
HAL Id: hal-00828979
https://hal.science/hal-00828979

Submitted on 1 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Steady-state growth and the elasticity of substitution
Andreas Irmen

To cite this version:
Andreas Irmen. Steady-state growth and the elasticity of substitution. Journal of Economic Dynamics
and Control, 2011, �10.1016/j.jedc.2011.04.002�. �hal-00828979�

https://hal.science/hal-00828979
https://hal.archives-ouvertes.fr


www.elsevier.com/locate/jedc

Author’s Accepted Manuscript

Steady-state growth and the elasticity of substitution

Andreas Irmen

PII: S0165-1889(11)00065-0
DOI: doi:10.1016/j.jedc.2011.04.002
Reference: DYNCON2558

To appear in: Journal of Economic Dynamics
& Control

Received date: 11 March 2010
Revised date: 19 October 2010
Accepted date: 16 February 2011

Cite this article as: Andreas Irmen, Steady-state growth and the elasticity of substitution,
Journal of Economic Dynamics & Control, doi:10.1016/j.jedc.2011.04.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errorsmay be discoveredwhich could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/jedc
http://dx.doi.org/10.1016/j.jedc.2011.04.002


STEADY-STATE GROWTH

AND THE

ELASTICITY OF SUBSTITUTION

Andreas Irmen∗

University of Luxembourg and CESifo, Munich

Abstract: In a neoclassical economy with endogenous capital- and labor-augmenting

technical change the steady-state growth rate of output per worker is shown to in-

crease in the elasticity of substitution between capital and labor. This confirms

the assessment of Klump and de La Grandville (2000) that a greater elasticity of

substitution allows for faster of economic growth. However, unlike their findings my

result applies to the steady-state growth rate. Moreover, it does not hinge on partic-

ular assumptions on how aggregate savings come about. It holds for any household

sector allowing savings to grow at the same rate as aggregate output.
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1 Introduction

Is the measured degree of factor substitution an indicator for an economy’s growth

potential? The debate surrounding this question began with the contributions by

de La Grandville (1989) and Klump and de La Grandville (2000). These authors

study the link between the elasticity of substitution, being treated as a parameter

of an aggregate CES production function, and economic growth in the neoclassical

economy of Solow (1956). They conclude that the degree of factor substitution

is a powerful engine of economic growth in the sense that a higher elasticity of

substitution between capital and labor leads to a higher growth rate along the

transition and a higher steady-state level of output per worker. This assessment has

been challenged by Miyagiwa and Papageorgiou (2003). These authors emphasize

the role of the underlying savings hypothesis of Solow (1956) and find cases in

a model of overlapping generations where a higher elasticity of substitution is an

impediment to growth.1

Such conflicting results arise in a neoclassical setting since the elasticity of substitu-

tion affects the two main pillars on which aggregate one-sector models of economic

growth are based. First, there is a direct impact on aggregate production since

differing degrees of factor substitution affect the shape of the aggregate produc-

tion function. Second, there is an indirect effect on aggregate savings and capital

accumulation since the degree of factor substitution affects the functional income

distribution.

1Irmen and Klump (2009) reconcile these findings by pointing out that the positive growth
effects of a high elasticity of substitution arise as long as the propensity to save out of capital income
exceeds the propensity to save out of wage income. Xue and Yip (2011) provide a comprehensive
discussion of the growth effects of the elasticity of substitution in one-sector models of economic
growth. Such effects are also at the heart of Papageorgiou and Saam (2008) who study the growth
process under different savings hypotheses and two-level CES production functions.
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This paper extends the neoclassical framework of the aforementioned works and

studies the relationship between the elasticity of substitution and economic growth

in a multi-sector environment where both technical change and its direction are

endogenous. More precisely, I allow for endogenous capital- and labor-augmenting

technical change in an otherwise neoclassical production sector. For this setting,

my main result is that a greater elasticity of substitution means faster steady-state

growth of per-worker variables. This result is shown to rely on the efficiency effect

of the elasticity of substitution established by Klump and de La Grandville (2000):

ceteris paribus, an increase in this elasticity increases output.

Although this finding confirms the spirit of the claim of Klump and de La Grandville,

it is not subject to the above mentioned criticism. In fact, my steady-state result

holds for any household sector that allows for a constant aggregate consumption

growth rate equal to the growth rate of the economy. Hence, the effect of the

elasticity of substitution through savings and capital accumulation on the steady

state, i. e., the second pillar of aggregate one-sector growth models, is mute. To the

best of my knowledge, the present paper is the first to establish such a result.

