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1. INTRODUCTION

A bound for the (n,m)-mixed chromatic number in terms of the chromatic num-
ber of the square of the underlying undirected graph is given. A similar bound
holds when the chromatic number of the square is replaced by the injective chro-
matic number. When restricted ton = 1 and m = 0 (i.e., oriented graphs) this gives
a new bound for the oriented chromatic number. In this case, a slightly improved
bound is obtained if the chromatic number of the square is replaced the 2-dipath
chromatic number (defined in Section 4). In all cases, the method of proof general-
izes an argument that has been used to obtain Brooks-type theorems for injective
oriented colorings [1, 2, 3, 4, 5, 6, 7, 8]. Similar, though not identical, arguments
have appeared in the work of Sopena [9], and Nesetfil and Raspaud [10, 11].

Colorings of mixed graphs were first studied by Nesetiil and Raspaud [11]. They
gave a bound on the (n, m)-mixed chromatic number in terms of the acyclic chro-
matic number of the underlying undirected graph. Bounds for the (0,2)-mixed
chromatic number of planar graphs and other graph families have been found [12].
Some of these have been extended to arbitrary n and m [13].

2. DEFINITIONS
For basic definitions in graph theory, see the text by Bondy and Murty [14].

Definition 2.1. A (n,m)-colored mixed graph is an (m + n + 1)-tuple G =
(‘/, Al, AQ, ey A'm El, EQ, N Em) where:
(1) V is a set of vertices;
(2) fori=1,2,...,n the set A; is a set of ordered pairs of distinct vertices of
G called the arcs of color i;
(3) forj=1,2,...,m the set E; is a set of unordered pairs of distinct vertices
of G called the edges of color ¢; and
(4) the underlying undirected graph U[G|, with vertex set V(U[G]) = V(G)
and an edge joining x to y for every i for which the ordered pair xy € A;
and for every j for which the unordered pair xy € Ej, is simple.

Observe that a (0, 1)-colored mixed graph is a simple graph, and a (1, 0)-colored
mixed graph is an oriented graph.

Homomorphisms between (n, m)-colored mixed graphs are defined in the natural
way. For (n,m)-colored mixed graphs G and H, a homomorphism of G to H is a
function f : V(G) — V(H) such that for 1 < i < n we have f(z)f(y) € A;(H)
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whenever zy € A;(G), and for 1 < j < n we have f(z)f(y) € E;(H) whenever
zy € E;(G). For more on homomorphisms see [15].

Observe that homomorphisms of (n, m)-colored mixed graphs compose. That is,
if F,G, and H are (n,m)-colored mixed graphs, f is a homomorphism of F to G
and ¢ is a homomorphism of G to H, then g o f is a homomorphism of F' to H.

By analogy with the corresponding definitions for other coloring concepts for
oriented graphs, a k-coloring of a (n,m)-colored mixed graph is defined to be a
homomorphism to a (n,m)-colored mixed graph on k vertices. The smallest k for
which there is a k-coloring of a (n,m)-colored graph G is called the (n,m)-mized
chromatic number of G and denoted X m)(G).

Informally, a k-coloring of an (n, m)-colored mixed graph is a partition of the
vertices of G into k independent sets (sets containing no edges or arcs of any color)
X1,Xs,..., Xy such that, for any two independent sets X, and X, there is only
one type of adjacency — only arcs of the same color and orientation, or only edges
of the same color — between vertices in X, and X,.

Example 1. Consider a path on four vertices vy, vo, v3, v4 wWith arcs vive and vovs
of color 1 and an edge v3v4 of color 1. Call this (1, 1)-colored mixed graph G. Then
X (n,m)(G) = 3; color v1 and vy with color 1, vy with color 2, and vz with color 3.

Example 2. Consider a path on five vertices vy, va, v3,v4, v5 with arcs vive and
vov3 of color 1, an edge vzvy of color 1, and an edge vqvs of color 2. Call this (1,
2)-colored mixed graph G. Then X(p,m)(G) = 4; color vy and vy with color 1, vy
with color 2, v3 with color 3, and vs with color 4.

We next define a (n, m)-mixed graph, Let ¢ > 3. For k = 1,2,...,¢, let I}, be
the set of all sequences of length ¢ in which the k' element is “” and every other
entry is a “+;” or 7—;” (1 <i<n), or “~;” (1 <j<m).

Definition 2.2. The graph H(tn - the (n,m)-colored mized graph with vertex
set V(an m)) =LUlU---Ul, and

(1) an arc of color i joining sequence sy € Iy to sequence sp € Iy if and only if
the (-th entry of si is “4+;” and the k-th entry of sy is “—;’, and

(2) an edge of color j joining sy € Iy to sequence sy € Iy if and only if the (-th
entry of s and the k-th entry of s¢ are both ~;.

In the next section, we bound the (n, m)-mixed chromatic number of H (tn m)*

3. MAIN RESULT

The graph H (tl,o) is used to prove bounds for injective oriented colorings [1, 2, 3,
4, 5]. Young has proved that an oriented graph can be properly ¢-colored so that
any two vertices joined by a directed path of length two get different colors if and
only if it has a homomorphism to H (t1,0) [8] (Min and Wang [16] call this a 2-dipath
k-coloring.) Our bound on the (n,m)-mixed chromatic number of a (n,m)-mixed
colored graph G will be obtained by coloring the square of the underlying graph of
G with ¢ colors, and then refining this coloring to obtain a homomorphism of G to
Ht

(n,m)’



Lemma 3.1. (The Refinement Lemma)

X(nom) Hip ) <1+ (2n+m) + (2n+m)* + -+ + (2n+m)"!

t ifn=0and m=1
=3 @n+m)t-1
2n+m—1

otherwise.
Proof. Let B =1+ (2n+m) + (2n+m)? + -+ + (2n + m)'~1. We describe a
(n, m)-mixed B-coloring of H, ). For k = 1,2,...,t, partition the independent
set Iy into (2n +m)*~1 subsets Ij.,, 1 < ¢ < (2n+m)*~1, such that all sequences
in Iy, agree in the first £ places. The total number of sets I, ; is B.

