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HYBRID SAMPLING/SPECTRAL METHOD
FOR SOLVING STOCHASTIC COUPLED PROBLEMS∗

M. ARNST† , C. SOIZE‡ , AND R. GHANEM§

Abstract. In this paper, we present a hybrid method that combines Monte Carlo sampling and
spectral methods for solving stochastic coupled problems. After partitioning the stochastic coupled
problem into subsidiary subproblems, the proposed hybrid method entails iterating between these
subproblems in a way that enables the use of the Monte Carlo sampling method for subproblems
that depend on a very large number of uncertain parameters and the use of spectral methods for
subproblems that depend on only a small or moderate number of uncertain parameters. To facilitate
communication between the subproblems, the proposed hybrid method shares between the subprob-
lems a reference representation of all the solution random variables in the form of an ensemble of
samples; for each subproblem solved by a spectral method, it uses a dimension-reduction technique
to transform this reference representation into a subproblem-specific reduced-dimensional represen-
tation to facilitate a computationally efficient solution in a reduced-dimensional space. After laying
out the theoretical framework, we provide an example relevant to microelectomechanical systems.

Key words. coupled problems, multiphysics, hybrid method, Monte Carlo, polynomial chaos

AMS subject classifications. 60H15, 60H25, 60H35, 65C05, 65C30, 65C50

1. Introduction. Coupled problems with various combinations of multiple phys-
ics, scales, and domains are found in numerous areas of science and engineering: Mul-
tiphysics models can take the form of a single equation that tightly couples different
types of physical behavior, or they can take the form of a system of equations wherein
the solution to certain equations is passed to other equations to determine physical
properties or loadings or both. Multiscale models couple different types of behavior
with fundamentally different descriptions at different scales. In multidomain models,
physical behavior in different regions of space is coupled through a shared interface.

Partitioned methods are widely used for solving coupled problems. These meth-
ods most often split a coupled problem into subproblems that represent single-physics,
single-scale, or single-domain behavior, and they then seek a global solution by iter-
ating between subproblem solutions. The attraction of partitioned methods is that
many coupled problems afford a natural decomposition into subproblems for which
computational expertise and dedicated solvers already exist: partitioned methods en-
able immediate reuse of legacy solvers that are already available to solve subproblems.

The quantification of the effects of modeling errors and parametric uncertainties is
always required to justify predictive capabilities of scientific and engineering models.
A probabilistic framework is most often adopted, wherein uncertainties are propa-
gated from uncertain input parameters to predictions using either the Monte Carlo
sampling method [13] or spectral methods [7, 11, 19]. Within the current state of the
art, the effectiveness of the Monte Carlo sampling and spectral methods is essentially
as follows. On the one hand, the Monte Carlo sampling method is most computation-
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‡Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208
CNRS, 5 bd Descartes, 77454 Marne-la-Valle, France.

§University of Southern California, Department of Civil and Environmental Engineering, 3620 S
Vermont Ave, Los Angeles, CA 90089, USA.

1



2

ally efficient for problems of “very high dimension,” that is, for problems that require
a very large number of random variables to accurately characterize their uncertain
features. On the other hand, spectral methods are indicated most for sufficiently
smooth problems of “low or moderate dimension,” that is, for problems for which a
small or moderate number of random variables suffices to accurately characterize the
uncertain features, as well as for problems that admit adaptation relative to dimen-
sionality [1, 2]. We emphasize that the merits and limitations of the Monte Carlo
sampling and spectral methods depend on the problem and implementation speci-
ficities; further, much ongoing research is involved with extending the computational
efficiency of spectral methods to problems of higher and higher dimension [5, 6].

In this paper, we consider partitioned methods for solving stochastic coupled
problems. We focus on stochastic coupled problems that, when split into subprob-
lems, yield one or more subproblems that require a very large number of random
variables to accurately characterize their uncertain features, as well as one or more
subproblems for which a small or moderate number of random variables suffices. For
such stochastic coupled problems, we present a hybrid Monte Carlo sampling/spectral
method. The proposed hybrid method seeks a global solution by iterating between
the subproblems in a way that enables the use of the Monte Carlo sampling method
for the subproblems of “very high dimension” and the use of spectral methods for
the subproblems of “low or moderate dimension,” thus maximizing computational ef-
ficiency. To facilitate communication between the subproblems, the proposed hybrid
method shares between the subproblems a reference representation of all the solution
random variables in the form of an ensemble of samples; for each subproblem solved by
a spectral method, it uses a dimension-reduction technique [1, 2] to transform this ref-
erence representation into a subproblem-specific reduced-dimensional representation
to facilitate a computationally efficient solution in a reduced-dimensional space.

A typical example wherein the proposed hybrid method can be of use is a multi-
physics parameter-passing problem wherein one subproblem has the form of a stochas-
tic elliptic partial differential equation whose random coefficients oscillate very rapidly
as a function of the position and that exhibits some homogenization owing to spatial
averaging. Because many random variables can be expected to be required to accu-
rately characterize these very rapidly oscillating coefficients, this subproblem can be
expected to be of “very high dimension.” However, because only a small or moderate
number of random variables can be expected to suffice to accurately characterize the
homogenized solution, subproblems to which this solution is passed to determine their
physical properties or loadings or both can be of “low or moderate dimension.”

The remainder of this paper is organized as follows. First, in Sec. 2, we present the
proposed hybrid method. Next, in Sec. 3, we provide details on the implementation.
Finally, in Secs. 4 and 5, we provide an illustration problem with numerical results.

2. Hybrid Monte Carlo sampling/spectral method.

2.1. Model problem. This paper is devoted to the determination of the solu-
tion to a stochastic coupled problem of the following form:

f(U ,X, ξ) = 0, Y = h(U ,X, ξ);

g(Y ,V , ζ) = 0, X = k(Y ,V , ζ),
(2.1)

where the domains and the ranges of the mappings f , g, h, and k are as follows:

f : Rr × R
s0 × R

m → R
r, h : Rr × R

s0 × R
m → R

r0 ;

g : Rr0 × R
s × R

n → R
s, k : Rr0 × R

s × R
n → R

s0 .
(2.2)
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To avoid certain technicalities involved in infinite-dimensional representations, we
assume that these equations are discretized representations of a stochastic problem
that couples two scales, two physical processes, two domains, or a combination thereof.
Further, we assume that the data of the first subproblem, which enter this subproblem
as physical properties or loadings or both, depend on a finite set of uncertain real
parameters denoted as ξ1, . . . , ξm and that the data of the second subproblem depend
on a finite set of uncertain real parameters denoted as ζ1, . . . , ζn. We collect these
sources of uncertainty into vectors ξ = (ξ1, . . . , ξm) and ζ = (ζ1, . . . , ζn), which we
model as random variables defined on a probability triple (Θ, T , P ) with values in R

m

and R
n, respectively. We refer to ξ and ζ as input random variables.

In the stochastic coupled problem in (2.1), the solution random variable U of the
first subproblem depends on the solution random variable V of the second subprob-
lem via the coupling random variable X. Likewise, the solution random variable V

depends on the solution random variable U via the coupling random variable Y .
Thus, to solve this stochastic coupled problem, it is necessary to find the random

variables U and V defined on (Θ, T , P ) and with values in R
r and R

s such that (2.1)
is satisfied under the assumption that the stochastic coupled problem is well posed.

For example, if a fluid-structure interaction problem was considered, the stochas-
tic coupled problem in (2.1) could collect the fluid and the structural subproblem; U
and V could be the solution fields required to describe the states of the fluid and the
structure; and X and Y could be the traces of the pressure field of the fluid and the
velocity field of the structure on the shared fluid-structure interface.

2.2. Partitioned solution. We assume that iterative methods and associated
solvers already exist for the solution of each subproblem; therefore, to solve the
stochastic coupled problem, we consider a partitioned method that reuses these it-
erative methods as steps in a global iterative method built around them. Here, we
assume that each of these iterative methods is based on the reformulation of the
associated subproblem as a fixed-point problem as follows:

U = a(U ,X, ξ), Y = h(U ,X, ξ);

V = b(Y ,V , ζ), X = k(Y ,V , ζ),
(2.3)

where the domains and the ranges of the mappings a and b are as follows:

a : Rr × R
s0 × R

m → R
r;

b : Rr0 × R
s × R

n → R
s.