I derive my findings in a neoclassical economy with endogenous capital- and labor-

augmenting technical change. It is neoclassical since it maintains the assumptions of

perfect competition, of an aggregate production function with constant returns to

scale and positive and diminishing marginal products, and of capital accumulation.

It has endogenous growth since economic growth results from innovation invest-

ments undertaken by profit-maximizing firms. To allow for innovation investments

in capital- and labor-augmenting technical change, I introduce two intermediate-good

sectors, one producing a capital-intensive intermediate, the other a labor-intensive
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intermediate.2 Innovation investments increase the productivity of capital and labor

at the level of these intermediate-good firms. Moreover, they feed into aggregate

productivity indicators that evolve cumulatively, i. e., in a way often referred to as

‘standing on the shoulders of giants’.

Competitive final-good firms use both intermediates and produce according to the

normalized CES production function of de La Grandville (1989) and Klump and

de La Grandville (2000). In equilibrium, the quantity of either intermediate-good

input is equal to the amount of capital and labor in efficiency units, respectively.

This has several important implications. First, the economy’s equilibrium produc-

tion function of the final good coincides with the normalized CES production func-

tion employed by Klump, McAdam, and Willman (2007). Hence, my analysis may

be seen as providing a micro-foundation for the production function on which these

authors base their empirical analysis.3

Second, there is a need to distinguish the exogenous partial from the endogenous

total elasticity of substitution between capital and labor. Throughout, I shall use the

acronyms PES and TES to denote the partial and the total elasticity of substitution,

respectively. While the former concept leaves the efficiency of capital and labor

constant, the latter accounts for the effect of changes in the capital-labor ratio on

the incentives to engage in capital- and labor-augmenting technical change. Hence,

my analysis suggests that the determinants of technical change will also affect the

2The production sector extends and complements the one devised in Irmen (2005) by allowing
for capital-augmenting technical change. In turn, the latter builds on Hellwig and Irmen (2001) and
Bester and Petrakis (2003). See Acemoglu (2003) for an alternative model of endogenous capital-
and labor-augmenting technical change where innovation investments are financed through rents
that accrue in an environment with monopolistic competition.

3Indeed, with the caveat that in my framework capital- and labor-augmenting technical change
is endogenous, the aggregate production function stated in their equation (4) and in equation (3.1)
below coincide.
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TES of an economy.

The endogeneity of the TES begs two questions. The first is about the relationship

between the PES and the TES. I find that these two elasticities differ unless the

PES is equal to unity. Moreover, I establish that capital and labor are either gross

complements or gross substitutes independent of whether one considers the PES or

the TES, i. e., if the PES is greater (smaller) than unity then the TES is greater

(smaller) than unity, too. Moreover, gross complementarity implies that the TES

exceeds the PES, whereas the opposite holds for gross substitutes.

The second question concerns the evolution of the TES during the process of eco-

nomic development. To address this question, I add a household sector as in Solow

(1956) and Swan (1956) to the neoclassical economy with endogenous capital- and

labor-augmenting technical change. For this economy, numerical computations in-

dicate that the PES determines, inter alia, whether there is spiral or monotonic

convergence to the steady state. The evolution of the TES inherits these properties.

Hence, it varies with the state of the economy.

This last result contributes to a growing literature studying the reasons and the

implications of an endogenous TES. On the one hand, my analysis emphasizes that

endogenous technical change may be behind the endogeneity of the TES.4 On the

other hand, it confirms a claim made by Arrow, Chenery, Minhas, and Solow (1961),

p. 247, according to which the process of economic development may shift the total

aggregate elasticity of substitution.5 However, it contrasts with findings derived in

4In macroeconomic one-sector growth models, the elasticity of substitution may simply be
endogenous because the aggregate production function is not of the CES class. Examples include
Revankar (1971) and Jones and Manuelli (1990). The role of the inter-sectoral allocation of inputs
for an endogenous TES is emphasized in Miyagiwa and Papageorgiou (2007) for closed and in Saam
(2008) for open economies.

5This claim is also in line with recent empirical evidence. See, e. g., Duffy and Papageorgiou
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Miyagiwa and Papageorgiou (2007). These authors study a Solow economy with a

production sector comprising a final-good and two intermediate-good sectors. They

find that the aggregate elasticity of substitution (AES) is endogenous and deter-

mined by the evolution of the economy’s capital endowment and its inter-sectoral

equilibrium allocation.6 Contrary to my numerical computations, their results sug-

gest that the AES converges monotonically towards the steady state.

