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Adaptive expectations and cobweb phenomena:
does heterogeneity matter?

Domenico Coluccia, Vincenzo Valoria,∗

aUniversità di Firenze, Via C. Lombroso 6/17, 50134 Firenze, Italy.

Abstract

This paper studies a cobweb-type commodity market characterised by a strictly monotone
demand and supply, in which n types of firms operate. Types differ in a key parame-
ter governing price expectations which are supposed to be adaptive. The unique steady
state of the resulting economic dynamics is characterized in terms of stability and the
impact of the number of firms types is studied: to this end the notions of structural and
behavioural degree of instability, which are introduced in the paper, prove to be crucial
in determining whether stability or instability prevail. The case of market integration is
also considered and conditions to have stability (or instability) in terms of the original
markets’ parameters are given. The baseline structure is extended in two directions. The
first extension assumes the point of view of an authority who is uncertain about the firms
types. In this case the structural degree of instability determines how heterogeneity af-
fects the probability of ending up with a stable outcome. The second extension consists
in endogenizing the choice of predictors through a discrete choice based evolutionary
mechanism. In both cases the amount of the heterogeneity and its possible variations
play a critical role in shaping the range of possible long-run outcomes of the model.

Journal of Economic Literature Classification Numbers: D83; D84; E17; E32

Keywords: heterogeneous expectations, bounded rationality, stability of steady states,
market integration, evolutionary dynamics

1. Introduction and related literature

The existence of a certain amount of heterogeneity in economic expectations is un-
controversial. Evidence of heterogeneous expectations in inflation forecasts for example
(both by professionals and non-professional forecasters) has been presented by Branch
[2], Carroll [6] and Mankiw et al. [21]. The extent, the variability and the consequences
of such expectations disagreement are an open and interesting research question. The
range of applications and models in which such question receives attention includes for
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example monetary policy theory and design (as in Honkapohja and Mitra [16]), models of
exchange rate dynamics (e.g. Manzan and Westerhoff [22]) and asset pricing (for recent
examples see Buraschi and Jiltsov [4], Jouini and Napp [19]). Heterogeneous expectations
have also been invoked to explain stylized facts such as the volume of trade exchange (see
e.g. Frankel and Froot [13]). Further, for some types of agricultural markets in which
biological lags naturally suggest the use of cobweb models, heterogeneous expectations
have been detected and estimated, for instance by Chavas [7]. A rather comprehensive
survey on these studies can be found in Hommes [18].

The present work is part of a thread of literature dealing with the cobweb model
under bounded rationality which goes back to studies by Nerlove [24] and Carlson [5] a
few decades ago. More recently Hommes [17] investigated a homogeneous cobweb model
with adaptive expectations, a linear demand curve and a nonlinear supply curve and
showed that adaptive expectations stabilize the amplitude of price fluctuations, but at
the same time these smaller price fluctuations become more complicated, even chaotic.

In essence, this paper studies the conditions under which coordination or disagreement
of beliefs among individuals of limited rationality emerge and the impact of a moderate
degree of expectations’ heterogeneity on dynamic stability. In particular we consider the
problem of characterizing dynamic stability of equilibria in a cobweb model in which n
types of firms use adaptive expectations with specific gain parameters. The heterogeneity
we take into account is indeed moderate because it is limited to a key parameter govern-
ing expectations which are otherwise all drawn from the same expectations mechanism.
It turns out that in our model two sources of (potential) instability can be identified: a
structural source, linked to the market’s fundamentals (such as the shape of demand and
supply curves) and a behavioural source, embedded in the profile of expectations char-
acterizing the suppliers. A necessary and sufficient condition for local stability involving
these factors is demonstrated. Such condition implies no particular restriction on indi-
vidual firms, but only on the entire set of firms as a whole. For the asymptotically stable
configurations we characterize the situations in which convergence occurs monotonically
and those in which the steady state is approached through oscillations giving rise to the
traditional cobweb phenomena.

The structural and behavioural sources of instability also show up as we study the
effects of modifying the number of firms types. A situation in which this can happen
without altering the remaining structure of the market may arise for example as producers
form a (or walk out from) a consortium so that their heterogeneous expectations cease
to (or start to) affect the market directly. On the contrary the heterogeneity changes
along with other important structural aspects when two markets that were previously
separated are joined into one bigger marketplace, for example as a result of trading
agreements between states, or of the introduction of new technology allowing such a
change.

Motivated by the difficulty to actually observe expectations, whereas it is easier to
measure some structural features of a given market, such as the relevant demand and
supply price elasticities, we take the perspective of an observer (e.g. a policy maker) who
knows the structural parameters of the market but is uncertain about the behavioural
ones. A similar perspective was applied by Colucci and Valori [9] to an asset-pricing
model. The existence of a probability distribution of the behavioural parameters defining
types is assumed and probabilities of convergence conditional on the structural source of
instability are worked out. A form of polarization of convergence probabilities induced
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by increasing the heterogeneity is documented. When the number of types gets large,
stability is almost certain for levels of the structural parameters up to a certain threshold,
while the system is almost certainly unstable past the threshold.

Finally the model is extended to allow the possibility for the firms to endogenously
switch between different values of the adaptive parameter on the basis of the past payoffs
attached to each such value (whether directly observed or ex-post calculated), using an
evolutionary mechanism of discrete choice among predictors. The upshot is that, while
the variety of possible behaviors increases thanks to the stochastic elements introduced,
forms of polarization similar to those encountered in the model without switching emerge,
thus suggesting a certain robustness of these features connected to variations in the degree
of expectatations heterogeneity.

Brock and Hommes [3] introduced the possibility for firms in the cobweb to choose
between costly rational expectations and naive expectations, using a stochastic discrete
choice model and documenting complex dynamics within an adaptively rational equi-
librium (the so-called rational route to randomness). Later, Goeree and Hommes [14]
generalized this model to nonlinear (monotonic) demand and supply, while Branch [1] in-
troduced a kind of adaptive expectations (or rather a fading memory mechanism) within
the menu of available predictors. Similarly, Lasselle et al. [20] consider the cobweb model
with costly rational versus free adaptive expectations. With respect to these papers the
present work stands in a somewhat slant position, in the sense that while our basic setup
can be considered a special case of the Brock and Hommes [3] cobweb model, the focus
here is different, given that, even when switching is allowed for, there is not a globally
”best” predictor to choose. At the same time our analysis places no particular restrictions
on supply and demand and number of adaptive types, attaining hitherto undescribed re-
sults about the effect of multy-type adaptive expectations firms within a general cobweb
model.