(2.4)

These reformulations can be obtained in several ways, for example, by setting

{
a(U ,X, ξ) = U − f(U ,X, ξ)

b(Y ,V , ζ) = V − g(Y ,V , ζ)
(simplest),

{
a(U ,X, ξ) = U − ωf(U ,X, ξ)

b(Y ,V , ζ) = V − ςg(Y ,V , ζ)
(linear relaxation),

{
a(U ,X, ξ) = U − [Duf(U ,X, ξ)]−1

(
f(U ,X, ξ)

)

b(Y ,V , ζ) = V − [Dvg(Y ,V , ξ)]
−1

(
g(Y ,V , ζ)

) (Newton’s method),

among other ways, including nonlinear relaxation and operator splitting. We then
consider the solution of the stochastic coupled problem by a Gauss-Seidel partitioned
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method, using suitable initial values U0, V 0, and X0, as follows:

U ℓ = a
(
U ℓ−1,Xℓ−1, ξ

)
, Y ℓ = h(U ℓ,Xℓ−1, ξ);

V ℓ = b
(
Y ℓ,V ℓ−1, ζ

)
, Xℓ = k(Y ℓ,V ℓ, ζ).

(2.5)

This is not the only partitioned method available; however, for simplicity, we employ
only this method in this work. We note that although we adopt this Gauss-Seidel
partitioned method, the proposed hybrid method can be used with other partitioned
methods, such as Jacobi, relaxation, and Newton iterative methods.

Next, we first describe elementary implementations of the partitioned method
in (2.5) using either solely the Monte Carlo sampling method or solely spectral meth-
ods, and we then introduce the proposed hybrid method.

2.3. Monte Carlo sampling method. A typical implementation of (2.5) us-
ing solely the Monte Carlo sampling method begins by generating an ensemble of
independent and identically distributed (i.i.d.) samples {(ξ(θk), ζ(θk)), 1 ≤ k ≤ ν} of
the input random variables. Then, a sequence of representations of the solution and
coupling random variables is computed in the form of a sequence of corresponding en-
sembles of i.i.d. samples {(U ℓ(θk),V

ℓ(θk),X
ℓ(θk),Y

ℓ(θk)), 1 ≤ k ≤ ν}. Specifically,
the subproblems are solved in the sequence determined by (2.5) in a manner wherein
each subproblem is solved at each iteration using the Monte Carlo sampling method
to update the samples of the solution and coupling random variables determined by
this subproblem. Thus, at iteration ℓ, the first subproblem is solved,

U ℓ(θk) = a
(
U ℓ−1(θk),X

ℓ−1(θk), ξ(θk)
)
,

Y ℓ(θk) = h
(
U ℓ(θk),X

ℓ−1(θk), ξ(θk)
)
,

1 ≤ k ≤ ν, (2.6)

to obtain the representation of the solution and coupling random variables determined
by this subproblem as the ensemble of i.i.d. samples

{(
U ℓ(θk),Y

ℓ(θk)
)
, 1 ≤ k ≤ ν

}
; (2.7)

next, the second subproblem is solved,

V ℓ(θk) = b
(
Y ℓ(θk),V

ℓ−1(θk), ξ(θk)
)
,

Xℓ(θk) = k
(
Y ℓ(θk),V

ℓ(θk), ζ(θk)
)
,

1 ≤ k ≤ ν, (2.8)

to obtain the representation of the solution and coupling random variables determined
by this subproblem by the ensemble of i.i.d. samples

{(
V ℓ(θk),X

ℓ(θk)
)
, 1 ≤ k ≤ ν

}
. (2.9)

Once the ensembles in (2.7) and (2.9) have converged with respect to the number of
iterations, statistical descriptors of the solution and coupling random variables can
be deduced therefrom using statistical estimation methods.

We note that this implementation is equivalent to solving the coupled problem for
each sample (ξ(θk), ζ(θk)) of the input random variables; such an equivalent imple-
mentation can be expected to require less storage, and it also offers the possibility of
adjusting the number of iterations for each sample as required to reach convergence.
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2.4. Spectral method. A typical implementation of (2.5) using solely spectral
methods involves the computation of a sequence of representations of the solution
and coupling random variables in the form of a sequence of polynomial chaos ex-
pansions U ℓ,p, V ℓ,p, Xℓ,p, and Y ℓ,p. Specifically, the subproblems are solved in
the sequence determined by (2.5) in a manner wherein each subproblem is solved at
each iteration using a spectral method to update the polynomial chaos expansions of
those solution and coupling random variables that are determined by this subproblem.
Thus, at iteration ℓ, the first subproblem is solved, written as follows:

U ℓ,p = ap
(
U ℓ−1,p,Xℓ−1,p, ξ

)
, Y ℓ,p = hp

(
U ℓ,p,Xℓ−1,p, ξ

)
, (2.10)

to obtain the representation of the solution and coupling random variables determined
by this subproblem by polynomial chaos expansions

U ℓ,p =

p∑

|α|=0

ψα(ξ, ζ)u
ℓ,α, Y ℓ,p =

p∑

|α|=0

ψα(ξ, ζ)y
ℓ,α; (2.11)

next, the second subproblem is solved using a spectral method, written as follows:

V ℓ,p = bp
(
Y ℓ,p,V ℓ−1,p, ζ

)
, Xℓ,p = kp

(
Y ℓ,p,V ℓ,p, ζ

)
, (2.12)

to obtain the representation of the solution and coupling random variables determined
by this subproblem by polynomial chaos expansions

V ℓ,p =

p∑

|α|=0

ψα(ξ, ζ)v
ℓ,α, Xℓ,p =

p∑

|α|=0

ψα(ξ, ζ)x
ℓ,α. (2.13)

Here, {ψα,α ∈ N
m+n} is a suitable basis of functions from R

m+n into R; in this work,
we employ bases that consist of orthonormal polynomials, which is precisely why we
refer to the expansions in (2.11) and (2.13) as polynomial chaos expansions. Once
the polynomial chaos expansions in (2.11) and (2.13) have converged with respect to
the number of iterations, statistical descriptors of the solution and coupling random
variables can be deduced therefrom using statistical estimation methods.

We note that although our notations do not express a dependence of p on the
subproblem or on ℓ, the subset of polynomial chaos used to construct the finite-
dimensional representations can be allowed to depend on the subproblem and on ℓ.

2.5. Hybrid method. We propose the following hybrid method. As in the
Monte Carlo sampling method described previously, first, we generate an ensemble of
i.i.d. samples {(ξ(θk), ζ(θk)), 1 ≤ k ≤ ν} of the input random variables. Then, as in
the Monte sampling method described previously, we compute a sequence of repre-
sentations of the solution and coupling random variables in the form of a sequence of
corresponding ensembles of samples {(Û ℓ(θk), V̂

ℓ(θk),X̂
ℓ(θk), Ŷ

ℓ(θk)), 1 ≤ k ≤ ν}.
However, in contrast to the Monte Carlo sampling method described previously, we
now allow each subproblem at each iteration to be solved using the most computa-
tionally efficient Monte Carlo sampling or spectral method to update these samples.

Because truncations of expansions involved in implementations of spectral meth-
ods most often result in approximation errors, the sequence of ensembles of samples
determined by the proposed hybrid method will most often be only an approximation
of the sequence determined by the Monte Carlo sampling method described previ-
ously; therefore, we use a hat superscript to distinguish between these sequences.
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In the following, we outline an implementation of the proposed hybrid method
wherein we solve the first subproblem at each iteration using the Monte Carlo sam-
pling method and the second subproblem at each iteration using a spectral method;
nevertheless, we note that variants of this implementation can be easily conceived,
such as variants that interchange the role of the subproblems. Thus, at iteration ℓ,
we solve the first subproblem using the Monte Carlo sampling method,

Û ℓ(θk) = a
(
Û ℓ−1(θk),X̂

ℓ−1(θk), ξ(θk)
)
,

Ŷ ℓ(θk) = h
(
Û ℓ(θk),X̂

ℓ−1(θk), ξ(θk)
)
,

1 ≤ k ≤ ν, (2.14)

to obtain the representation of the solution and coupling random variables determined
by this subproblem by the ensemble of samples

{(
Û ℓ(θk), Ŷ

ℓ(θk)
)
, 1 ≤ k ≤ ν

}
. (2.15)

Next, we solve the second subproblem using a spectral method. For this purpose,
we first use a dimension-reduction technique to characterize the random variables on
which the second subproblem depends by a reduced-dimensional representation: we
approximate the ensemble of samples {Qℓ(θk) = (Ŷ ℓ(θk), V̂