The remainder of this paper is organized as follows. In Section 2, I lay out the

details of the competitive production sector, define its equilibrium, and introduce the

concepts of the PES and the TES. In Section 3, I deal with the analysis of the steady

state. The positive effect of a greater elasticity of substitution on the steady-state

growth rate appears here as Theorem 1. I present the numerical example in Section 4.

Section 5 concludes. All proofs are relegated to Appendix 6.1. Appendix 6.2 details

the analysis of the local stability of the dynamical system underlying the numerical

example of Section 4. Appendix 6.3 provides an example of the global relationship

between the TES and the efficient capital intensity.

2 The Competitive Production Sector

The production sector has a final-good sector and an intermediate-good sector in

an infinite sequence of periods t = 1, 2, ...,∞. The manufactured final good can

be consumed or invested. If invested it may either become future capital or serve

as an input in current innovation activity undertaken by intermediate-good firms.

(2000) or Pereira (2002).

6Conceptually, the AES of Miyagiwa and Papageorgiou (2007) corresponds to my TES, whereas
their primary elasticities of substitution (ES) resemble my partial elasticity of substitution.
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Intermediate-good firms produce one of two types of intermediates and sell it to

the final-good sector. The production of the labor-intensive intermediate good uses

labor as the sole input, the only input in the production of the capital-intensive

intermediate good is capital. Labor- and capital-augmenting technical change is the

result of innovation investments undertaken by intermediate-good firms. Labor and

capital are supplied to the intermediate-good sector. Capital needs to be installed

one period before its use. The final good serves as numéraire.

2.1 Production

The final-good sector produces with the following CES production function F :

R
2
+ → R+,

Yt = F (YK,t, YL,t) = Γ
[
γ Y ψ

K,t + (1 − γ) Y ψ
L,t

]1/ψ

, (2.1)

where Yt is aggregate output in t, YK,t is the aggregate amount of the capital-

intensive intermediate input, and YL,t denotes the aggregate amount of the labor-

intensive intermediate input.7 The parameters satisfy Γ > 0, 1 > γ > 0, and

1 > ψ > −∞. Moreover, σ = 1/ (1 − ψ) is the elasticity of substitution between

YK,t and YL,t. I show below that σ is also the PES between capital and labor. The

key question is then how changes in σ affect the steady-state growth rate. In terms

of the labor-intensive intermediate-good input, let yt = F (κt, 1) ≡ f (κt), where

7I shall stick as close as possible to the notation of Klump and de La Grandville (2000). For
reasons that become obvious below, I have to replace their constants A and a by Γ and γ, respec-
tively. See Chapter 3 in de La Grandville (2009) for a careful derivation of the normalized CES
production function.
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κt ≡ YK,t/YL,t. Then

yt = f (κt) = Γ
[
γ κψ

t + (1 − γ)
]1/ψ

. (2.2)

To identify the effect of the elasticity of substitution on otherwise identical economies,

I follow de La Grandville (1989) and Klump and de La Grandville (2000) and normal-

ize (2.2) by choosing some baseline values for the following variables: κ̄, ȳ = f (κ̄),

and the marginal rate of substitution m̄ = [f (κ̄) − κ̄ f ′ (κ̄)] /f ′ (κ̄) > 0. The nor-

malized CES production function that satisfies these criteria is then equal to (see,

Klump and de La Grandville (2000), eq. 5)

fσ (κ) = Γ(σ)
[
γ(σ) κψ + (1 − γ(σ))

]1/ψ
(2.3)

with

Γ(σ) ≡ ȳ

(
κ̄1−ψ + m̄

κ̄ + m̄

)1/ψ

and γ(σ) =
κ̄1−ψ

κ̄1−ψ + m̄
. (2.4)

Also, I follow Klump and de La Grandville (2000) and denote partial derivatives of

f with respect to κ by a prime so that f ′
σ ≡ ∂fσ/∂κ and ∂f ′

σ/∂σ ≡ ∂2fσ/∂κ∂σ.

In units of the final good of period t the profit in t of the final-good sector is

Yt − pK,tYK,t − pL,tYL,t, (2.5)

where pj,t, j = K,L, is the price of the respective intermediate factor. The final-

good sector takes the sequence {pK,t, pL,t}∞t=1 of factor prices as given and maximizes

the sum of the present discounted values of profits in all periods. Since it simply

buys both intermediates in each period, its maximization problem is equivalent to a

series of one-period maximization problems. Focussing on configurations where both
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intermediates are used, the profit-maximizing first-order conditions for t = 1, 2, ...

are

YK,t : pK,t = f ′
σ (κt) , (2.6)

YL,t : pL,t = fσ (κt) − κt f
′
σ (κt) . (2.7)

There are two different sets of intermediate-good firms, each represented by the set

R+ of nonnegative real numbers with Lebesgue measure. Intermediate-good firms

may either belong to the sector that produces the labor- or the capital-intensive

intermediate. In other words, they are either part of the labor- or of the capital-

intensive intermediate-good sector.

