size of the Features.The size of the features depends on several
parameters:

(i) the size Γ of the patches,
(ii) the redundancy 𝑟 of the dictionary,
(iii) the size 𝑤 × ℎ of the image.

Since each extracted patch is decomposed onto the dictionary
(composed of 𝑚 atoms), and the feature vector is the
concatenation of the 𝑝 extracted patches, the size of a feature
vector is computed as

size = 𝑝 × 𝑚, (6)

where𝑚 = 𝑟 × Γ
2 and 𝑝 = ⌈(𝑤/Γ) × (ℎ/Γ)⌉. If 𝑤 (or ℎ) is not

divisible by Γ, the image is padded with zero. This padding
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(a) 𝜙1
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(b) 𝜙2
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(c) 𝜙3

Figure 3: Distribution of the outputs of a classifier in blue. Associated saliency function in red.

has no effect on the recognition behavior since all the images
are padded in the same way.

The dimension of the resulting feature vectors may be
quite high (higher than the image dimension) but are very
sparse, that is, containing few nonzero entries.

3. Score Fusion

Given classifiers that yield score rankings as results, we con-
sider a fusion framework that weights the outputs of these
classifiers without any assumptions.

Assuming that classifiers do not have the same accuracy,
we propose a merging methodology that uses measures of
saliency computed dynamically for each classifier.This fusion
scheme can be divided into three steps:

(i) the scores produced by different classifiers may be
heterogeneous, so a normalization step is required.
Several normalization methods exist such as linear,
logarithmic, or exponential normalizations;

(ii) a function of saliency is computed onto a score
distribution according to some statistical measure,
and a unique saliency value is attributed to each score;

(iii) final scores are computed as a weighted sum of the
scores according to the saliencies.

Given a probe sample 𝐼, the distances to the labeled
samples of the gallery G are computed giving a distribution
of distancesD:

D = {𝑑
𝑘
} ,

𝑑
𝑘
=
𝐼 − G

𝑘

 ,

(7)

where G
𝑘
is a feature vector of a gallery sample. After a

normalization of D, its mean 𝜇 and standard deviation 𝜎 are
computed.

A saliency 𝑠
𝑘
is then given to each 𝑑

𝑘
according to a

function depending on 𝜇 and 𝜎:

𝑠
𝑘
= 𝜙
𝜇,𝜎
(𝑑
𝑘
) . (8)

In this work, we propose three saliency functions 𝜙1, 𝜙2,
and 𝜙3 (Figure 3) that are of the form
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𝜙
1

𝜇,𝜎
(𝑑
𝑘
) =

1

𝜎√2𝜋
(1 − 𝑒

−(1/2)((𝑑𝑘−𝜇)/𝜎)
2

) ,

𝜙
2

𝜇,𝜎
(𝑑
𝑘
) = 𝜎√2𝜋

1

𝑒−(1/2)((𝑑𝑘−𝜇)/𝜎)
2
,

𝜙
3

𝜇,𝜎
(𝑑
𝑘
) = (1 +

1

2
tanh( 1

𝜎
(𝑑
𝑘
− 𝜇)))

−1

.

(9)

This fusion scheme works with any 2-class classifiers
that give a distance (or a similarity) measure as output. The
saliency functions allow weighting the output of a classifier
according to its response on a set of inputs (the gallery),
without any ad hoc assumptions.

Note that the proposed functions deal with distances
measures, but other functions can easily be used with simi-
larity measures.

Saliency functions 𝜙1 and 𝜙2 tend to highly weight an
uncommon measure, even if it is high (i.e., a probe sample
far from any gallery samples). 𝜙3 specializes this idea bymore
penalizing higher distances than common distances and then
favors small distances.

For a given classifier, this procedure then gives a distri-
bution of distances which are weighted by their respective
saliencies.