ℓ−1(θk)), 1 ≤ k ≤ ν} by

the ensemble of samples {Qℓ,d(θk) = (Ŷ ℓ,d(θk), V̂
ℓ−1,d(θk)), 1 ≤ k ≤ ν} obtained

through the truncation of a Karhunen-Loève (KL) decomposition after d terms [1, 2]:

Qℓ,d(θk) = qℓ +

d∑

j=1

√
λℓjη

ℓ
j(θk)ϕ

ℓ,j , 1 ≤ k ≤ ν. (2.16)

Because of this characterization of the random variables on which the second subprob-
lem depends by a reduced-dimensional representation, we do not need to construct
the required ensemble of samples {(V̂ ℓ(θk),X̂

ℓ(θk)), 1 ≤ k ≤ ν} as a transforma-
tion of the ensemble of samples {(ξ(θk), ζ(θk)), 1 ≤ k ≤ ν} as in (2.12) and (2.13),
but we can construct this ensemble of samples as a transformation of the ensem-
ble of samples {(ηℓ(θk), ζ(θk)), 1 ≤ k ≤ ν}, wherein ηℓ(θk) = (ηℓ1(θk), . . . , η

ℓ
d(θk))

and ζ(θk) = (ζ1(θk), . . . , ζn(θk)); thus, we can solve the second subproblem using a
spectral method in a reduced-dimensional space of dimension d+ n, written as

V̂ ℓ,d,q = b̂ℓ,d,q
(
Ŷ ℓ,d, V̂ ℓ−1,d, ζ

)
, X̂ℓ,d,q = ĥℓ,d,q

(
Ŷ ℓ,d, V̂ ℓ,d,q, ζ

)
, (2.17)

to obtain a representation of the solution and coupling random variables determined
by this subproblem by polynomial chaos expansions

V̂ ℓ,d,q =

q∑

|β|=0

Γℓ
β(η

ℓ, ζ)v̂ℓ,β, X̂ℓ,d,q =

q∑

|β|=0

Γℓ
β(η

ℓ, ζ)x̂ℓ,β, (2.18)

where {Γℓ
β,β ∈ N

d+n} is a suitable basis of functions from R
d+n into R. The global

approximation by polynomial chaos expansions in (2.18) provides the approximation

in terms of samples as V̂ ℓ(θk) ≡ V̂ ℓ,d,q(θk) and X̂ℓ(θk) ≡ X̂ℓ,d,q(θk), that is,

V̂ ℓ(θk) =

q∑

|β|=0

Γℓ
β

(
ηℓ(θk), ζ(θk)

)
v̂ℓ,β, X̂ℓ(θk) =

q∑

|β|=0

Γℓ
β

(
ηℓ(θk), ζ(θk)

)
x̂ℓ,β, (2.19)
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to obtain the required representation of the solution and coupling random variables
determined by this subproblem by the ensemble of samples

{(
V̂ ℓ(θk),X̂

ℓ(θk)
)
, 1 ≤ k ≤ ν

}
. (2.20)

Although our notations do not express a potential dependence of d and q on ℓ, we
note that these parameters may depend on the iteration.

2.6. Discretization error incurred by hybrid method. When statistical de-
scriptors of the solution are computed, the proposed hybrid method incurs discretiza-
tion errors that are primarily controlled by the following discretization parameters:
the number of samples ν, the number of iterations, and the dimension d and order q.
The number of samples ν determines the sampling error that is incurred when math-
ematical statistics methods are used to estimate statistical descriptors of the solution
random variables from the only finite number of samples provided by the proposed
hybrid method. The number of iterations determines the iteration error that remains
after halting the iterative method after only a finite number of iterations. The di-
mension d and order q determine the truncation error that is introduced owing to
the solution at each iteration of the second subproblem using a spectral method in
only a reduced-dimensional space for only a truncated polynomial chaos expansion.
For example, when the expectation value µU =

∫
Θ
UdP of the solution random vari-

able U is approximated by the estimate 1
ν

∑ν

k=1 Û
ℓ(θk), the discretization error, that

is, µU − 1
ν

∑ν

k=1 Û
ℓ(θk), can be decomposed as follows:

µU − 1

ν

ν∑

k=1

U(θk)

︸ ︷︷ ︸
sampling error

+
1

ν

ν∑

k=1

(
U(θk)−U ℓ(θk)

)

︸ ︷︷ ︸
iteration error

+
1

ν

ν∑

k=1

(
U ℓ(θk)− Û ℓ(θk)

)

︸ ︷︷ ︸
truncation error

. (2.21)

2.7. Effectiveness of hybrid method. The main feature of the proposed hy-
brid method is that it allows uncertainties to be accurately propagated through cou-
pled problems and yet can be implemented as a wrapper around separate methods
for the propagation of uncertainties through subproblems, where the most computa-
tionally efficient Monte Carlo sampling or spectral method can be used.

The implementation of the proposed hybrid method given by (2.14)–(2.20) can
be expected to facilitate a computationally efficient solution of the stochastic coupled
problem in (2.1) especially when the first subproblem has a “very high dimension,”
that is, m+n is large, but the second subproblem has a “low or moderate dimension,”
that is, d+ n is small or moderate. Indeed, the proposed hybrid method can then be
expected to be able to combine the computational efficiency of the Monte Carlo sam-
pling method for solving problems of “very high dimension” with the computational
efficiency of spectral methods for solving problems of “low or moderate dimension.”

For the first subproblem to be of “very high dimension,” it suffices that its data
depend on a very large numberm of sources of uncertainty. For the second subproblem
to be of “low or moderate dimension,” it is necessary that its data depend on only
a small or moderate number n of sources of uncertainty and that the truncated KL
decomposition is able to accurately characterize the random variables on which the
second subproblem depends by a representation of only low or moderate dimension d.

3. Implementation: computational construction of polynomial chaos.
Here, we detail how the proposed hybrid method enables the solution of subproblems
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using spectral methods: we detail how the solution of the second subproblem of the
model problem in (2.1) can be implemented using spectral methods as in (2.16)–(2.20).

The main challenge is that whereas the context for the solution of a stochastic
problem by a spectral method is usually set by a characterization of the sources of
uncertainty in terms of their probability distribution, the context is set here by a
characterization of the sources of uncertainty in terms of an ensemble of samples.

Depending on the specific spectral method that is chosen, the implementation of
this spectral method typically requires that various algorithmic constituents be de-
fined, such as second-order descriptors, polynomial chaos, and projection and other
methods. When the sources of uncertainty are characterized by their probability
distribution, the definitions of these algorithmic constituents usually involve expec-
tation values that are themselves defined in terms of integrals with respect to this
probability distribution; alternatively, after a suitable transformation of the sources
of uncertainty, integrals with respect to Gaussian or other “labeled” probability dis-
tributions are often relied upon; for details, please refer to [7, 11, 19].

However, here, the sources of uncertainty are characterized by an ensemble of
samples; hence, the algorithmic constituents cannot be immediately defined in the
manner mentioned previously, but two alternative approaches can be adopted. First,
nonparametric or mathematical statistics methods can be applied to fit a probability
distribution to this ensemble of samples, for example, by adopting the approaches
in [14–16], after which the usual definitions of the algorithmic constituents can be re-
lied upon again. Alternatively, the expectation values involved in the definitions of the
algorithmic constituents can be replaced with sample averages. The former approach
can be expected to entail a much higher computational cost than the latter approach
because fitting a probability distribution to an ensemble of samples is computation-
ally very expensive. Further, the choice between these approaches can be expected
to affect the accuracy of the approximate solution that will be provided by the re-
sulting spectral method because this choice essentially determines the Hilbert-space
projections with reference to which this approximate solution will be constructed.

In this work, we adopt the approach involving the use of sample averages. Below,
we show how this use of sample averages facilitates in turn the use of computational
linear algebra methods for obtaining the requisite polynomial chaos.

3.1. Objective. We describe a computational construction of a basis {Γβ, 0 ≤
|β| ≤ q} of z-variate polynomials Γβ that are of increasing order and orthonormal in
an inner product defined as a sample average with reference to an ensemble {χ(θk), 1 ≤
k ≤ ν} of samples χ(θk) in R

z, that is, these polynomial chaos are such that

1

ν

ν∑

k=1

Γβ

(
χ(θk)

)
Γγ

(
χ(θk)

)
= δβγ , 0 ≤ |β|, |γ| ≤ q. (3.1)

3.2. Interpretation. In the frame of the proposed hybrid method, we con-
sider {χ(θk), 1 ≤ k ≤ ν} as an ensemble of samples of the sources of uncertainty that
enter a subproblem solved by a spectral method at some iteration. For example, with
reference to (2.18), at iteration ℓ, each sample χ(θk) = (ηℓ(θk), ζ(θk)) could collect
the components of the samples ηℓ(θk) and ζ(θk) with z = d+n; then, the polynomial

chaos Γβ would be needed to build the polynomial chaos expansions V̂ ℓ,d,q and X̂ℓ,d,q.