At any date t, all firms of a sector have access to the same sector-specific technology

with production function

yl,t = min {1, atlt} or yk,t = min {1, btkt} , (2.8)

where yl,t and yk,t is output, 1 a capacity limit,8 at and bt denote the firms’ labor

and capital productivity in period t, lt and kt is the labor and the capital input.

The firms’ respective labor and capital productivity is equal to

at = At−1(1 − δ + qA
t ) or bt = Bt−1(1 − δ + qB

t ); (2.9)

here At−1 > 0 and Bt−1 > 0 denote aggregate indicators of the level of technological

8The assumption of a capacity constraint is by no means restrictive for my results. The capacity
choice may be endogenized along the lines of Hellwig and Irmen (2001).
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knowledge to which innovating firms in period t have access for free. Naturally,

δ ∈ (0, 1) is the rate of depreciation of technological knowledge in both sectors, and

qA
t and qB

t are indicators of productivity growth gross of depreciation.

To achieve a productivity growth rate qj
t > 0, j = A, B, a firm must invest i(qj

t )

units of the final good in period t. The function i : R+ → R+ is the same for

both sectors, time invariant, C2, and strictly convex. Moreover, with the notation

i′ (qj) ≡ di (qj) /dqj for j = A,B, it satisfies

i(0) = lim
qj→0

i′
(
qj

)
= 0, i′

(
qj

)
> 0 for all qj > 0, lim

qj→∞
i
(
qj

)
= ∞. (2.10)

Hence, higher rates of productivity growth require ever-growing investments.

If a firm innovates, the assumption is that an innovation in period t is proprietary

knowledge of the firm only in t, i. e., in the period when the innovation materializes.

Subsequently, the innovation becomes embodied in the sector specific productivity

indicators (At, Bt), (At+1, Bt+1) , ..., with no further scope for proprietary exploita-

tion. The evolution of these indicators will be specified below.9

Per-period profits in units of the current final good are

πL,t = pL,t yl,t − wtlt − i(qA
t ), πK,t = pK,t yk,t − Rtkt − i(qB

t ), (2.11)

where pL,t yl,t, pK,t yk,t is the respective firm’s revenue from output sales, wtlt, Rtkt

its wage bill at the real wage rate wt and its capital cost at the real rental rate of

capital Rt, and i(qj
t ), j = A,B, its investment outlays.

9As will become clear below, all firms innovate in equilibrium since i(0) = limqj→0 i′
(
qj

)
= 0.

To save space, I shall disregard throughout the discussion of what would happen if firms did not
innovate. Details on this are available from the author upon request.
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Firms choose a production plan (yl,t, lt, q
A
t ) or (yk,t, kt, q

B
t ) taking the sequence

{pL,t, pK,t, wt, Rt}∞t=1 of real prices and the sequence {At−1, Bt−1}∞t=1 of aggregate

productivity indicators as given. They choose a production plan that maximizes the

sum of the present discounted values of profits in all periods. Because production

choices for different periods are independent of each other, for each period t, they

choose the plan (yl,t, lt, q
A
t ) and (yk,t, kt, q

B
t ) that maximizes the profit πL,t and πK,t,

respectively.

If a firm innovates, it incurs an investment cost i(qj
t ) > 0 that is associated with a

given innovation rate qj
t > 0 and is independent of the output yl,t or yk,t. An inno-

vation investment is only profit-maximizing if the firm’s margin is strictly positive,

i. e., if pL,t > wt/at or pK,t > Rt/bt. Then, there is a positive scale effect, namely if

the firm innovates, it wants to apply the innovation to as large an output as possible

and produces at the capacity limit, i. e., yl,t = 1 or yk,t = 1. The choice of (lt, q
A
t ) and

(kt, q
B
t ) must then minimize the costs of producing the capacity output. Assuming

wt > 0 and Rt > 0 these input combinations satisfy

lt =
1

At−1(1 − δ + qA
t )

, kt =
1

Bt−1(1 − δ + qB
t )

, (2.12)

and

q̂A
t ∈ arg min

qA≥0

[
wt

At−1(1 − δ + qA)
+ i

(
qA

)]
,

(2.13)

q̂B
t ∈ arg min

qB≥0

[
Rt

Bt−1(1 − δ + qB)
+ i

(
qB

)]
.