Other works in which the role of producers’ heterogeneity within the cobweb model
is inquired include Chiarella et al. [8], where the heterogeneity is in the lag lengths
and memory parameters applied to past prices as well as in risk aversion coefficients and
Onozaki et al. [25] where producers are either ‘naive optimizers’ or ‘cautious adapters’: in
both these papers heterogeneity can result in dramatic consequences with respect to the
relevant representative agent benchmark. Negroni [23] investigates a two-agents problem
with adaptive expectations which is akin to this paper’s but for the assumed asymmetry
in the roles of the agents which is absent here. A closely related feature also shows up
in the paper by Evans and Guesnerie [11], who name it ”structural heterogeneity” and
show its potential role of destabilising force when coupled with different beliefs.

The paper is organised as follows: Section 2 introduces the model and states a couple
of results which are then used throughout the paper. The issue of understanding the
specific role of the number of firms in shaping stability is addressed in Section 3. Section
4 deals with the probability of convergence when there is uncertainty about the firms’
behavioural characteristics. Section 5 considers the endogenous selection of adaptive
parameters through a discrete choice model and reports results of several simulation
exercises. All the proofs are contained in the Appendix.
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2. The Model

Consider a cobweb-type commodity market in which each firm, that come in n dif-
ferent types, needs to allow for a production lag and so choose optimal supplied quan-
tities conditioned on the forecasted future price pei , which characterizes firms of type
i = 1, . . . , n. The total optimal supply for firms of type i is proportional to their aggre-
gate size, ψi > 0, hence

Si (p
e
i ) = ψis (p

e
i )

where s (pei ) solves the expected profit maximization problem

max
x

peix− c (x) (1)

given that c (x) is the (common) cost function which describes the available production
technology on the market.1 The demand is a function of the current price, D (p). We
assume a strictly increasing supply2 and a strictly decreasing demand, which are smooth
and intersecting at a point p∗. By defining Ψ =

∑
i ψi as the aggregate production

scale factor, S (·) = Ψs (·) and φi = ψi

Ψ as the market share of firms of type i (with∑n
i=1 φi = 1) the aggregate supply becomes

Ŝ
(
pet,1, . . . , p

e
t,n

)
= Ψ

n∑
i=1

φis
(
pet,i
)
=

n∑
i=1

φiS
(
pet,i
)
.

Market clearing requires that D (pt) =
∑n
i=1 φiS

(
pet,i
)
which, because demand is strictly

increasing, can be written explicitly as

pt = D−1

(
n∑
i=1

φiS
(
pet,i
)) ≡ F

(
pet,1, . . . , p

e
t,n

)
(2)

The way we model the relative sizes of the different types of producers on the market
is quite standard (see e.g. Onozaki et al. [25], Chiarella and He [8]), while the absolute
sizes ψi will only play a role later (see Section 3).3

We close the model assuming that expectations are adaptive with gains that differ
across different types of firms pet+1,i = pet,i+αi

(
pt − pet,i

)
, i = 1, . . . , n. Summing up, the

evolution of the system can be described by the following system of difference equations⎧⎨
⎩

pet+1,1 = pet,1 + α1

(
F
(
pet,1, . . . , p

e
t,n

)− pet,1)
. . .

pet+1,n = pet,n + αn
(
F
(
pet,1, . . . , p

e
t,n

)− pet,n) (3)

1Notice that the ex-post profit for the firm might be negative. Here we are implicitly assuming a no-
bankruptcy condition. The issue of market exit and profitability has been taken seriously and examined
by e.g. Commendatore and Currie [10].

2This can be easily justified assuming a strictly convex cost function in (1).
3This setup is compatible with a continuum of firms as in Brock and Hommes [3] and related literature

as well as with a finite number of firms, large enough to maintain the assumption of competitive market.
The paper can be read within both interpretations, with the exception of Section 5 where we explicitly
posit a finite number of firms.
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The above assumptions on the monotonicity of supply and demand guarantee that there
will be a unique steady state for the system (3), corresponding to the supply-demand
equilibrium price p∗. Notice that, in spite of the simplicity of adaptive expectations, the
number of different firms determines the dimension of the dynamical system (3): this is
a distinguishing feature of the model. Assuming for example that the n types of firms
use AR(p) forecasting models (with lags up to a given p) would make the dimension of
the system independent of n: so a large number of types would not, as it does here,
complicate the tractability of the model.

2.1. Special case: mono-type firms

It is useful to see what happens if there is only one firm type (see Hommes [17]).
In this case the price equation (2) reduces to pt = D−1 (Ψs (pet )) = D−1 (S (pet )) so the
system evolves according to

pet+1 = pet + α
(
D−1 (S (pet ))− pet

)
and the stability condition is −1 < 1− α+ α S′(p∗)

D′(p∗) < 1 which, defining δ = − S′(p∗)
D′(p∗) , we

can write as −1 < 1 − α − αδ < 1. Using the definition β = α
2−α and the fact δ > 0,

stability requires that
δβ < 1 (4)

As it turns out, the two parameters4 δ, β play a key role throughout the paper.
Label δ the structural degree of instability. Notice that as δ approaches 1 condition (4)
is automatically satisfied for any choice of α ∈ (0, 1), and if δ ≤ 1 stability is always
warranted under adaptive expectations. Therefore we assume δ > 1. The parameter β
will be called the behavioural degree of instability.

2.2. General case: n types

We now turn to the issue of how stability for the model in its general form with n
types relates to (behavioural) characteristics of the individual firms and to the market’s
exogenous structure (as given by the demand and supply functions). To this end notice
preliminarily that

∂F
(
pet,1, . . . , p

e
t,n

)
∂pet,i

∣∣∣∣∣
pet,1=···=pet,n=p∗

= φi
S′ (p∗)
D′ (p∗)

= −φiδ

so the Jacobian matrix of the system (3) evaluated at p∗ is:

Jn =

⎛
⎜⎜⎜⎝

1− α1 (φ1δ + 1) −α1φ2δ · · · −α1φnδ
−α2φ1δ 1− α2 (φ2δ + 1) · · · −α2φnδ

· · · · · · . . . · · ·
−αnφ1δ −αnφ2δ · · · 1− αn (φnδ + 1)

⎞
⎟⎟⎟⎠ (5)

4Notice that in turn δ depends on a third parameter, namely Ψ, the overall dimension of the economy.
This is relevant only when market integration is discussed.
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It seems fairly intuitive that if the conditions for individual stability derived above in
(4) are met (or violated) for each group of firms then stability (or instability) will prevail
on the market. Indeed this needs not be the case in general, as Franke and Nesemann
[12] have shown in a specific case in which two ”unstable” learning rules offset each other
bringing about a stable outcome. In our context, given the limited degree of freedom
in firms behaviour, such phenomenon is not possible and stability (or instability) at the
individual level suffice for stability (instability) with many types. Notice further that
the market can be stable even though stability conditions (4) do not hold for all types:
consider, for example, the case of a market with two groups of equal size having δ = 2,
β1 = 1

4 and β2 = 2
3 . Because δβ1 < 1 < δβ2, condition (4) entails that, in isolation,

the first group implies stability whereas the second implies instability, but overall the
market is stable (direct calculation or Proposition 2 show that such is the case). So it is
interesting to establish conditions by which stability is produced when n types of firms
supply the good. The following preliminary result is required.