3.3. Computational construction. We refer to elements β = (β1, . . . , βz)
of Nz as multi-indices. A (multivariate) monomial χβ associated with a multi-index β

is then a function from R
z into R defined by χβ = χβ1

1 × . . .×χβz

z . We refer to |β| =
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β1 + . . . + βz as the order of χβ. A (multivariate) polynomial is a function from R
z

into R that maps any χ to a finite sum
∑

β cβχ
β with real coefficients cβ. Let Pq

z =

{π : χ = (χ1, . . . , χz) 7→ π(χ) =
∑q

|β|=0 cβχ
β} be the space of all polynomials in z

variables with order at most q. We denote by µ = (z + q)!/z!q! the dimension of Pq
z .

There are several ways of constructing for the space Pq
z a basis of z-variate poly-

nomials Γβ that are of increasing order and orthonormal in that (3.1) is fulfilled.
We describe a computational construction that involves a QR factorization; we refer
to [8, 12, 17] for alternative methods involving singular value decompositions and
Cholesky factorizations. First, we compute the ν × µ-dimensional matrix [M ] whose
entries Mkβ are the values taken by the monomials χβ at the samples χ(θk):

Mkβ =
(
χ(θk)

)β
=

(
χ1(θk)

)β1 × . . .×
(
χz(θk)

)βz

, (3.2)

where we sort the monomials χβ that determine the columns of [M ] in graded lexi-
cographical order. Next, we compute the thin QR factorization

[M ] = [QR], (3.3)

where [Q] is a ν × µ-dimensional orthogonal matrix and [R] a µ-dimensional square
upper triangular matrix [9]. If [M ] has full column rank and the diagonal entries of [R]
are required to be positive, this factorization exists and is unique [9]. Subsequently,
we invert [R] to obtain the µ-dimensional square upper triangular matrix

[A] =
√
ν[R]−1, (3.4)

which provides the coefficients of the required polynomial chaos Γβ as follows:

Γβ(χ) =
∑

γ≤β

Aγβχ
γ , 0 ≤ |β| ≤ q. (3.5)

Indeed, upon introducing the ν × µ-dimensional matrix [Γ] whose entries Γkβ =
Γβ(χ(θk)) are the values taken by the polynomial chaos Γβ at the samples χ(θk), that
is, [Γ] = [MA], we obtain 1

ν

∑ν

k=1[Γ
TΓ] = 1

ν

∑ν

k=1[A
TMTMA] = [QTQ] = [I]; hence,

the required orthonormality property (3.1) is fulfilled (here, [I] is the z-dimensional
identity matrix). Finally, substituting (3.3) and (3.4) in [Γ] = [MA] shows that the
QR factorization provides [Γ] =

√
ν[Q], that is, the entries Qkβ of [Q] provide the

values Γβ(χ(θk)) =
√
νQkβ taken by the polynomial chaos Γβ at the samples χ(θk).

We note that the computational cost and the storage requirements associated with
the QR factorization in (3.3) can be expected to increase rapidly with the dimension z.

4. Realization for a stochastic multiphysics problem.

4.1. Problem formulation. We consider the two-dimensional plane-strain elas-
tic bending of a microbridge, that is, a clamped-clamped micrometer-scale beam,
under electrostatic actuation (Fig. 4.1). Let the microbridge be coated with a thin
conductive layer and be surrounded by a rectangular electrode. Then, the applica-
tion of a potential difference between the microbridge and electrode causes charges
to distribute themselves on the surfaces of the microbridge and electrode. The elec-
trostatic field introduced owing to this surface distribution of charges results in an
electrostatic force on the surfaces of the microbridge and electrode, thus forcing the
microbridge to bend. The bending of the microbridge in turn causes the charges to
redistribute themselves and, consequently, their resultant electrostatic force and the
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Fig. 4.1. Schematic representation of the problem.

bending of the microbridge to change, thus indicating that the problem is a coupled
elasticity/electrostatics problem. Below, we incorporate uncertainties in the elastic
and electrostatic material properties of this coupled elasticity/electrostatics problem,
and we demonstrate the proposed hybrid method through its application to the deter-
mination of the random displacement of the microbridge induced by the application
of a potential difference between the microbridge and the electrode.

4.2. Random elasticity tensor and electrical permittivity. We model the
elasticity tensor field in D by the random field {Ja(x, ξ)K, x ∈ D}. We assume this
random field to be isotropic and determined by the random Young modulus field
{E(x, ξ), x ∈ D} and random Poisson coefficient field {ν(x, ξ), x ∈ D}) such that

E(x, ξ) = E

(
1 + δE

mE∑

j=1

√
λE,j

√
3 ξj ϕ

j
E(x)

)
, (4.1)

ν(x, ξ) = ν

(
1 + δν

mν∑

j=1

√
λν,j

√
3 ξmE+j ϕ

j
ν(x)

)
. (4.2)

We model the electrical permittivity in Ω by the random variable ε0(ζ) such that

ǫ0(ζ) = ǫ0
(
1 + δǫ0

√
3ζ

)
. (4.3)

Here, the random variables ξj and ζ are statistically independent uniform random
variables defined on (Θ, T , P ) with values in [−1, 1]. Hence, the random variable ǫ0
has mean value ǫ0 and coefficient of variation δǫ0 . Further, λE,j and ϕ

j
E (λν,j and ϕ

j
ν)

are the eigenvalues and eigenmodes of the eigenproblem CE(ϕj
E) = λE,jϕ

j
E (Cν(ϕj

ν) =
λν,jϕ

j
ν), where CE and Cν are covariance operators with the following kernels:

CE(x, x̃)=
4a2E

π2(x1 − x̃1)2
sin2

(
π(x1 − x̃1)

2aE

)
4a2E

π2(x2 − x̃2)2
sin2

(
π(x2 − x̃2)

2aE

)
, (4.4)

Cν(x, x̃)=
4a2ν

π2(x1 − x̃1)2
sin2

(
π(x1 − x̃1)

2aν

)
4a2ν

π2(x2 − x̃2)2
sin2

(
π(x2 − x̃2)

2aν

)
. (4.5)

Here, the parameters aE and aν are the spatial correlation lengths of the random
Young modulus and Poisson coefficient fields, respectively. Hence, the random fields
thus obtained are such that the random variables E(x, ξ) and ν(x, ξ) have mean
values E and ν and coefficients of variation δE and δν , respectively, at every position x,
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at least when the approximation errors introduced owing to the truncation of the
expansions after mE and mν terms, respectively, are not taken into account.

We note that δE , δν , and δε0 must be sufficiently small to ensure positiveness of
the Young modulus, boundedness of the Poisson coefficient between −1 and 1/2, and
positiveness of the electrical permittivity, respectively. Further, we acknowledge that
our choice of stochastic model is rather arbitrary; in engineering applications, ade-
quate stochastic models can be inferred from experimental data using mathematical
statistics methods or constructed using information-theoretic methods [10].

4.3. Stochastic coupled problem. We adopt a large displacements/large de-
formations formulation, which accounts for the transport of tractions, volume ele-
ments, and surface elements between the original and deformed configurations using
the standard relations involving the deformation tensor, jacobian determinant, and
dilation tensor of the displacement; for details, refer to [3]. To enable this trans-
port, we extend the displacement U in the domain D occupied by the microbridge
to obtain a corresponding displacement Y in the exterior domain D; we use as the
extension operator the standard harmonic extension operator, which involves solv-
ing Laplace’s equation under Dirichlet boundary conditions. Thus, we consider the
stochastic coupled problem that involves finding the random displacement U , the
random displacement Y , and the random potential Φ defined on (Θ, T , P ) such that





−divx[F (U)S(U)] = 0 in D,

[E(U)] =
1

2
[F (U)TF (U)− I] in D,

[S(U)] = Ja(·, ξ)K
(
[E(U)]

)
in D,

U = 0 on Σu,

[F (U)S(U)]n =
ε0(ζ)

2

((
∇xΦ

T[C(Y )]−1n
)

‖[F (Y )]−T(n)‖

)2

j(U)[F (U)]−Tn on Σσ;

(4.6)





−divx[DxY ] = 0 in Ω,

Y = 0 on Γ,

Y = u on Σ;

−divx
(
j(Y )[C(Y )]−1

∇xΦ
)
= 0 in Ω,

Φ = 0 on Γ,

Φ = φext on Σ.