Given the convexity of the innovation cost function and the fact that limqj→0 i′(qj) =

0, the conditions (2.13) determine a unique level q̂A
t > 0 and q̂B

t > 0 as the solution
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to the first-order conditions

wt

At−1(1 − δ + q̂A
t )2

= i′
(
q̂A
t

)
and

Rt

Bt−1(1 − δ + q̂B
t )2

= i′
(
q̂B
t

)
. (2.14)

The latter relate the marginal reduction of a firm’s wage bill/capital cost to the

marginal increase in its investment costs.

Recall that the set of each intermediate-good sector is R+ with Lebesgue measure.

Then, the maximum profit of any intermediate-good firm producing the labor- or

the capital-intensive intermediate must be zero at any t. Indeed, since the supply

of labor and capital is bounded in each period, the set of intermediate-good firms

employing more than some ε > 0 units of labor or capital must have bounded

measure and hence must be smaller than the set of all intermediate-good firms.

Given that inactive intermediate-good firms must be maximizing profits just like

the active ones, I need that maximum profits of all active intermediate-good firms

at equilibrium prices are equal to zero.

Using (2.11), (2.12), and (2.14), it holds for profit-maximizing intermediate-good

firms earning zero profits in equilibrium that

pL,t = (1 − δ + q̂A
t )i′(q̂A

t ) + i(q̂A
t ), pK,t = (1 − δ + q̂B

t )i′(q̂B
t ) + i(q̂B

t ), (2.15)

i. e., the price is equal to variable costs plus fixed costs when wt/at and Rt/bt are

consistent with profit-maximization as required by (2.14). Upon combining the

equilibrium conditions of the final-good sector and both intermediate-good sectors

I find the following proposition.

Proposition 1 If (2.6), (2.7), and (2.15) hold, then there are maps, gA : R
2
++ →

R++ and gB : R
2
++ → R++, such that q̂A

t = gA (κt, σ) > 0 with gA
κ (κt, σ) > 0 and
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q̂B
t = gB (κt, σ) > 0 with gB

κ (κt, σ) < 0 for any (κt, σ) ∈ R
2
++.

Proposition 1 emphasizes three important properties of the production sector. First,

the equilibrium incentives to engage in labor- and capital-augmenting technical

change depend on the factor intensity of the final-good sector and on the elasticity

of substitution. Second, for all (κt, σ) ∈ R
2
++, I have q̂A

t > 0 and q̂B
t > 0. Finally,

q̂A
t increases whereas q̂B

t decreases in κt.

The first and the third property are due to the fact that pK,t and pL,t depend on

κt and σ according to (2.6) and (2.7). This dependency feeds back onto q̂A
t and

q̂B
t through the zero-profit condition (2.15). The second property hinges on the

characteristics of the input requirement function given in (2.10). If i(0) > 0, then

maximum profits of innovating firms could be strictly negative even at low levels of

q̂j
t > 0. Then, these firms would not enter and the intermediate-good production

of the respective sector would collapse. If i′(0) > 0, then the first marginal unit of

qj would no longer be costless. Consequently, the cost-minimization problem (2.13)

would not necessarily admit an interior solution. Indeed, firms would choose q̂j
t = 0

if the marginal reduction of their wage bill/capital cost at qj = 0 was smaller than

i′(0).

2.2 Evolution of Technological Knowledge

The evolution of the economy’s level of technological knowledge is given by the evo-

lution of the aggregate indicators (At, Bt) ∈ R
2
++. Labor- and capital-augmenting

productivity growth occurs at the level of those intermediate-good firms that pro-

duce at t. Denoting the measure of these firms by nt and mt, respectively, their

contribution to At and Bt is equal to the highest level of labor and capital produc-
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tivity attained by one of them, i. e.,

At = max{at(n) = At−1

(
1 − δ + qA

t (n)
) |n ∈ [0, nt]}

(2.16)

Bt = max{bt(m) = Bt−1

(
1 − δ + qB

t (m)
) |m ∈ [0,mt]}.

Since in equilibrium qA
t (n) = qA

t and qB
t (m) = qB

t , I have at = At−1

(
1 − δ + qA

t

)
and bt = Bt−1

(
1 − δ + qB

t

)
. Hence, for all t = 1, 2, ...

At = At−1

(
1 − δ + qA

t

)
and Bt = Bt−1

(
1 − δ + qB

t

)
(2.17)

with A0 > 0 and B0 > 0 as initial conditions.