Given several classifiers 𝐶
𝑖
, the final fusion distances are

computed as a weighted sum of the outputs:

𝑑
𝑘
=
∑
𝑖
𝑑
𝑘𝑖
× 𝑠
𝑘𝑖

∑
𝑖
𝑠
𝑘𝑖

∀𝑘. (10)

As for the single-classifier experiments, the classification
is performed via the Nearest Neighbor classifier.

4. Experiments and Results

In this section, we detail the experiments of both feature
extraction performance and score fusion on different public
databases. In all the experiments, the images are cropped to
ensure that the eyes are roughly at the same position and
scaled to the size 110 × 90.

4.1. Extended Yale B Database. The extended Yale B database
is composed of 2414 frontal-face images of 38 individuals [38].
Faces were captured under various laboratory-controlled
lighting conditions. This experiment is mainly dedicated to
show the effectiveness of the approach in term of recognition
rates. The main parameters that pilot the dictionary learning
are fixed to:

𝑟 = 2,

Γ = 10,

𝑛OMP = 5.

(11)

With these parameters, the size of a face feature vector is 11×
9 × 2 × 10

2

= 19800.
The dictionary is learned with a small number of images

of the database. Figure 4 shows the atoms of the learned

Figure 4: Learned atoms for Γ = 10 (patches size: 10 × 10) and
𝑛OMP = 5 sorted by variance.

dictionary. One can see that some atoms encode low-
frequency patterns, while others are more oriented edge
selective. The database is then divided into disjoint training
and testing parts (as in [18]), and face images are decomposed
onto the dictionary following the methodology explained
in Section 2.2. For the experiments, we randomly select 8,
16, and 32 images per individuals for training. Randomly
dividing the database ensures that the results do not depend
on a favorable choice of the training set. The mean rank-1
identification rates over 10 different executions are shown in
Table 1. Identification rates are competitive with those given
in [18], although our method performs the classification with
a simple Nearest Neighbor classifier.

4.2. FERET Database. The FERET database [39] is a well-
known database composed of thousands of individuals. We
focus on two subsets named fa andfb:

(i) fa contains 994 images of 994 individuals (one image
per individual) and is used as gallery;

(ii) fb contains 992 images of 992 individuals (one image
per individual) and is used as probe.

This experiment is mainly dedicated to evaluate the proposed
score fusion methodology.

To this end, we extract simple random features from
faces. Linear random projections are generated by Gaussian
randommatrices, hence the name of this technique Random-
Faces [40]. A random projection matrix is extremely efficient
to generate. Its entries are independently sampled from a
zero-mean normal distribution, and each row is normalized
to unit length.

In this experiment, we generate three different random
projection matrices to map the faces to three random sub-
spaces of dimension 50, 100, and 150.

Various normalization techniques and fusion methods
have been implemented for comparison purposes. Normal-
ization techniques used are the MinMax (MM), the Decimal
Scaling (DeSc), the Z-Score (ZS), the Median Absolute Devi-
ation (MAD), and the Hyperbolic Tangent (Tanh) techniques
(see [41] for more details on these normalization techniques).
Fusion methods used are classical ones of the literature [42]:
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Table 1: Main results. (a) Identification rates on the extended Yale
B database. (b) Identification rates for each random space on the
FERET database and a comparison between different normalization
and fusion techniques (best score per column in bold). (c) Identifi-
cation rates on the Notre-Dame database obtained by score fusion
of visible and infrared modalities (best score per column in bold).