(4.7)

Here, [S(U)] is the Piola-Kirchhoff tensor; [E(U)] is the Green-Lagrange tensor; and
[F (U)] = [I + DxU ] and [F (Y )] = [I + DxY ] are the deformation tensors with
corresponding jacobian determinants j(U) = det[F (U)] and j(Y ) = det[F (Y )] and
dilatation tensors [C(U)] = [F (U)TF (U)] and [C(Y )] = [F (Y )TF (Y )].

The elasticity subproblem in (4.6) expresses mechanical equilibrium in D, a
Dirichlet boundary condition on the portion Σu of the interface Σ where the mi-
crobridge is clamped, a Neumann boundary condition that models the electrostatic
pressure on the complementary portion Σσ, completed by a hyperelastic constitu-
tive equation. The electrostatics subproblem in (4.7) expresses Gauss’s law in Ω and
Dirichlet boundary conditions on the external boundary Γ and interface Σ = Σu∪Σσ,
between which a potential difference of φext is applied. The vector n is the unit
normal vector on the interface Σ, chosen to point outward from D into Ω.
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4.4. Finite element equations. We now develop the finite element (FE) equa-
tions for the stochastic coupled problem. We use a mesh of four-node quadrilateral
elements in D and a mesh of three-node triangular elements in Ω.

Throughout the remainder of this paper, we denote by U the random vector
that collects the nodal values of the FE approximation of the displacement in D and
by Y and Φ the random vectors that collect the nodal values of the FE approxi-
mations of the displacement and potential in Ω (please note the reuse of notation:
whereas U and Y represented the displacement itself in the previous section, they
represent the nodal values of the FE approximation of the displacement in this and
all following sections). Then, the FE equations—inferred from (4.6) and (4.7) by
a standard Galerkin projection—can be written as finding the random vectors U ,
Y = (Y Ω,Y Σ), and Φ = (ΦΩ,φΣ) defined on (Θ, T , P ) such that

{f(U ,T , ξ) = 0, Y Σ = h(U); (4.8)
{
[MΩΩ]Y Ω = −[MΩΣ]Y Σ,

[KΩΩ(Y )]ΦΩ = −[KΩΣ(Y )]φΣ,
T = k(Y ,Φ, ζ). (4.9)

In equation (4.8), which represents the FE approximation of the elasticity subproblem
in (4.6), f(U ,T , ξ) is the residual obtained by subtracting from the internal nodal
forces (corresponding to stresses in the material) the external nodal forces (due to the
electrostatic pressure). In equation (4.9), which represents the FE approximation of
the electrostatics subproblem in (4.7), [M ] and [K(Y )] are the FE approximations
of the corresponding differential operators involved in (4.7), and the subscripts Ω
and Σ refer to a block partitioning of matrices and vectors that separates nodal values
associated with nodes in the interior of Ω from those associated with nodes on Σ.

Because the meshes in D and Ω need not be compatible on Σ, Y Σ = h(U) refers to
an orthogonal projection used to transform the nodal values of the displacement in D
into the nodal values of the trace of the corresponding displacement in Ω, and T =
k(Y ,Φ, ζ) is another orthogonal projection used to transform the nodal values of the
displacement and potential in Ω into nodal values of the electrostatic pressure on Σ.

4.5. Partitioned solution. We use the Gauss-Seidel partitioned method built
around a Newton nonlinear solution method for the elasticity subproblem and linear
solution methods for the electrostatics subproblem, written as follows:

{
[Z(U ℓ−1, ξ)](U ℓ −U ℓ−1) = −f(U ℓ−1,T ℓ−1, ξ), Y ℓ

Σ = h(U ℓ); (4.10)
{
[MΩΩ]Y

ℓ
Ω = −[MΩΣ]Y

ℓ
Σ,

[KΩΩ(Y
ℓ)]Φℓ

Ω = −[KΩΣ(Y
ℓ)]φΣ,

T ℓ = k(Y ℓ,Φℓ, ζ). (4.11)

Here, [Z(U ℓ−1, ξ)] is the tangent stiffness matrix, which we infer from the residual
vector in (4.8) using the standard approach given in [3].

4.6. Dimension reduction. We describe an implementation of the proposed
hybrid method that solves the elasticity subproblem at each iteration using the Monte
Carlo sampling method and the electrostatics subproblem at each iteration using a
spectral method. Because the electrostatics subproblem depends on the nodal values
of the displacement on Σ in the partitioned method in (4.10)–(4.11), we require a
reduced-dimensional representation of these nodal values of the displacement on Σ to
facilitate the solution of the electrostatics subproblem in a reduced-dimensional space.
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Let these nodal values of the displacement on Σ at iteration ℓ be represented by the
ensemble of samples

{
Ŷ ℓ

Σ(θk), 1 ≤ k ≤ ν
}
. (4.12)

We construct the reduced-dimensional representation through the truncation of a KL
decomposition [1, 2]. First, we compute the sample mean and covariance matrix:

yℓ
Σ =

1

ν

ν∑

k=1

Ŷ ℓ
Σ(θk),

[
Ĉℓ

Y Σ

]
=

1

ν

ν∑

k=1

(
Ŷ ℓ

Σ(θk)− yℓ
Σ

)(
Ŷ ℓ

Σ(θk)− yℓ
Σ

)T

. (4.13)

Then, with [W ] the Gram matrix of the FE shape functions, we solve the eigenproblem

[
WTĈℓ

Y Σ
W

]
ϕ

ℓ,j
Σ = λℓj [W ]ϕℓ,j

Σ (4.14)

to obtain the eigenvalues and eigenmodes required to construct the reduced-dimensional
representation as follows:

Ŷ ℓ
Σ(θk) ≈ Ŷ

ℓ,d
Σ (θk) = yℓ

Σ +

d∑

j=1

√
λℓjη

ℓ
j(θk)ϕ

ℓ,j
Σ , 1 ≤ k ≤ ν, (4.15)

where for j = 1, . . . , d, the ensembles {ηℓj(θk), 1 ≤ k ≤ ν} collect the samples ηℓj(θk)
in R such that

ηℓj(θk) =
1√
λℓj

(
Ŷ ℓ

Σ(θk)− yℓ
Σ

)T
[W ]ϕℓ,j

Σ , 1 ≤ k ≤ ν. (4.16)

4.7. Computational construction of polynomial chaos. We construct poly-
nomial chaos {Γℓ

β, 0 ≤ |β| ≤ q} using the approach given in Sec. 3. First, we compute

the ν × µ-dimensional matrix [M ℓ], with µ = (d+ q)!/d!q!, such that

M ℓ
kβ =

(
ηℓ(θk)

)β ≡
(
ηℓ1(θk)

)β1 × . . .×
(
ηℓd(θk)

)βd , (4.17)

where we sort the monomials (ηℓ)β that determine the columns of [M ℓ] in graded
lexicographical order. Then, we compute the thin QR factorization of [M ℓ]:

[M ℓ] = [QℓRℓ], (4.18)

which, after inverting the µ-dimensional square upper triangular matrix [Rℓ] to obtain

[Aℓ] =
√
ν[Rℓ]−1, (4.19)

provides the coefficients of the required polynomial chaos Γℓ
β as follows:

Γℓ
β(η

ℓ) =
∑

γ≤β

Aℓ
γβ(η

ℓ)γ , 0 ≤ |β| ≤ q, (4.20)

and also provides the ν × µ-dimensional matrix [Γℓ] =
√
ν[Qℓ] that collects the val-

ues Γℓ
kβ ≡ Γβ(η

ℓ(θk)) taken by the polynomial chaos Γℓ
β at the samples ηℓ(θk). Lastly,

we compute the µ× µ× µ-dimensional moment array JcℓK such that

cℓαβγ =
1

ν

ν∑

k=1

Γℓ
kαΓ

ℓ
kβΓ

ℓ
kγ , 0 ≤ |α|, |β|, |γ| ≤ q. (4.21)
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4.8. Embedded stochastic projection. We solve the electrostatics subprob-
lem using the standard embedded stochastic projection method [7, 11, 18]. First, we
extend the reduced-dimensional representation of the nodal values of the displace-
ment on Σ to obtain a corresponding reduced-dimensional representation of the nodal
values of the displacement in Ω:

Ŷ ℓ,d = yℓ +

d∑

j=1

√
λℓjη

ℓ
jϕ

ℓ,j ,

{
[MΩΩ]y

ℓ
Ω = −[MΩΣ]y

ℓ
Σ,

[MΩΩ]ϕ
ℓ,j
Ω = −[MΩΣ]ϕ

ℓ,j
Σ .