2.3 Dynamic Competitive Equilibrium of the Production

Sector

For given sequences of capital {Kt}∞t=1, Kt ∈ R++, and labor Lt = L1 (1 + gL)t−1,

gL > (−1), L1 > 0, the dynamic competitive equilibrium of the production sec-

tor determines a sequence of prices {pL,t, pK,t, wt, Rt}∞t=1, a sequence of allocations

{Yt, YK,t, YL,t, nt,mt, yl,t, yk,t, q
A
t , qB

t , at, bt, lt, kt}∞t=1, and a sequence of indicators of

the level of technological knowledge {At, Bt}∞t=1.

Definition 1 In a dynamic competitive equilibrium of the production sector, the

above mentioned sequences satisfy the following conditions for t = 1, 2, ...,∞:

(E1) At all t, all firms maximize profits and earn zero-profits.

(E2) At all t, the market for both intermediates clears, i. e.,

YL,t = nt and YK,t = mt. (2.18)
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(E3) At all t, there is full employment of labor and capital, i. e.,

ntlt = Lt and mtkt = Kt. (2.19)

(E4) The productivity indicators At and Bt evolve according to (2.17) with A0 > 0

and B0 > 0 as initial conditions.

Condition (E1) is satisfied if Proposition 1 holds. (E2) and (E3) require market

clearing of the market for both intermediates and both factors. To avoid more

complicated notation, the market-clearing conditions (2.18) and (2.19) use the fact

that all entering intermediate-good firms at t produce the capacity output and hire

the same amount of workers and capital, respectively.

By (2.12) the equilibrium amount of labor and capital employed by some intermediate-

good firm is lt = 1/At−1

(
1 − δ + qA

t

)
and kt = 1/Bt−1

(
1 − δ + qB

t

)
. Then, from

(E3), nt = At−1

(
1 − δ + qA

t

)
Lt and mt = Bt−1

(
1 − δ + qB

t

)
Kt. With (E2) and

(E4) I have

YL,t = At−1

(
1 − δ + qA

t

)
Lt = AtLt,

(2.20)

YK,t = Bt−1

(
1 − δ + qB

t

)
Kt = BtKt.

Hence, at a semantic level, technical change is capital- and labor-saving at the level

of the individual firm and capital- and labor-augmenting at the level of economic ag-

gregates. If, ceteris paribus, At−1 and Bt−1 increase, the capacity output is produced

with less labor and less capital. At the aggregate level, these gains in productivity

translate into more entry through the requirement of full employment of labor and

capital. Accordingly, aggregate output of each intermediate good is equal to the

14



respective input in efficiency units, and a higher At or Bt is equivalent to having

more labor or capital, respectively.

Moreover, from (2.20) I have in equilibrium

Yt = F (BtKt, AtLt) and κt =
BtKt

AtLt

. (2.21)

Hence, aggregate output of the final good is produced using the efficient capital

stock and efficient labor. The variable κt has an interpretation as the efficient

capital intensity of the economy. Moreover, it may be used as the state variable to

study the evolution of the production sector:

Proposition 2 Let κt be the state variable that determines the behavior of the pro-

duction sector in t. Given a sequence {κt}∞t=1, κt ∈ R++, there is a unique dynamic

equilibrium that satisfies Definition 1.

2.4 The Partial and the Total Elasticity of Substitution

One may use (2.3) and (2.21) to derive the ratio MPKt/MPLt, i. e., the relative

marginal product of capital, as

MPKt

MPLt

=
γ(σ)

1 − γ(σ)

(
Bt

At

)σ−1
σ

(
Kt

Lt

)−1
σ

. (2.22)

It decreases in the capital intensity, Kt/Lt. This is the substitution effect, and σ is

the PES between capital and labor. ‘Partial’ refers to the fact that Bt/At remains

constant. However, changes in Kt/Lt induce technical change. To see how, write κt

of (2.21) as

κt =
Bt−1

(
1 − δ + gB (κt, σ)

)
At−1 (1 − δ + gA (κt, σ))

Kt

Lt

. (2.23)
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The latter implicitly defines a functional relationship between κt and Kt/Lt charac-

terized by the elasticity

d ln κt

d ln (Kt/Lt)
=

1

1 + εA
κ (κt, σ) − εB

κ (κt, σ)
∈ (0, 1). (2.24)

Here,

εA
κ (κt, σ) ≡ gA

κ (κt, σ)κt

1 − δ + gA(κt, σ)
> 0 and εB

κ (κt, σ) ≡ gB
κ (κt, σ)κt

1 − δ + gB(κt, σ)
< 0,(2.25)

are the elasticities of the equilibrium growth factors of At and Bt with respect to

κt. According to (2.24), κt increases in Kt/Lt. Moreover, as εA
κ > 0 and εB

κ < 0

such an increase induces more labor- and less capital-augmenting technical change.