Lemma 1. Consider a matrix

M =

⎛
⎜⎜⎜⎝

a1c1 + b1 a1c2 · · · a1cn
a2c1 a2c2 + b2 · · · a2cn
...

...
. . .

...
anc1 anc2 · · · ancn + bn

⎞
⎟⎟⎟⎠ (6)

with ai < 0, bi, ci > 0 for all i. Then

i) detM =
n∏
i=1

bi +
∑n
i=1 ciai

∏
j �=i

bj

ii) M has real eigenvalues
iii) (n− 1) eigenvalues of M belong to the interval [mini {bi} ,maxi {bi}] and for the
smallest eigenvalue of M , λmin, it is λmin < mini {bi}
iv) λmin is greater than −1 if and only if the characteristic polynomial, P (λ), is positive
at λ = −1.

Notice that the Jacobian (5) is a particular specification of matrix (6) with ai =
−αi, bi = 1 − αi, ci = φiδ. Therefore, as a consequence of part ii) and iii) of the above
Lemma applied to (5), the steady state of system (3) can loose (acquire) stability only
through a Period-doubling bifurcation. When the eigenvalues of (5) are all non-negative
the local convergence of expectations, quantities and price to their steady state value is
monotone: in that case, a perturbation of the model’s parameters does not result in a
qualitative change of the dynamics around the steady state.

Let us now turn to the stability properties of the steady state of the market dynamics.
Define themarket degree of behavioural instability for the n heterogeneous firms types case
as β̄n =

∑n
i=1 φiβi =

∑n
i=1 φi

αi

2−αi
. Perhaps surprisingly, stability can be characterised

in terms of β̄n and δ in the same way as in the homogeneous case.

Proposition 2. The steady state of the system (3) is locally stable and hyperbolic (i.e.
with eigenvalues strictly inside the unit circle) if and only if δβ̄n < 1.

The result says that, in order to have stability, the multiplicative combination of
structural and behavioural instability must not exceed one. So this establishes a threshold
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for the aggregate sources of instability in the market, marking the frontier between the
stable and the unstable regimes.

When the steady state is locally stable it is interesting to look for more insights
about the path of convergence to the equilibrium. The persistent fluctuating pattern of
prices in specific agricultural markets, originally attracted the attention of the economics
profession in the 1930s and propelled the development of the cobweb literature. We now
identify conditions under which our model implies oscillatory dynamics, in particular
along converging paths. Observe that the model allows both for monotone and for non-
monotone convergence, depending on the parameters values.

Proposition 3. The system (3) shows monotonic local convergence to the steady state
if and only if

∑n
i=1 φi

αi

(1−αi)
< 1

δ

Notice that the left hand side of the above inequality tends to 0 with the αi, so
monotone convergence is always possible independently of the market’s structural degree
of instability level. Furthermore, as the greatest eigenvalue cannot exceed 1, the robust-
ness of the market stability to parameters perturbations is stronger when convergence is
monotone and also, due to Lemma (5) below, it increases when the αi decrease.

5

2.3. Heterogenous versus average homogeneous markets

At this point the reader might raise the following doubt: if the heterogeneity in the
market were incorporated within a single representative type of firm, would there be any
real loss with respect to the more complex model of Section 2.2? It turns out that the
answer is ”yes”. The following Proposition compares the conditions for stability in the
homogeneous market with a single representative type (in the sense that its adaptive
gain parameter is equal to the weighted average of parameters of n given types), to those
for the heterogeneous market with those n types actually playing directly.

Proposition 4. Consider a market with n types of firms defined by gains α1, . . . , αn and
weights φ1, . . . , φn. Conditions for stability in the heterogeneous market are sufficient but
not necessary for the average homogeneous market with suppliers of a single average type
having gain α =

∑n
i=1 φiαi.

A simple numerical example can illustrate a case in which the heterogeneous market
is unstable but its average homogeneous counterpart would be stable. Consider n = 2,
φ1,2 = 1/2 and δ = 2. If α1 = 1/3 and α2 = 9/10 we have

β̄av =
1
2

(
1
3 + 9

10

)
2− 1

2

(
1
3 + 9

10

) =
37

83
<

1

2
⇒ β̄avδ < 1

β̄het =
1

2

( 1
3

2− 1
3

)
+

1

2

( 9
10

2− 9
10

)
=

28

55
>

1

2
⇒ β̄hetδ > 1

Proposition 4 argues in favour of the idea that heterogeneity matters, from the dy-
namic stability/instability viewpoint, in that it cannot be safely sterilized by using an

5On the contrary, the speed of convergence to the steady state is higher when convergence is non-
monotone as we show in the working paper version of this work.
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average representation instead of the whole heterogeneous picture. In a sense this result
also appears to indicate that, as opposed to the average homogeneous market, hetero-
geneity implies (or has a potential for) destabilization. More in general, while it is crucial
to fix ideas precisely as to what (de)stabilizing heterogeneity means, much depends on
the level of structural degree of instability, δ: Section 4 is specifically devoted to this
issue.

3. Some comparative statics and market integration

This section deals with the issue of assessing the effect of changes in the amount of
behavioural heterogeneity on stability, first in the context of comparative statics (which
leaves unchanged the market size) then as a by-product of a process of market integration
(whereby two separate markets are merged into a bigger one).

To begin with, suppose there is a change in the number of firms types, n. This
situation may arise for example as producers form a (or walk out from) a consortium so
that their heterogeneous expectations cease to (or start to) affect the market directly.
This is a comparative statics exercise in which the menu of available predictors is enriched
with a new type, corresponding to a new adaptive gain parameter, αn+1 or equivalently
to a new behavioural degree of instability, βn+1.