(4.22)

Then, we use polynomial algebra [7, 11, 18] to approximate the product of the jacobian
determinant and the inverse of the dilatation tensor involved in (4.7) by a polynomial
chaos expansion of order q, written as

j
(
Ŷ ℓ,d,h

)[
C(Ŷ ℓ,d,h)

]−1≈
q∑

|β|=0

Γℓ
β(η

ℓ)[Gℓ,β], (4.23)

where Ŷ ℓ,d,h is the FE approximation of the displacement in Ω corresponding to
the nodal values Ŷ ℓ,d. Finally, we solve a linear problem—inferred from (4.11) by a
standard Galerkin projection—that involves finding the coefficients in the polynomial
chaos expansion of order q of the nodal values of the potential such that

q∑

|α|=0

q∑

|β|=0

cℓαβγ [K
ℓ,α
ΩΩ ]φ̂ℓ,β

Ω = −[Kℓ,γ
ΩΣ]φΣ, 0 ≤ |γ| ≤ q, (4.24)

where for 0 ≤ |β| ≤ q, the matrices [Kℓ,β] are the FE approximations of the differ-
ential operators divx([G

ℓ,β]∇x·). The solution of (4.24) provides the following global
approximation of the nodal values of the potential:

Φ̂ℓ,d,q =

q∑

|β|=0

Γℓ
β(η

ℓ)φ̂ℓ,β, (4.25)

and this global approximation immediately provides an approximation in terms of
samples by setting Φ̂ℓ(θk) ≡ Φ̂ℓ,d,q(θk), that is,

Φ̂ℓ(θk) =

q∑

|β|=0

Γℓ
β

(
ηℓ(θk)

)
φ̂ℓ,β, 1 ≤ k ≤ ν. (4.26)

4.9. Selection of dimension d and order q. At each iteration, we select the
dimension d as the smallest value that satisfies

√√√√1

ν

ν∑

k=1

∥∥∥Ŷ ℓ
Σ(θk)− Ŷ

ℓ,d
Σ (θk)

∥∥∥
2

≤ ǫ1

√√√√1

ν

ν∑

k=1

∥∥∥Ŷ ℓ
Σ(θk)

∥∥∥
2

, (4.27)

where ǫ1 is a prescribed tolerance level. Further, at each iteration, we select the
order q as the smallest value that satisfies

√√√√1

ν

ν∑

k=1

∥∥∥Φ̂ℓ,d,q(θk)− Φ̂ℓ,d,q−1(θk)
∥∥∥
2

≤ ǫ2

√√√√1

ν

ν∑

k=1

∥∥∥Φ̂ℓ,d,q(θk)
∥∥∥
2

, (4.28)

where ǫ2 is a prescribed tolerance level.
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4.10. Concluding remarks. Algorithm 1 summarizes the implementation of
the stochastic coupled problem by using the proposed hybrid method.

Input : Error tolerance levels ǫ1 and ǫ2;
Ensemble of samples

{(
ξ(θk), ζ(θk)

)
, 1 ≤ k ≤ ν

}
;

ℓ = 0;
repeat

ℓ = ℓ+ 1;
elasticity subproblem

for k = 1 to ν do

Solve
[
Z
(
Ûℓ−1(θk),ξ(θk)

)](
Ûℓ(θk)−Ûℓ−1(θk)

)
=−f

(
Ûℓ−1(θk), T̂

ℓ−1(θk),ξ(θk)
)
;

end

Compute
{
Ŷ

ℓ

Σ(θk), 1 ≤ k ≤ ν
}
using Ŷ ℓ

Σ(θk) = h
(
Û ℓ(θk)

)
;

end
dimension reduction

Compute yℓ
Σ = 1

ν

∑ν

k=1 Ŷ
ℓ
Σ(θk);

Compute
[
Ĉℓ

Y Σ

]
= 1

ν

∑ν

k=1

(
Ŷ ℓ

Σ(θk)− yℓ
Σ

)(
Ŷ ℓ

Σ(θk)− yℓ
Σ

)T
;

Solve [WTĈℓ
Y Σ

W ]ϕℓ,j
Σ = λℓ

j [W ]ϕℓ,j
Σ ;

Select d such that

√
1
ν

∑ν

k=1

∥∥∥Ŷ ℓ
Σ(θk)− Ŷ

ℓ,d
Σ (θk)

∥∥∥
2

≤ ǫ1

√
1
ν

∑ν

k=1

∥∥∥Ŷ ℓ
Σ(θk)

∥∥∥
2

;

Compute
{
ηℓ(θk), 1 ≤ k ≤ ν

}
using ηℓ

j(θk) =
(
Ŷ ℓ

Σ(θk)− yℓ
Σ

)T
[W ]ϕℓ,j

Σ /
√

λℓ
j ;

end
electrostatics subproblem

q = 0;
repeat

q = q + 1;
Compute {Γℓ

β, 0 ≤ |β| ≤ q} and {cℓαβγ , 0 ≤ |α|, |β|, |γ| ≤ q};
Compute yℓ and {ϕℓ,j , 1 ≤ j ≤ d} and assemble {[Kℓ,β], 0 ≤ |β| ≤ q};
Solve

∑q

|α|,|β|=0 c
ℓ
αβγ [K

ℓ,α
ΩΩ ]φ̂ℓ,β

Ω = −[Kℓ,γ
ΩΣ ]φΣ, 0 ≤ |γ| ≤ q;

until

√
1
ν

∑ν

k=1

∥∥∥Φ̂ℓ,d,q(θk)− Φ̂ℓ,d,q−1(θk)
∥∥∥
2

≤ ǫ2

√
1
ν

∑ν

k=1

∥∥∥Φ̂ℓ,d,q(θk)
∥∥∥
2

;

Compute
{
T̂ ℓ(θk), 1 ≤ k ≤ ν

}
with T̂ ℓ(θk) = k

(
Ŷ ℓ,d(θk), Φ̂

ℓ,d,q(θk), ζ(θk)
)
;

end

until (convergence) ;

Algorithm 1: Implementation of the illustration problem.

Algorithm 1 can be expected to be well adapted to solving the stochastic coupled
problem when the random Young modulus field or the random Poisson coefficient
field or both have a very high dimension, that is, mE or mν or both are very large,
and the KL decomposition is able to accurately characterize the displacement on Σ
by a representation of low or moderate dimension d; here, the displacement on Σ
can be expected to admit a representation of low or moderate dimension because it is
obtained by solving a stochastic elliptic boundary value problem whose solution can be
expected to be smoother than its coefficients because of homogenization associated
with its elliptic nature. Indeed, then, Algorithm 1 can be expected to be able to
combine the computational efficiency of the Monte Carlo sampling method for solving
the elasticity subproblem of “very high dimension” with the computational efficiency
of spectral methods for solving the electrostatics subproblem of “low or moderate
dimension,” thus making the proposed hybrid method computationally efficient.
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5. Numerical results.

5.1. Parameter values. With reference to the Cartesian reference frame (x1,x2)
with origin o defined in Fig. 4.1, in the original configuration, we assumed the mi-
crobridge to occupy the rectangular region D = {20 µm < x1 < 120 µm, 4 µm <
x2 < 4.5 µm} and the exterior domain surrounding the microbridge to occupy the re-
gion Ω = {0 < x1 < 140 µm, 0 < x2 < 50 µm}\D. Thus, in the original configuration,
we assumed the microbridge to have a length of 100 µm, to have a height of 0.5 µm,
and to be separated from the lower horizontal edge of the electrode by a gap of 4µm.
We assumed a potential difference φext of 50V between the microbridge and the elec-
trode. This potential difference was sufficiently large to require that the geometrical
coupling of the elastic and electrostatic behavior and the geometrical nonlinearity in
the elastic behavior be taken into account, as the results to follow will indicate.

We used a structured mesh of 2400 = 600×4 four-node quadrilateral elements for
the domain occupied by the microbridge and an unstructured mesh of 3482 three-node
triangular elements for the exterior domain surrounding the microbridge.