It is in this sense that induced technical change is linked to the relative abundance

of factors of production as envisaged by Hicks (1932).

With these relationships at hand, it is straightforward to derive the TES, σ̂, as a

measure of the relative change in the relative marginal product of capital to the

relative change in the relative abundance of capital taking induced innovation into

account, i. e.,

σ̂(κt, σ) ≡ −
[
d ln (MPKt/MPLt)

d ln (Kt/Lt)

]−1

= σ

[
1 + εA

κ − εB
κ

1 + σ (εA
κ − εB

κ )

]
, (2.26)

where the argument of εj
κ, j = A,B, is (κt, σ). In view of Proposition 1, the

relationship between σ̂ and σ is as follows.

Corollary 1 For any (κt, σ) ∈ R
2
++ it holds that

σ � 1 ⇔ σ̂ � 1 ⇔ σ � σ̂. (2.27)
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The first part of (2.27) states that capital and labor are either gross complements or

substitutes independent of whether reference is made to the PES or to the TES. The

second part of (2.27) says that the TES is strictly greater (smaller) than the PES if

capital and labor are gross complements (substitutes). For the Cobb-Douglas case,

where the term Bt/At vanishes in (2.22), I find σ = σ̂ = 1.

Corollary 1 obtains since σ̂ depends on κ through εA
κ and εB

κ . As κt is a state

variable of the production sector, the conclusion is that the TES depends on the

state of the economy. However, the numerical exercise of Appendix 6.3 suggests a

complex non-monotonic relationship between both variables.

However, the numerical example given in Appendix 5.2 suggests a complex non-

monotonic relationship between both variables. Moreover, in this example the TES

must fall along a monotonous transition towards the steady state. This contrasts

with the numerical analysis of Miyagiwa and Papageorgiou (2007). In their economy

inter-sectoral reallocation and capital accumulation is the source of an endogenous

AES, and this elasticity is found to increase along the transition towards the steady

state.

3 Steady-State Analysis

I define a steady state, or equivalently a balanced growth path, as a path along

which all variables mentioned in Definition 1 grow at constant exponential rates

(possibly zero) for all t ≥ τ ≥ 1.

It is immediate from Proposition 1 and 2 that in a steady state κt = κ∗ and both

rates, q̂A
t and q̂B

t , are constant. Yet, the dynamic competitive equilibrium of the pro-

duction sector on its own does not pin down κ∗. Therefore, I embed the production
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sector into a richer macroeconomic environment that accounts for capital investment

and a resource constraint. I refer to this environment as the neoclassical economy

with endogenous capital- and labor-augmenting technical change. This environment

delivers a single steady-state condition for κ∗. With this condition at hand, I study

the role of the PES for steady-state growth.

Definition 2 The neoclassical economy with endogenous capital- and labor-augmenting

technical change is defined by the following environment:

1. The (normalized) CES production function (2.1)

Yt = Fσ (BtKt, AtLt) = Γ (σ)
[
γ (σ) (BtKt)

ψ + (1 − γ (σ)) (AtLt)
ψ
]1/ψ

. (3.1)

2. Capital accumulation according to

Kt+1 = IK
t + (1 − δK)Kt, K1 > 0, (3.2)

where IK
t > 0 is gross investment of current output in the capital stock, δK ∈

[0, 1] is the depreciation rate of capital, and K1 > 0 the initial condition.

3. Two indicators of technological knowledge, At and Bt, that evolve according to

(2.17).

4. Innovation investments of current output, IA
t > 0 and IB

t > 0, are necessary

and sufficient for qA
t > 0 and qB

t > 0. Moreover,

IA
t = AtLt i

(
qA
t

)
and IB

t = BtKt i
(
qB
t

)
. (3.3)

5. A resource constraint according to which consumption, Ct > 0, gross invest-

ment in the capital stock, IK
t > 0, and innovation investments, IA

t > 0 and
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IB
t > 0, add up to aggregate output, i. e.,

Ct + IK
t + IA

t + IB
t = Yt. (3.4)

6. The labor force grows at a constant rate gL > (−1), i. e., Lt = L1(1 + gL)t−1

with L1 > 0 as initial condition.

Definition 2 adds capital accumulation according to (3.2) and the resource constraint

(3.4) to the production sector of Section 2. Moreover, it uses equilibrium conditions.