6 We assume that a fraction 1 − ρ of
firms (uniformly across the existing types) switch to using the new parameter, whereas
a fraction ρ does not change its behaviour. Letting β̄O, and β̄N the aggregate degree of
behavioural instability in the original configuration and in the augmented one

β̄N =
n∑
i=1

ρφi
αi

2− αi +
n∑
i=1

(1− ρ)φi αn+1

2− αn+1

= ρβ̄O + (1− ρ)βn+1

Demand side, supply functions and the equilibrium price are unchanged, so the degree
of structural instability, δ remains the same. The following result is now easy to prove.
Due to Proposition 2, stability (or instability) in the enlarged configuration depends on
whether δβ̄N is smaller (or larger) than 1. Trivially δβ̄N = δ

(
ρβ̄O + (1− ρ)βn+1

)
≶ 1

when δβ̄O, δβn+1 ≶ 1; hence if the market in its original configuration is stable, it remains
so if δβn+1 < 1. In this context therefore, stability (or instability) persists when a larger
span of firms types is allowed for.

If instead δβn+1 > 1 then the market is stable if and only if ρ > δβn+1−1

δβn+1−δβ̄O
. This

means that when the new type introduced would imply instability if it were the only one,
the outcome depends crucially on the fraction 1−ρ of firms switching to it: such fraction
needs to be under (above) a threshold which depends on the structural and behavioural
instability, δ,β̄O and βn+1, in order for the outcome to be stable (unstable). Again this
is a rather intuitive result.

Another question worth addressing is the following: what is the minimum fraction of
firms that, by switching to the new parameter, can destabilise the market? Intuitively,
the worst that can happen is the introduction of a new type with a behavioural degree

6The following analysis carries through for any finite number of new types. We stick to this simpler
case to favour the intuition.
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of instability of 1 (i.e. with αn+1 = 1). In that case ρ < 1−δ
δβ̄A−δ would make the system

unstable. Remark that this argument relies on the idea that switching to αn+1 = 1 is
the ”worst that can happen”. This is indeed the case because the largest eigenvalue is
always smaller than 1 while the smallest one is strictly decreasing in αi as we show in
the following Lemma.

Lemma 5. If λmax and λmin are the largest and smallest eigenvalues of the Jacobian
(5), then λmin strictly decreases with αi, for all i, while λmax weakly decreases with αi,
for all i and λmax ≤ 1− αmin.

Finally we determine a kind of ”central value” for the degree of structural instability,
δ. To do so, observe that the threshold ratio of firms, δβn+1−1

δβn+1−δβ̄A
, in the polar case of

β̄O = 0 and βn+1 = 1 simplifies to 1− 1/δ. Therefore when δ = 2 the threshold fraction
separating the stable and the unstable regimes equals exactly 50% when firms have only
either static or myopic expectations (i.e. when the gain αi is either 0 or 1). Remarkably,
the value of δ = 2 can be described as central also for other reasons, as it is shown in
Section 4.

3.1. Market integration

Suppose two markets that were previously independent are aggregated. This is a
situation in which it is natural to expect the resulting increased behavioural heterogeneity
to play a role on the observable dynamics of the market.

The equilibrium price in the integrated market will be intermediate between the two
original equilibria, thanks to the assumption of monotone demand and supply. The
two markets are characterised by the vectors of parameters

(
β̄A, δA,ΨA

)
,
(
β̄B , δB ,ΨB

)
.

Let p∗A < p∗B be the market equilibria defined by supply and demand. The aggregated
market will have

(
β̄, δ, p∗,Ψ

)
where Ψ = ΨA +ΨB , β̄ = ΨA

Ψ β̄A + ΨB

Ψ β̄B , and p
∗
A < p∗ <

p∗B . In general allowing for different demand and supply functions in the two original

markets implies δ = −ΨAs
′
A(p∗)+ΨBs

′
B(p∗)

D′A(p∗)+D′B(p∗) which does not trivially compare with δA and

δB . However, assuming linear demand functions DA (·) and DB (·) with slopes D
′
A and

D′B and a common linear s (·) with slope s′ we have δA = −ΨAs
′

D′A
, δB = −ΨBs

′
D′B

and

δ = −ΨAs
′ +ΨBs

′

D′A +D′B
=

1
ΨA

Ψ
1
δA

+ ΨB

Ψ
1
δB

.

Under such assumptions stability (resp. instability) of the integrated market immediately
follows from stability (resp. instability) of the original ones:

β̄δ =

(
ΨA
Ψ
β̄A +

ΨB
Ψ
β̄B

)
1

ΨA

Ψ
1
δA

+ ΨB

Ψ
1
δB

�
ΨA

Ψ
1
δA

+ ΨB

Ψ
1
δB

ΨA

Ψ
1
δA

+ ΨB

Ψ
1
δB

= 1

if β̄AδA � 1, β̄BδB � 1.7 It is important to remark however, that this needs not be the
case if less is assumed about the demand and the supply functions. Here is an example

7Observe that this reflects a well known equality involving arithmetic and harmonic means. Namely,
that the harmonic mean of given non-zero numbers a1, . . . , an times the arithmetic mean of a−1

1 , . . . , a−1
n

equals 1. See e.g. Hardy et al. [15], p. 14.
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in which stability in the original markets is not robust to market integration (see Figure
1):

S (p) = tanh (p− 1) + 1 DA (p) = 9−5 ln 2
10 − 1

2p DB (p) = 21+5 ln 2
10 − 1

2p
p∗A = 1− ln 2 p∗B = 1 + ln 2 p∗ = 1

δA = δB = 2S′ (1− ln 2) = 32
25 δ = 2S′(1)

1
2+

1
2

= 2 β̄A = β̄B = 5
8

⇒ δAβ̄A = δBβ̄B =
4

5
< 1 < δβ̄ =

5

4
.