5.2. Nominal coupled problem. First, we used a deterministic and position-
independent Young modulus E of 65MPa, Poisson coefficient ν of 0.23, and electrical
permittivity ε0 equal to the electrical permittivity of vacuum. We solved the resulting
deterministic coupled problem using the Gauss-Seidel partitioned method.

(a) Displacement. (b) Potential.

Fig. 5.1. Nominal coupled problem: (a) displacement and (b) potential.

Figure 5.1 shows the solution thus obtained. The vertical component of the dis-
placement at the mid point, that is, at (x1 = 70µm, x2 = 4.25 µm), was −0.7582 µm.

5.3. Stochastic coupled problem. Next, we used random Young modulus and
Poisson coefficient fields with position-independent mean values E = 65MPa and ν =
0.23, spatial correlation lengths aE = aν = 5 µm, and coefficients of variation δE =
δν = 2.5%, and we used a random electrical permittivity with a mean value equal to
the electrical permittivity of vacuum and coefficient of variation δε0 = 2.5%.
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Fig. 5.2. Stochastic coupled problem: twenty-five largest eigenvalues of the covariance operators
whose kernels are given by (4.4) and (4.5).
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Figure 5.2 shows the twenty-five largest eigenvalues of the covariance integral
operators whose kernels are given by (4.4) and (4.5). We note that we use the notation
[−] in axes labels to indicate dimensionless quantities. We retained mE = mν = 25
terms in (4.1) and (4.2), the adequacy of this truncation being indicated by the decay
of the eigenvalues. The modeling of the Young modulus and Poisson coefficient by
random fields of dimension mE = mν = 25 and of the electrical permittivity by a
random variable results in a stochastic coupled problem of dimension 51 = 25+25+1.
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Fig. 5.3. Stochastic coupled problem: a few samples of (a) the random Young modulus field
and (b) the random Poisson coefficient field as a function of the horizontal position, that is, as a
function of x1, at the vertical position of the neutral fiber, that is, at x2 = 4.25 µm.

Figures 5.3(a) and 5.3(b) show a few samples of the random fields thus obtained.

5.4. Hybrid method. We implemented the proposed hybrid method as in Al-
gorithm 1. We obtained numerical results using a range of values for the number
of samples ν, the number of iterations, and the error tolerance levels ǫ1 and ǫ2. We
discuss the convergence later. For now, we present detailed numerical results obtained
for ǫ1 = 2.5× 10−3 and ǫ2 = 1× 10−8, for 25 iterations, and for ν = 10, 000 samples.
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Fig. 5.4. Hybrid method: (a) mean yℓ
Σ (dashed), (b) eigenvalues λℓ

1, . . . , λ
ℓ
10, (c) eigen-

modes ϕ
ℓ,1
Σ and ϕ

ℓ,2
Σ (dashed and dash-dotted, respectively; rescaled for clarity), and (d) ensemble

of samples {(ηℓ1(θk), η
ℓ
2(θk)), 1 ≤ k ≤ ν} of the KL decomposition of Ŷ ℓ

Σ at iteration ℓ = 25.
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Figure 5.4 shows a few components of the KL decomposition of the displacement
on Σ obtained at iteration ℓ = 25. We observe that the eigenvalues of the KL de-
composition of the displacement on Σ (Fig. 5.4(b)) decay at a higher rate than those
of the KL decompositions that determine the random Young modulus and Poisson
coefficient fields (Fig. 5.2). This result is consistent with our earlier observation that
the elasticity subproblem can be expected to provide a solution that is smoother than
its coefficients owing to its elliptic nature; refer to Sec. 4.10. Further, the high rate of
decay of the eigenvalues indicates that the KL decomposition of the displacement on Σ
can be truncated after only a small number of terms while accuracy is maintained.

We found that a truncated KL decomposition retaining d = 2 terms was suffi-
ciently accurate to satisfy (4.27) for ǫ1 = 2.5 × 10−3 at iteration ℓ = 25. Thus, for
this error tolerance level, at this iteration, and in the context of the proposed hybrid
method, the elasticity subproblem had a “very high dimension” of 51 = 25 + 25 + 1
and the electrostatics subproblem had a “low or moderate dimension” of 3 = 2 + 1.

Because d = 2 was sufficiently accurate to satisfy (4.27) for ǫ1 = 2.5 × 10−3 at
iteration ℓ = 25, the proposed hybrid method necessitated for this tolerance level at
this iteration the construction of two-dimensional polynomial chaos.
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Fig. 5.5. Hybrid method: coefficients in the polynomial chaos expansion of the potential at the
point (x1 = 70.3392 µm, x2 = 1.9165 µm) at iteration ℓ = 25.

We found that a polynomial chaos expansion truncated at order q = 3 was suf-
ficiently accurate to satisfy (4.28) for ǫ2 = 1 × 10−8 at iteration ℓ = 25. Figure 5.5
shows a few coefficients involved in the polynomial chaos expansion of the potential
obtained for this error tolerance level at this iteration. We observe that the magnitude
of the coefficients decreases at a high rate with increasing order.
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Fig. 5.6. Hybrid method: probability density function of the vertical component of the displace-
ment at the mid point (x1 = 70 µm, x2 = 4.25 µm) at iteration ℓ = 25.

Figure 5.6 shows the probability density function estimated using the kernel den-
sity estimation method [14] from the ensemble of samples of the vertical component
of the displacement at the mid point obtained at iteration ℓ = 25. At this iteration,
the ensemble of samples of the vertical component of the displacement at the mid
point had a sample mean of −7.600× 10−1

µm and coefficient of variation of 4.199%.
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5.5. Convergence study. We conducted the following convergence study to
examine the impact of the error tolerance levels ǫ1 and ǫ2, the number of iterations,
and the number of samples ν on the numerical results.
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Fig. 5.7. Convergence study: (a) dimension d for ǫ1 = 5 × 10−3 (circles), ǫ1 = 2.5 ×
10−3 (squares), and ǫ1 = 1.25 × 10−3 (diamonds) and ǫ2 = 1 × 10−8 and (b) order q for ǫ1 =
2.5× 10−3 and ǫ2 = 1× 10−4 (circles), ǫ2 = 1× 10−6 (squares), and ǫ2 = 1× 10−8 (diamonds), as
a function of the iteration, and for ν = 10, 000 samples.

For each number of samples ν that we considered, at each iteration ℓ, we selected d
and q as the smallest values that satisfy (4.27) and (4.28) for given values of ǫ1 and ǫ2.
We ran the proposed hybrid method for several values of ǫ1 and ǫ2. Figures 5.7((a)
and (b)) show the values of d and q that were selected as a function of the iteration
for ν = 10, 000 samples. We observe that a higher dimension and order were selected
when we set ǫ1 and ǫ2 to lower values and we therefore required higher accuracy.
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Fig. 5.8. Convergence study: convergence of the ensembles of samples of the displacement and
potential for ǫ1 = 2.5 × 10−3 and ǫ2 = 1 × 10−8, with respect to the number of iterations, and
for ν = 10, 000 samples.

For each number of samples ν that we considered, and while selecting d and q at
each iteration as mentioned previously, we monitored the convergence of the ensembles
of samples of the displacement in D and potential with respect to the number of
iterations. Figure 5.8 shows the convergence of these ensembles of samples for ǫ1 =
2.5 × 10−3 and ǫ2 = 1 × 10−8, with respect to the number of iterations, and for ν =
10, 000 samples; we note that we use the superscript ∞ in figure captions to indicate
results that have converged with respect to the number of iterations. We observe
linear convergence up to iteration ℓ = 20, after which the effects of rounding errors
due to the machine precision became significant and prevented further convergence.
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Fig. 5.9. Convergence study: (a) sample average (circles) and 95% confidence region for the
mean (filled) and (b) sample variance (circles) and 95% confidence region for the variance (filled)
of the vertical component of the displacement at the mid point (x1 = 70 µm, x2 = 4.25 µm) for
ǫ1 = 2.5× 10−3 and ǫ2 = 1× 10−8 as a function of the number of samples.