(a)

Extended Yale B database
Number of images 8 16 32
Identification rate % 88.39 95.74 98.04

(b)

FERET database
Random subspace dimension 50 100 150

Identification rate % 67.43 73.28 74.69
MM DeSc ZS MAD Tanh

PROD 68.95 77.92 77.92 77.92 78.12
SUM 78.02 73.18 78.12 78.12 78.12
MAX 77.21 67.64 0.10 0.10 75.30
MIN 68.95 73.48 74.19 74.29 74.19
𝜙
1 78.32 64.51 78.22 78.22 78.22
𝜙
2 76.00 13.91 74.79 74.39 74.79
𝜙
3 78.42 73.08 78.42 78.42 78.42

(c)

Notre-Dame database
MM DeSc ZS MAD Tanh

PROD 83.12 83.12 83.12 83.12 83.12
SUM 92.32 78.52 93.17 93.18 87.41
MAX 89.86 75.40 84.99 83.99 87.41
MIN 83.12 87.41 92.82 91.99 75.47
𝜙
1 85.86 11.19 91.80 91.15 57.77
𝜙
2 92.83 73.50 93.02 92.11 87.41
𝜙
3 93.47 51.71 94.06 93.88 87.99

the Product rule (PROD), the Sum rule (SUM), the Max
rule (MAX), and the Min rule (MIN). Note that other score
fusion methods exist such as the one based on a Gaussian
MixtureModel [43], but they often rely on the need of several
biometric samples from the same individual, which is not the
case of our experiments.

Table 1 summarizes the identification rates of Random-
Faces together with the different score fusion techniques.
Despite the relative high number of individuals (about 1000),
the difficult one-image-to-enroll scenario, and the simple
extracted features, the identification rates are quite high
(over 78%), and the proposed fusion scheme almost always
outperforms the classical score fusion methods.

4.3. Notre-DameDatabase. Thedatabase from theUniversity
of Notre-Dame (Collection 𝑋1) [42] is a public collection
of 2D visible/thermal face images. This database has two
advantages:

(i) a visible picture and its thermal counterpart are taken
at the same time;

(ii) a well-defined test protocol is included with the
database, which allows a fair comparison between
previously published results on this database.

4.3.1. Details of theDatabase. Thedatabase is divided into two
disjoints parts: the first one, named Train Set, is composed
of 159 subjects. For each, one visible and one thermal images
are available. The second part, named Test Set, is composed
of 82 subjects. This set contains 2292 visible images and 2292
thermal images.

While the Train Set contains neither facial expressions
nor illumination/thermal variations, the Test Set contains
such variations.

Two experiments, named same session and time lapse,
have been designed to test the facial identification algorithms
across illumination variations and through time, respectively.
In this work, we do not report identification rates on the same
session experiment since it contains too few images and is
too easy: most of the classical face recognition algorithms
obtain identification rates close to 100%.We then report only
the identification rates on the time lapse experiment which
is a more challenging subdataset. The pictures have been
takenwithinweeks/monthswhich involves variations in faces
appearance.

For this experiment, the test protocol consists in 16
subexperiments allowing picking galleries and probes of
different facial expressions (neutral or smiling) and different
lighting (FERET or Mugshot styles).

Note that each gallery contains only one image per subject
(one-image-to-enroll scenario).

4.3.2. Details of the Experiment. Our experiment is mainly
dedicated to a parameter exploration of the main parameters
that pilot the dictionary design and to evaluate these param-
eters on the final identification rates.

The experiments have been conducted with different
values of the considered hyperparameters: the size Γ × Γ of
the square patches and the maximum number of atoms 𝑛OMP
allowed for the sparse decomposition within the algorithm
OMP. These hyperparameters directly influence the learned
dictionary, and then the extracted feature vectors. A grid
search is performed onto these two parameters: Γ varies into
{5, 10, 15, 20} and 𝑛OMP in {3, 4, 5, 6, 7, 8, 9, 10, 15, 20}. Note
that each experiment is performed separately for the visible
and infrared modality.

In order to learn the dictionary, for each couple (Γ, 𝑛OMP),
10000 patches of size (Γ×Γ)with sufficient standard deviation
(to avoid too uniform patches) are randomly extracted from
the Train Set.Themaximumnumber of atoms allowed for the
OMP algorithm is then fixed to 𝑛OMP, which means that each
training pattern is decomposed into a sumof 𝑛OMP atoms, the
coefficients of the other atoms being 0.