Insert Figure 1 here

Analogous examples where unstable markets integrate into a stable larger market can
also be given. One may wonder whether the result in our example is driven by the change
of concavity in the supply. To clarify this point we focus on the case where demand and
supply in the two original markets, A and B, differ only by a scale factor. So we have

SA (·) = ΨAs (·) , DA (·) = ΘAd (·)
SB (·) = ΨBs (·) , DB (·) = ΘBd (·)

with s′ (·) > 0 and d′ (·) < 0. As before

δA = −ΨA
ΘA

s′ (p∗A)
d′ (p∗A)

, δB = −ΨB
ΘB

s′ (p∗B)
d′ (p∗B)

Proposition 6. Assume that δAβ̄A < 1, δBβ̄B < 1 and ΨA

ΘA
> ΨB

ΘB
. If either

s′ (p) d′′ (p)− s′′ (p) d′ (p) ≥ 0 ∀p ∈ [p∗A, p
∗
B ] ∧ ΨA/ΘA

ΨB/ΘB
δBβ̄A < 1 (7)

or, alternatively

s′ (p) d′′ (p)− s′′ (p) d′ (p) ≤ 0 ∀p ∈ [p∗A, p
∗
B ] ∧ ΨB/ΘB

ΨA/ΘA
δAβ̄B < 1 (8)

then δβ̄ < 1 and hence stability carries through to the integrated market.

The above proposition shows some of the possible extra requirements that guarantee
that stability be robust to market integration. An example in which things are easy is
when d (p) = p−k, s (p) = ph, k, h > 0 because in this case δ is a constant equal to h

k .

Observe that the assumption s′ (p) d′′ (p)− s′′ (p) d′ (p)
(≤)

≥ 0, which ensures that the

price equilibrium map is monotone, is the same as d′′ (p) /d′ (p)
(≥)

≤ s′′ (p) /s′ (p) which
in turn means that the elasticity of d′ (p) has to be smaller (larger) than the elasticity
of s′ (p). Further, notice the role played by each market’s specific parameters in the

technical condition ΨA/ΘA

ΨB/ΘB
δBβ̄A < 1

(
ΨB/ΘB

ΨA/ΘA
δAβ̄B < 1

)
, which imposes a cross-market

constraint on the parameters compatible with persistence of stability under aggregation.
10



4. Uncertainty about types and the probability of stability

In the present paper the number of different types of firms operating in the market is a
measure of behavioural heterogeneity. We have already addressed, in Section 3, the issue
of understanding what kind of consequences are to be expected on the system’s stability
if the level of heterogeneity in the market changes as a result of policies or exogenous
structural breaks. In the above analysis though, knowledge of the existing types of firms
has been given for granted. What happens if uncertainty is introduced about the types
of firms acting on the market? Can we still say something about the effects of changing
the amount of heterogeneity on stability? It turns out that an observer who is unaware
of the level of behavioral heterogeneity in the present context, but knows the structural
details of the market (embedded in the δ parameter) can still make some meaningful
predictions regarding the implications of changing the amount of heterogeneity in terms
of the likelihood of convergence toward the steady state price.

Consider, for example, a market with a single type of firm. Suppose that the be-
havioural parameter β is unknown and that it can be considered as the realization of
a random variable uniformly distributed on the unit interval, U (0, 1). Stability is war-
ranted in this case if δβ < 1 (see (4)), so the probability of such event, for a given

structural degree of instability δ > 1, will be
∫ 1/δ

0
dx = 1

δ . One may wonder how this
probability will be affected if n > 1 or more in general if n varies. We shall define a stable
sample of behavioural parameters as one for which the corresponding system (3) has a
locally stable steady state (p∗), which means, thanks to the characterisation provided by
Proposition 2, that δβ̄n < 1. We look for the probability of drawing a stable sample as a
function of δ, for a given n. Assuming that the βi are drawn independently from U (0, 1)
the expected value of β̄n is 1/2. This means the value δ = 2 makes the expected value of
δβ̄n equal 1. But because the distribution of β̄n is symmetric the probability of a stable
sample when δ = 2 is exactly 1/2. Notice that in this case using the known form of the
density for β̄n, fn (x), we can write down the explicit probability functions for any n,
mapping values of δ with the probability of a stable sample:

Pn (δ) =

∫ 1/δ

0

fn (x) dx (9)

so we can write the probability functions explicitly8. These functions are obviously
decreasing in δ. Figure 2 depicts such functions for various n. Notice that heterogeneity
appears to have a stabilising/destabilising impact depending on whether δ is less/more
than a critical value (2 in this case). Some sort of polarization effect seems to be at
work. Indeed we show that both these observations generalise easily beyond this example
based on the uniform distribution. First, because of the stability condition δβ̄n < 1, the
probability of a stable n-sample is the probability of having β̄n < 1/δ, which decreases
with δ irrespective of the population distribution. Second, we show that polarization is
robust, using an argument based on what happens taking the limit for n→∞ in a fairly
general setting.

8The density takes the form

∑n
k=0(−1)k

(
n
k

)
(x−k)n−1sign(x−k)

2(n−1)!
. Pn (δ) can be easily worked out if n

is not too large. See the working paper version for details.
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Proposition 7. Let fn (x) the density for β̄n as the result of sampling the βi from some
distribution over the unit interval with E

(
β̄n
)
= β̄, and Pn (δ) the probability of a stable

sample. As n→∞, Pn (δ) converges pointwise to

P∞ (δ) =

{
1 if 1 < δ < 1/β̄
0 if δ ≥ 1/β̄

The above proposition entails that increasing n has the effect of making stability or
instability (depending on δ) more and more likely. Figure 2 witnesses this fact quite
clearly.

Insert Figure 2 here

Another example, useful to illustrate the polarization effect, is as follows: imagine
to draw a sample of n values for the αi. The expected value of β̄n in this case is

E
(∑n

i=1 φi
αi

2−αi

)
=
∑n
i=1 φiE

(
αi

2−αi

)
=
∫ 1

0
αi

2−αi
dαi = ln 4 − 1 � 0.39 which shows

that sampling these behavioural parameters instead of the instability degrees returns a
distribution for β̄n more geared towards low values. In principle it would be possible to
work out the distribution for β̄n, just as above: since it does not add much insight (while
the algebra is more tedious), we just provide a (numerically obtained) picture similar to
the first example, in Figure 3.

Insert Figure 3 here

5. Endogenous selection of adaptive parameters

This section considers an evolutionary mechanism as a device to implement the choice
of the predictor by each firm, which therefore ceases to be exogenous to the model.
Brock and Hommes [3] and the related branch of literature largely inspire the exercise
we conduct in this section.