While selecting the number of iterations sufficiently high for the effects of rounding
errors to prevent further convergence and while selecting d and q at each iteration
as mentioned previously, we monitored the convergence of estimates of statistical
descriptors of the displacement in D and potential with respect to the number of
samples. Figure 5.9 shows the convergence of estimates obtained for the mean and
variance of the vertical component of the displacement at the mid point using ǫ1 =
2.5×10−3 and ǫ2 = 1×10−8 with respect to the number of samples. The estimates of
the mean and variance obtained for ǫ1 = 2.5×10−3 and ǫ2 = 1×10−8 and ν = 10, 000
samples were (−7.600±0.006)×10−1

µm and (1.019±0.020)×10−3
µm2, respectively.
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Fig. 5.10. Convergence study: square of the least-squares norm (circles) and 95% confidence
region for the square of the least-squares norm (filled) of the displacement in D for ǫ1 = 2.5× 10−3

and ǫ2 = 1× 10−8 as a function of the number of samples.

Similarly, Fig. 5.10 shows the convergence of an estimate obtained for the square of
the least-squares norm of the displacement inD using ǫ1 = 2.5×10−3 and ǫ2 = 1×10−8

with respect to the number of samples. The estimate obtained using ǫ1 = 2.5× 10−3

and ǫ2 = 1× 10−8 and ν = 10, 000 samples was equal to (8.748± 0.014) µm4.

5.6. Comparison with Monte Carlo sampling method. We also imple-
mented the Gauss-Seidel partitioned method in (4.10)–(4.11) using solely the Monte
Carlo sampling method as in Sec. 2.3. We used as the ensemble of i.i.d. samples
{(ξ(θk), ζ(θk)), 1 ≤ k ≤ ν} for the implementation that uses solely the Monte Carlo
sampling method precisely the ensemble that we had used before for the implemen-
tation that uses the proposed hybrid method, thus enabling direct comparison of the
samples of the displacement in D and potential provided by these implementations.
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Fig. 5.11. Comparison with Monte Carlo sampling method: least-squares norm of the difference
of the displacement in D and potential provided by the Monte Carlo sampling and the proposed hybrid
method for ǫ1 = 5 × 10−3 (circles), ǫ1 = 2.5 × 10−3 (squares), and ǫ1 = 1.25 × 10−3 (diamonds)
and ǫ2 = 1× 10−8, as a function of the iteration, and for ν = 10, 000.
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Fig. 5.12. Comparison with Monte Carlo sampling method: least-squares norm of the difference
of the displacement in D and potential provided by the Monte Carlo sampling and the proposed hybrid
method for ǫ1 = 2.5× 10−3 and ǫ2 = 1× 10−4 (circles), ǫ2 = 1× 10−6 (squares), and ǫ2 = 1× 10−8

(diamonds), as a function of the iteration, and for ν = 10, 000.

Figures 5.11 and 5.12 compare the numerical results provided by the implemen-
tation that uses solely the Monte Carlo sampling method with those provided by the
implementation that uses the proposed hybrid method. We observe that the difference
between the samples of the displacement in D and potential provided by these imple-
mentations remained bounded as the iterations progressed and was reduced system-
atically when we improved the accuracy of the KL decomposition of the displacement
on Σ and the polynomial chaos expansion of the potential by decreasing ǫ1 and ǫ2.

The estimates for the mean and variance of the vertical component of the dis-
placement at the mid point and that for the square of the least-squares norm of the
displacement in D provided by the implementation that uses solely the Monte Carlo
sampling method were equal to (−7.600±0.006)×10−1

µm, (1.019±0.020)×10−3
µm2,

and (8.748 ± 0.014) µm4, respectively. They are identical to those given in the pre-
vious section for the implementation that uses the proposed hybrid method for ǫ1 =
2.5 × 10−3 and ǫ2 = 1 × 10−8. Hence, at least for these values of the error toler-
ance levels, the truncation error—which may exist in the estimates provided by the
implementation that uses the proposed hybrid method owing to the solution of the
electrostatics subproblem by a spectral method in only a reduced-dimensional space
for only a truncated polynomial chaos expansion; refer to Sec. 2.6—is dominated by
the sampling error because it leaves unaffected all significant digits.
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5.7. Effectiveness. We assessed the computational efficiency of the proposed
hybrid method for solving the illustration problem described previously as follows.
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Fig. 5.13. Effectiveness: (a) time required for solving the elasticity subproblem using a spectral
method as a function of the dimension of this subproblem, that is, mE +mν + 1, and the order of
the sought polynomial chaos expansion of the displacement in D and (b,c) values of the dimension
and order for which this time is larger than that required for solving the elasticity subproblem using
the Monte Carlo sampling method with either ν = 1, 000 or ν = 10, 000 samples.
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Fig. 5.14. Effectiveness: (a) time required for solving the electrostatics subproblem using a
spectral method as a function of the dimension of this subproblem, that is, d + 1, and the order of
the sought polynomial chaos expansion of the potential and (b,c) values of the dimension and order
for which this time is smaller than that required for solving the electrostatics subproblem using the
Monte Carlo sampling method with either ν = 1, 000 or ν = 10, 000 samples.

For several combinations of values of mE , mν , d, q, and ν, we repeated the fol-
lowing study. For each combination of values of mE , mν , d, q, and ν, first, we solved
the coupled elasticity/electrostatics problem using the proposed hybrid method. Once
convergence with respect to the number of iterations was obtained, we halted the pro-
posed hybrid method and then focused our attention on the elasticity and electrostat-
ics subproblems that were solved at the last iteration: For this elasticity subproblem,
we compared the time that a single-core computer required to obtain the solution us-
ing a spectral method with the time that this single-core computer required to obtain
the solution using the Monte Carlo sampling method; likewise, for this electrostatics
subproblem, we compared the time that a single-core computer required to obtain
the solution using a spectral method with the time that this single-core computer
required to obtain the solution using the Monte Carlo sampling method.

Figures 5.13 and 5.14 summarize our findings. On the one hand, the time re-
quired by the spectral method to obtain the solution to the elasticity subproblem
increased quickly with its dimension and with the order of the polynomial chaos ex-
pansion of the displacement in D but was essentially independent of the number of
samples (Fig. 5.13(a)); likewise, the time required by the spectral method to obtain
the solution to the electrostatics subproblem increased quickly with its dimension and
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with the order of the polynomial chaos expansion of the potential but was essentially
independent of the number of samples (Fig. 5.14(a)). On the other hand, the time
required by the Monte Carlo sampling method to obtain the solution increased pro-
portionally to the number of samples. Correspondingly, for both the elasticity and the
electrostatics subproblem, we can observe that the set of combinations of values of the
dimension and order for which the spectral method required less time than the Monte
Carlo sampling method was limited to low and moderate values of the dimension and
order and reached to higher values of the dimension and order when we increased the
number of samples (Figs. 5.13((b) and (c)) and 5.14((b) and (c))).

We emphasize that the distinction between subproblems of “very high dimension”
and those of “low or moderate dimension” in Figs. 5.13 and 5.14 applies only to our
implementation of the coupled elasticity/electrostatics problem under study: whether
values of the dimension and order are very high or low or moderate depends on the
problem specificities and solver technology used, as well as on the number of samples.

We conclude that the proposed hybrid method is computationally efficient for
solving the illustration problem described previously in Secs. 5.1–5.6. Indeed, while
the elasticity subproblem was of “very high dimension” because we represented the
elastic coefficients by high-dimensional random fields (Sec. 5.3), the proposed hybrid
method allowed the electrostatics subproblem to be solved in a low-dimensional space
because the KL decomposition was able to extract a low-dimensional representation
of the displacement on Σ (Secs. 5.4 and 5.5), while maintaining accuracy (Sec. 5.6).
Accordingly, the proposed hybrid method was computationally efficient for solving
the illustration problem because it allowed the computational efficiency of the Monte
Carlo sampling method for solving the elasticity subproblem of “very high dimension”
to be combined with the computational efficiency of a spectral method for solving the
electrostatics subproblem of “low or moderate dimension” (Figs. 5.13 and 5.14).

6. Conclusion. We proposed a hybrid Monte Carlo sampling/spectral method
for solving stochastic coupled problems. The main feature of the proposed hybrid
method is that it allows uncertainties to be accurately propagated through coupled
problems and yet can be implemented as a wrapper around separate methods for the
propagation of uncertainties through subproblems, where the most computationally
efficient Monte Carlo sampling or spectral method can be used. After laying out the
theoretical framework, we demonstrated the proposed hybrid method by applying it
to a stochastic multiphysics problem relevant to microelectomechanical systems.

In the illustration problem, we studied some issues relevant to error analysis,
stability, and convergence from a numerical point of view. The complementary study
of such issues from a theoretical point of view using, for example, a posteriori error
estimation methods [4], constitutes an interesting direction for future work.
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