For all the experiments, the redundancy of the dictionary
is set to 2 which means 2 × Γ2 atoms to learn. The learning
process is applied until convergence.
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Figure 5: Rank-1 mean identification rates for different values of Γ and 𝑛OMP. (a) Visible, (b) IR.

For each couple (Γ, 𝑛OMP), a dictionary is learned, then
the face features are extracted following the proposed scheme
(Section 2).

4.3.3. Results. Figures 5(a) and 5(b) show the identification
results at rank-1 for different values of Γ and 𝑛OMP for the two
modalities. For the sake of clarity, identification rates have
been averaged: each bin represents the mean identification
rate of the 16 subexperiments of the time lapse experiment.

Although the best identification rate for the visible
modality (87.41%) is obtained with Γ = 5 and 𝑛OMP = 15, one
can see that identification rates for Γ = 10 are the most stable
according to 𝑛OMP, each bin exceeding 86%. Identification
rates with Γ = 15 are worse, and those obtained with Γ = 20
are the worst.

Similar results can be observed with the infrared modal-
ity. Although identification rates seem more stable with Γ =
15, results with Γ = 10 are globally the better (73.60% avg.).

4.3.4. Modality Fusion. Identification rates obtained above
show that visible modality performs better than LWIR
modality.This result has already been showed in [42] or [44].

Best couples (Γ, 𝑛OMP) for each modality found above
are retained, and the fusion scheme presented in Section 3
is performed. As for the FERET database experiment, our
score fusion scheme is compared with various normaliza-
tion and fusion techniques. A summary the results and a
comparison of identification rates previously published in
the literature are shown in Table 2. Our method outperforms
other methods in visible modality but gives lower identifi-
cation rates in infrared. The lack of texture in this modality
could explain that our sparse features approach gives such
identification rates. Note that we previously published in [22]
better identification rateswith these sparse features conjointly

Table 2: Comparison of methods for the time-lapse experiment
of the Notre-Dame database. Mean identification rates over the 16
subexperiments, standard deviation in parenthesis. Best score in
bold.

Time lapse
[42] [44] This paper

Visible 82.66 72.50 87.41
(7.75) (4.01) (4.32)

IR 77.81 40.06 75.40
(3.31) (3.47) (2.60)

Fusion 92.5 80.12 94.06
(2.71) (4.13) (2.08)

classifiedwith the Sparse Representation-basedClassification
algorithm (SRC, [18]). Nevertheless, these results are not
completely exact since the dimension of the features exceeds
the number of elements of the gallery, which implies an
overdetermined system within the SRC algorithm.

5. Conclusion and Future Work

We presented a facial feature extraction method based on
sparse decompositions of patches of face images. It decom-
poses a face image onto a dictionary that has been learned
from data. Applied to various databases and modalities, it
offers comparable identification results to the state-of-the-
art on the Notre-Dame database according to its specific
protocol.

Modalities fusion offers an alternative to unimodal bio-
metric systems. From the hypothesis that different modalities
can offer complementary informations (which is often the
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case), fusion of these allows enhancing the reliability of a
system.

We proposed a decision level fusion scheme based on
a per-score measure of saliency. It does not depend on ad
hoc assumptions and allows increasing rank-1 identification
rates. Moreover, it is sufficiently general to be used with any
number of features, biometrics, or classifiers.

Further work will involve the integration of our feature
extraction scheme into a multiscale approach. A better selec-
tion could also enhance final decision scores. In this work,
every patch is equally treated, even those containing hair, for
example. This is obviously suboptimal and a selection or a
weighting of discriminant patches will improve identification
rates.

A limitation of our approach is also that faces have to be
carefully aligned. The extracted features may not be robust
to pose changes. However, recent works on the design of
dictionaries that are robust to affine transformations could
help to tackle this limitation. verification (of authentication)
aims to compare the unknown face with the
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