By definition of these sets, if p < r then:

(1) all arcs joining vertices in I, , and I, s are of color ¢ and:
(a) oriented towards I, 4 if the p-th symbol of all sequences in I, 5 is “+;”
and the r-th symbol in of all sequence in I, ; is “—;”;
(b) oriented towards I, ¢ if the p-th symbol of all sequences in I, 5 is “—;”
and the r-th symbol in of all sequence in I, 5 is “+;”;
(2) all edges joining vertices in I, , and I, s are of color j if p-th symbol of all

sequences in [, s and the r-th symbol of all sequences in I, ,) are both ~;.

Hence, by identifying all vertices in each set Iy, 1 < k <t, 1 < £ < (2n +
m)*~1, a homomorphism of anm) onto the (n,m)-colored mixed graph O, ,,) on
B vertices is obtained. Therefore, Xy, m) (an,m)) < B. O

Lemma 3.1 is dubbed “The Refinement Lemma” because the independent sets
I, are refined in order to obtain the homomorphism to Oy, -

Let G be an (n,m)-colored mixed graph. Define S(G) to be square of the un-
derlying undirected graph of G. That is, S(G) has the same vertex set as G and
zy € F if and only if 1 < distg(z,y) < 2.

Lemma 3.2. Let G be an (n,m)-colored mized graph. If S(G) is t-colorable, then

there is a homomorphism from G to th,m).

Proof. Let Cy,Cy,...,Ct be a t-coloring of S(G). Let x € Cj. Define the sets
Sz ={p:zy € A;)(G) for some y € Cp}, Ry = {p: yx € A;(G) for some y € Cp},
and T, ; = {p : zy € E;(G) for some y € C,}. These are, respectively, the sets of
(vertex) colors to which x sends an arc of color ¢ in D, from which z receives an arc
of color i in D, or to which z is joined by an edge of color j in D. Since C} is an
independent set « ¢ Sy ; U R, ;» UT, ; for any 4,7 and j. By construction of S(G),
for all 4,7 and j the intersection between any two of S, ;, R, + and T ; is empty.
Thus, each vertex in C}, can be associated with a sequence with k-th entry is “”
and in which the /-th entry is “+;” if k € S;;,1s “—;" if kK € Ry, is ~; if k € Ty 5,

and is ~; otherwise. This is a homomorphism of G to H (tn m)* (]

Corollary 3.3. Let G be an (n,m)-colored mized graph. If S(G) is t-colorable,
then

Xnm)(G) <1+ (2n+m)+ 2n+m)® + -+ (2n+m)" ™!

t ifn=0andm=1
=\ @nt+m)t—-1

e otherwise.



An injective k-coloring of a graph G is an assignment of &k colors to the vertices
of G so that vertices at distance two are assigned different colors. Adjacent vertices
may be assigned the same color. The injective chromatic number of G is the least
k for which there exists an injective k-coloring of G. It is bounded above by the
chromatic number of S(G) (ex. see [17]).

The previous arguments work essentially as given with a small modification to
take into account the fact that vertices of the same color may be adjacent. The
graph H(tmm) is redefined by replacing replace each “” by one of “+;”, “—;”, or

“

~;”. This increases both the number of vertices of H, (tn m) and the bound on its
(n,m)-mixed chromatic number by a factor of (2n + m). Thus, one obtains:

Corollary 3.4. Let G be an (n,m)-colored mized graph. If G has an injective
t-coloring, then

X(n,m)(G) < (2n+m) + (2n + m)2 +--+(2n+ m)t

{t if n=0andm=1

(2n + 771)7(2n+m)t_1

T otherwise.

4. ORIENTED COLORINGS

When n = 1 and m = 0 we have an oriented graph, and the (n,m)-mixed
chromatic number equals the oriented chromatic number. Hence the above results
imply bounds for the oriented chromatic number. In particular, if S(G) has a
t-coloring, then x,(G) < 2 — 1.

An important property of a coloring of S(G), or an injective t-coloring of G,
used in the above arguments is that vertices joined by a directed path of length
two must be assigned different colors. The 2-dipath chromatic number of G is the
smallest k£ for which there is a 2-dipath k-coloring of G. The 2-dipath chromatic
number is at most the chromatic number of the square [16].

The argument in Section 3 goes through unchanged for oriented graphs if a k-
coloring of S(G) is replaced by a 2-dipath k-coloring of G. This is the same as
replacing S(G) by the square of G as a directed graph (two vertices are if they are
joined by a directed path of length at most two) in the argument. Doing so, one
obtains the following bound:

Corollary 4.1. Let G be an oriented graph. If G has an 2-dipath t-coloring, then
Xo(G) = X(1,0)(G) < 2t —1

Finally, if the 2-dipath t-coloring need not assign different colors to adjacent
vertices, then proceeding as discussed at the end of the previous section one obtains
Xo(G) = X(1,0)(G) < 2! — 1 (also see [7]).
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