We have n firms and k predictors consisting each in a different kind of value for the
adaptive parameter alpha. In period t each firm evaluates the relative performance of
each of the different alphas in terms of forecasting error, given the last observation for the
price and the firm’s prediction at time t − 1. Based on these fitness measures the firms
calculate probabilities of choosing each predictor by means of the discrete choice model
as in Brock and Hommes [3], using a given intensity of choice parameter γ, measuring
how sensitive the firms are to the predictors past performance. Formally, for firm j, the
probability of choosing predictor i is

exp
(
−γ (pej,i − p)2)∑k

i=1 exp
(
−γ (pej,i − p)2)

where pej,i = pej + αi
(
p−1 − pej

)
is the price forecast generated by predictor i for firm

j, using j’s forecast and price of the previous period (we dropped the time index for
convenience). The remaining structure of the above model is unchanged.

Observe that adaptive expectations require adding a fraction of one’s own forecasting
error to one’s latest prediction, while here firms are assumed to choose among different
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predictors with probabilities matching the relative precision of the predictors at the
antecedent date. Therefore we cannot consider firms types as a whole as in the previous
sections, since using the same alphas does not imply generating the same point prediction.
As a consequence, we have to keep track of the predictions of each individual firm in order
to figure out how the next price will be generated.

As a further consequence remark that in this case one needs to distinguish the prob-
abilities used by each firm in choosing a predictor from the empirical fractions of firms
using each predictor. Probabilities and fractions can instead be considered the same in
Brock and Hommes [3], where such possibility (arising from the nature of the predictors
considered) permits to analyze the model in an entirely deterministic way. On the con-
trary, the model in the present case remains stochastic. This leads us to consider this
extension of the model from a numerical perspective only.

Let demand and supply be linear and the number of predictors sufficiently large to
represent fairly well the possible types of adaptive expectations, i.e. from a low alpha
that mimics quasi-static expectations to a value large enough to resemble naive (myopic)
expectations. We took such number to be equal 10,9 so that the alphas among which to
choose were .05, .15, ..., .85, .95. There are various effects in the model that are worth
studying, in particular the effect of the intensity of choice, given a fixed value of δ as
in Brock and Hommes [3], as well as the effect of increasing δ given a fixed value for
the intensity of choice. Then there is also the effect of the number of firms given the
other parameters. The results are summarized in Figures 4 to 8. A variety of dynamic
behaviors as a function of those parameters can be observed10.

First consider, as we did in Section 4, what happens when γ is fixed and δ and n
vary (we focused on the cases of n equal 2,3,5,10, and 100 as in Section 4, whereas it is
assumed γ = 3; see Figure 4).

Insert Figure 4 here

Low values of δ are unsurprisingly associated with frequent converging behavior and this
feature gets stronger when n is increased. Intermediate values for δ entail a variety of
different possibilities. For small values of n an interesting type of behavior emerges rather
frequently, in which the price alternates a quasi-convergent regime to periods of much
higher volatility; in this case the price time series displays booms and busts. When n is
higher we observe only few of these cases, but instead we have quasi-periodic time series
with an approximately constant volatility. As δ is further increased we massively observe
divergence for low n and quasi-periodicity for large n. Some examples are reported in
Figure 8.

Insert Figure 8 here

It is remarkable that in this richer context the number of firms retains a decisive role
in shaping the dynamics of the system. In particular, low and moderate values for

9Increasing this value did not impact significantly on the results. Being significantly more parimonious
(e.g. two or three different alphas) instead imposed us to make arbitrary choices about the actual values
chosen for the different alphas and results were overly sensitive to such arbitrary choices.

10The simulations were carried out considering a time span of length T = 300. The simulations entail
a random initial choice for price and expectations (chosen to be in the vicinity of the steady state), and
they were replicated 20000 times for each combination of the m, δ and ω parameters.
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n are compatible with rich dynamics: convergence, explosive paths, booms and busts,
quasi-periodic motions are all possibilities. Such richness was not possible in our original
setup with fixed predictors under linearity, whereby obviously there could only be either
convergence to or divergence from the unique fixed point. As n increases, a form of
polarization emerges in this context too, but remarkably and as a difference with respect
to the static case, divergence is not a possible asymptotic outcome. Instead for high
values of δ and n, quasi-periodic dynamics becomes prevalent. So, the evolutionary setup
induces some kind of stabilization on the system, in the sense that the price oscillations
get to be bounded when the amount of heterogeneity is sufficiently high.

Turning to a different exercise, namely that of fixing a value for δ and letting the
intensity of choice to vary, we have a way of checking the robustness of the finding from
Proposition 4 of Section 2.3. Indeed we repeated this exercise for three different values
of δ:

• δ = 2 for which the model with no switching would be stable;

• δ = 2.7 for which the model with no switching would be unstable but it would be
stable if we erase the heterogeneity from the model considering a representative
firm having a value of alpha equal to the mean of the alphas (1/2 in this case);

• δ = 3.5 for which, with no switching, both the heterogeneous model and its repre-
sentative firm counterpart would be unstable.

Insert Figures 5, 6 and 7 here

The results are as follows. When δ = 2 there are only two possibilities: either we observe
convergence to or divergence from (explosive paths) the fixed point. Divergence is more
likely for low values of n and for larger values of the intensity of choice, γ. So in this
case, allowing for endogenous switching does not alter much the long run outcomes with
respect to those of the model with fixed predictors, provided the intensity of choice is not
too large or there is sufficient heterogeneity. A similar situation arises when δ = 2.7 (this
value has been used in Brock and Hommes [3] as well), save the fact that the balance
between divergent and convergence behavior bends more towards divergence with respect
to the case with lower δ. When δ = 3.5 we see the emergency of other types of dynamical
behavior beside convergence and divergence.

Finally, a general conclusion emerging from the simulations is that, when the number
of firms increases and independently on the value of δ, the divergent behavior tends to
disappear. Conditional on the values of γ and δ, convergent or quasi-periodic behavior
will dominate asymptotic dynamics. Hence it appears that the endogenous switching
mechanism tends to transform the polarization between convergence and divergence ob-
served in the previous section into a polarization between convergence and quasi-periodic
price oscillations.

6. Conclusions

We have analysed the dynamic consequences of expectations heterogeneity in a fairly
general cobweb model with n types of firms, each resorting to adaptive expectations
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with a specific gain parameter. The concepts of structural and behavioural degree of
instability were introduced to distinguish the different possible sources of failures to
converge to the unique steady state in the model. In particular the behavioural degree
of instability depends exclusively on the sensitivity of firms’ expectations. Stability is
shown to obtain if and only if the product of the two sources of instability is less than one.
Within the model, we have clarified how marketwise outcomes are grounded in individual
firms’ characteristics and how a representative agent assumption can inaccurately predict
a stable outcome when the whole heterogeneous picture implies otherwise. This is one
aspect in which expectations heterogeneity is shown to matter.

The issue of how the stability conditions modify if the number of types vary has
also been investigated in a comparative statics analysis. Further, conditions that make
stability robust to market aggregation, where such changes in the amount of heterogeneity
are bound to arise in practice, are also provided in the paper.

The basic model has then been extended in order to assume the point of view of an
authority who is uncertain about the firms types. Positing a probability distribution
over possible types active in the market, the structural degree of instability is shown to
determine how heterogeneity affects the probability of ending up with a stable outcome,
for given number of firms types and structural degree of instability. A form of polarization
is documented, by which when the number of types is large, stability most likely obtains
for levels of the structural degree of instability up to a certain threshold, while instability
is almost certain past the threshold. The amount of the heterogeneity and its possible
variations play a critical role in shaping the range of possible long-run outcomes of the
model.

A further extension we pursued was aimed at one obvious limitation of the model,
namely the fact that the firms do not update their expectation mechanism. The choice
of predictors was therefore made endogenous through a discrete choice based evolution-
ary mechanism, along the lines of Brock and Hommes [3]. Heterogeneity matters and is
persistent in this context: conditions implying divergent dynamics in the baseline model
produce different outcomes in the evolutionary setup. For low values of the structural
degree of instability a rational route to market stability arises in a world with only adap-
tive expectations and all rules available for free, while for higher values of the structural
degree of instability the dynamics may show excess volatility (especially when agents do
not stick to their behavioural rule). Moreover increasing the behavioural heterogeneity
undercuts the possible asymptotic behaviours one is bound to observe: in particular for
parametric configurations that lead to (or are compatible with) explosive price paths, in-
creasing the amount of heterogeneity rules out such divergent behaviour leaving only the
possibility of convergence toward the steady state or quasi-periodic oscillations around
it.

The analysis carried out in this article leads to several additional research questions,
regarding the robustness of our results to changes in various institutional and parametric
assumptions. In particular the role of a subset of firms having rational expectations
or using other expectation mechanisms beside the adaptive ones might be investigated.
A further direction of research suggests modelling explicitly the possibility of market
entry and exit of producers: this, while technically challenging, as it requires being more
specific on institutional features such as borrowing contraints and on the nature of the
firms and the productive process, would considerably enrich the model and its realism.
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Appendix

Proof of Lemma 1.
i) Consider first the simpler case in which c1 = · · · = cn = 1. Observe that

detM = detN

N =

⎛
⎜⎜⎜⎝

a1 + b1 −b1 · · · −b1
a2 b2 · · · 0
...

...
. . .

...
an 0 · · · bn

⎞
⎟⎟⎟⎠

where N is obtained from M subtracting its first column from the remaining columns.
The equality of the two determinants stems from multilinearity in columns. Developing
the determinant of N along the first column clearly shows that it is linear in each ai. As
a consequence, expressing detM as sum of products along permutations of the column
indices, the only terms that do not cancel out are contained in the product of terms
along the diagonal (any other permutation contains products of the type aiaj , i �= j.
Eliminating terms that involve such products between different ai’s from the product
along the diagonal gives the required result. Now let

A =

⎛
⎜⎜⎜⎝

a1 a1 · · · a1
a2 a2 · · · a2
...

...
. . .

...
an an · · · an

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎝

b1 0 · · · 0
0 b2 · · · 0
...

...
. . .

...
0 0 · · · bn

⎞
⎟⎟⎟⎠ , C =

⎛
⎜⎜⎜⎝

c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...
0 0 · · · cn

⎞
⎟⎟⎟⎠

For values of the ci �= 1 the same results applies remarking that

M = AC +B =
(
A+BC−1

)
C

therefore detM =

(
n∏
i=1

bi
ci

+
∑n
i=1 ai

∏
j �=i

bj
cj

)
n∏
i=1

ci =
n∏
i=1

bi +
∑n
i=1 ciai

∏
j �=i

bj as stated.

ii) Using i) the characteristic polynomial of M writes as

P (λ) =
n∏
i=1

(bi − λ) +
n∑
i=1

ciai
∏
j �=i

(bj − λ)

Suppose that b1 > b2 > · · · > bn. Then

n even ⇒ P (b1) > 0, P (b2) < 0, . . . , P (bn) < 0 (10)

n odd ⇒ P (b1) < 0, P (b2) > 0, . . . , P (bn) < 0
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Therefore P (λ) has n − 1 real roots and hence n real roots. Suppose more in general
that the set of bis is as follows:⎧⎪⎨

⎪⎩b1, . . . , b1︸ ︷︷ ︸
n1 times

, b2, . . . , b2︸ ︷︷ ︸
n2 times

, . . . , bm, . . . , bm︸ ︷︷ ︸
nm times

⎫⎪⎬
⎪⎭

with
∑m
j=1 nj = n. Let also k1 = {1, . . . , n1} , k2 = {n1 + 1, . . . , n1 + n2} , . . . , km ={∑m−1

j=1 nj + 1, . . . , n
}

and āi =
∑
j∈ki cjaj . Then

P (λ) =

m∏
i=1

(bi − λ)ni +

n∑
i=1

āi (bi − λ)ni−1
∏
j �=i

(bj − λ)nj (11)

=
m∏
i=1

(bi − λ)ni−1

⎛
⎝ m∏
i=1

bi +
n∑
i=1

āi
∏
j �=i

(bj − λ)
⎞
⎠

≡ P1 (λ)P2 (λ)

where, counting multiplicity, P1 (λ) has n − m real roots and P2 (λ) has m real roots
(this stems from what we showed for the case of distinct bis).
iii) and iv) From (11) we have that n −m eigenvalues take values in {bi}i=1,...,n. Also,
from (10), it follows that m − 1 eigenvalues belong to (bn, b1). Finally, as P (bn) < 0
and limλ→−∞ P (λ) = +∞, the remaining root of P (λ) must be smaller than bn and
therefore it is greater than −1 if and only if P (−1) > 0.
Proof of Proposition 2. Recalling that Jacobian (5) is a particular specification
of matrix (6) with ai = −αi, bi = 1 − αi, ci = φiδ, Lemma 1 part iv) states that local
stability is equivalent to having the characteristic polynomial positive when evaluated at
−1, P (−1) > 0. In the case of matrix Jn we have

Pn (−1) =
n∏
j=1

(2− αj)− δ
n∑
i=1

αiφi
∏
j �=i

(2− αj)

=
n∏
j=1

(2− αj)
(
1− δ

n∑
i=1

φi
αi

2− αi

)

=
n∏
j=1

(2− αj)
(
1− δβ̄n

)

which is positive if and only if δβ̄n < 1.
Proof of Proposition 3. Following the same argument in the proof of part iv) of
Lemma 1, λmin is greater than 0 if and only if the characteristic polynomial, P (λ), is
positive at λ = 0. As

P (0) =
n∏
i=1

(1− αi)−
n∑
i=1

αiφiδ
∏
j �=i

(1− αj) =
n∏
i=1

(1− αi)
(
1−

n∑
i=1

αiφiδ

(1− αi)

)
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we have P (0) > 0 if and only if

n∑
i=1

φi
αi

(1− αi) <
1

δ

Proof of Proposition 4. Stability conditions for the two cases (see Proposition 2)
imply:

n∑
i=1

φi
αi

2− αi <
1

δ
for the heterogeneous market

∑n
i=1 φiαi

2−∑n
i=1 φiαi

<
1

δ
for the homogeneous market

Observe that the function f (x) = x
2−x is strictly convex in [0, 1] so necessarily

∑n
i=1 φiαi

2−∑n
i=1 φiαi

<
n∑
i=1

φi
αi

2− αi

which gives the desired result.
Proof of Lemma 5. Consider the derivative with respect to αi of the characteristic
polynomial,

∂P (λ)

∂αi
=

∂

∂αi

⎛
⎝ n∏
j=1

(1− αj − λ)−
n∑
k=1

αkφkδ
∏
j �=k

(1− αj − λ)
⎞
⎠

= −
∏
j �=i

(1− αj − λ)− φiδ
∏
j �=i

(1− αj − λ) +
∑
k �=i

αkφkδ
∏
j �=k,i

(1− αj − λ)

Recall that, given Lemma 1 iii), for all i, λmin < 1−αi while λmax ≤ 1−αmin. Whenever
λ �= 1− αi

∂P (λ)

∂αi
= −

n∏
j=1

(1− αj − λ)

(1− αi − λ) − φiδ
∏
j �=i

(1− αj − λ) +

∑
k �=i

αkφkδ
∏
j �=k

(1− αj − λ)

(1− αi − λ)

= −

n∏
j=1

(1− αj − λ)−
n∑
k=1

αkφkδ
∏
j �=k

(1− αj − λ)

(1− αi − λ) −
(
1 +

αi
1− αi − λ

)
φiδ
∏
j �=i

(1− αj − λ)

= − P (λ)

(1− αi − λ) −
(
1 +

αi
1− αi − λ

)
φiδ
∏
j �=i

(1− αj − λ)

So evaluating the derivative at λmin, we have

∂P (λ)

∂αi

∣∣∣∣
λ=λmin

= −
(
1 +

αi
1− αi − λmin

)
φiδ
∏
j �=i

(1− αj − λmin) < 0
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as P (λmin) = 0 and, due to part iii) of Lemma 1, (1− αj − λmin) > 0 for all j. Finally,
because limλ→−∞ P (λ) = +∞ the result follows from the intermediate value theorem.
Besides, at λmax, we have

∂P (λ)

∂αi

∣∣∣∣
λ=λmax

= −
(
1 +

αi
1− αi − λmax

)
φiδ
∏
j �=i

(1− αj − λmax)
> 0 if n is even
< 0 if n is odd

due to Lemma 1 iii) and λmax �= 1 − αi. Again, because limλ→+∞ P (λ) = (−1)n∞
the result follows from the intermediate value theorem. It remains to consider the case
λmax = 1− αmin. If αi �= αmin then trivially

∂P (λ)

∂αi

∣∣∣∣
λ=λmax

= 0

Otherwise if αi = αmin the result directly follows from part iii) of Lemma 1.
Proof of Proposition 6. Notice: ΨA

ΘA
> ΨB

ΘB
⇒ ΨB

ΘB
< ΨA+ΨB

ΘA+ΘB
< ΨA

ΘA
; also p∗A < p∗ < p∗B .

Assumptions in (7) imply that(
− s

′ (p)
d′ (p)

)′
=
−s′′ (p) d′ (p) + s′ (p) d′′ (p)

(d′ (p))2
≥ 0

As a result

δβ̄ = −
(

ΨA+ΨB

ΘA+ΘB

)
s′ (p∗)

d′ (p∗)

(
ΨA
Ψ
β̄A +

ΨB
Ψ
β̄B

)

≤
(
ΨA +ΨB
ΘA +ΘB

)(
− s

′ (p∗B)
d′ (p∗B)

)(
ΨA
Ψ
β̄A +

ΨB
Ψ
β̄B

)

=

(
ΨA

ΘA +ΘB
β̄A

)(
− s

′ (p∗B)
d′ (p∗B)

)
+

(
ΨB

ΘA +ΘB
β̄B

)(
− s

′ (p∗B)
d′ (p∗B)

)

=
ΘA

ΘA +ΘB

(
ΨA
ΘA

β̄A

)(
− s

′ (p∗B)
d′ (p∗B)

)
+ δBβ̄B

ΘB
ΘA +ΘB

<
ΘA

ΘA +ΘB
+

ΘB
ΘA +ΘB

= 1

The proof under the alternative assumptions in (8) is identical.
Proof of Proposition 7. The strong law of large numbers shows that

Pr
(
lim
n→∞ β̄n = β̄

)
= 1⇒ Pr

(
lim
n→∞ δβ̄n = δβ̄

)
= 1

and therefore, for any δ > 1,

Pr
(
lim
n→∞ δβ̄n < 1

)
=

{
1 if 1 < δ < 1/β̄
0 if δ ≥ 1/β̄

.
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Figure legends

Figure 1: Stability for markets considered separately is lost under aggregation.

Figure 2: Probability of a stable sample of betas.

Figure 3: Probability of a stable sample of alphas.
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Figure 4: δ on x-axis, γ = 3. Top-left: convergence. Top-right: divergence. Bottom: other behaviors.

Figure 5: γ on x-axis, δ = 2. Left: convergence. Right: divergence. No other behaviors observed.

Figure 6: γ on x-axis, δ = 2.7. Left: convergence. Right: divergence. No other behaviors observed.

Figure 7: γ on x-axis, δ = 3.5. Left: convergence. Right: divergence. Bottom: other behaviors.

Figure 8: Top down: converging, diverging, quasi-periodic, booms and busts.
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