In accordance with (2.20), I replace YL,t and YK,t by AtLt and BtKt in (3.1) and use

(E2) to conclude that IA
t = nti

(
qA
t

)
= AtLti

(
qA
t

)
and IB

t = mti
(
qB
t

)
= BtKti

(
qB
t

)
in (3.3). In addition to consumption, the three ways to invest current output show

up on the left-hand side of the resource constraint (3.4).

The following proposition establishes the key properties of a steady state in a neo-

classical economy with endogenous capital- and labor-augmenting technical change.

Proposition 3 Suppose the neoclassical economy with endogenous capital- and labor-

augmenting technical change exhibits a steady state starting at period τ with IK
t > 0,

IA
t > 0, IB

t > 0 for t ≥ τ . Then, for all t ≥ τ

Yt = Fσ (Bτ Kt, At Lt) = Γ (σ)
[
γ (σ) (BτKt)

ψ + (1 − γ (σ)) (AtLt)
ψ
]1/ψ

, (3.5)

and output per worker grows at rate

g∗ ≡ qA − δ. (3.6)

Proposition 3 states that in a steady state the growth rate of output per worker

coincides with the net growth rate of labor-saving technical change g∗; there is no

19



capital-saving technical progress, i. e., Bt = Bτ for all t ≥ τ . These findings mimic

the predictions of the so-called Steady-State Growth Theorem of Uzawa (1961). In

fact, the proof of Proposition 3 shows that in a steady state, the neoclassical economy

of Definition 2 is isomorphic to the environment to which Uzawa’s theorem applies.

If such an economy is equipped with the production sector of Section 2, Proposition 3

means that

δ = qB = gB (κ∗, σ) and g∗ = qA − δ = gA (κ∗, σ) − δ. (3.7)

The first of these conditions pins down the steady-state capital intensity κ∗, the

second gives the steady-state growth rate of output per worker. This is quite re-

markable: the steady-state efficient capital intensity and the steady-state growth

rate of the economy depend only on parameters that characterize the economy’s

production sector. The following theorem exploits this fact.

Theorem 1 Consider two neoclassical economies with endogenous capital- and labor-

augmenting technical change equipped with a production sector set out in Section 2.

Let these economies differ only with respect to σ. Then, the economy with the greater

σ experiences faster steady-state growth of output per worker.

Hence, a greater PES is associated with faster steady-state growth. To grasp the

intuition of Theorem 1, denote κ∗(σ) the implicit function defined by δ = gB (κ∗, σ)

and consider the prices of the capital- and the labor-intensive intermediate of (2.6)

and (2.7) at the steady state, i. e.,

p∗K = f ′
σ (κ∗(σ)) and p∗L = fσ (κ∗(σ)) − κ∗(σ) f ′

σ (κ∗(σ)) . (3.8)

From Proposition 3 and (3.7), any change in σ must be accompanied by a change in

κ∗(σ) such that δ = gB (κ∗(σ), σ), i. e., the incentive to engage in capital-augmenting

20



technical progress must remain unchanged. From Proposition 1 and (3.8), this means

that p∗K = f ′
σ (κ∗(σ)) must remain constant. The point of Theorem 1 is that under

these circumstances p∗L increases in σ. Then, in accordance with Proposition 1 and

(3.7), gA (κ∗(σ), σ) and g∗ increase.

To see that this is indeed the case consider p∗L as stated in (3.8). Since f ′
σ (κ∗(σ))

remains constant, changing σ has two effects on fσ (κ∗(σ))−κ∗(σ) f ′
σ (κ∗(σ)). First,

there are two (indirect) effects through an adjustment of κ∗(σ) which cancel out. Sec-

ond, there is the (direct) efficiency effect identified by Klump and de La Grandville

(2000), i. e., ∂fσ (κ∗(σ)) /∂σ > 0 for κ̄ 	= κ∗. Hence, it is due to the efficiency effect

that the economy with the greater elasticity of substitution has faster steady-state

growth of output per worker.10

Observe that Theorem 1 does not depend on the assumption that the requirement

functions, i, are the same in both sectors. If, for some reason, the innovation process

in one sector is more difficult than in the other such that iA
(
qA

)
= α i

(
qA

) 	=
iB

(
qB

)
= β i

(
qB

)
with α 	= β, then α becomes a parameter of gA and β one of

gB. Accordingly, the steady-state efficient capital intensity and the steady-state

growth rate of output per worker depend on these parameters in accordance with

(3.7). However, the qualitative effect of the PES on steady-state growth remains

unaffected. A similar reasoning reveals that the depreciation rates of technological

knowledge may differ without affecting my qualitative results.

10It is worth noting that a greater elasticity of substitution may also be associated with faster
sustained growth in models where technical change is absent. For instance, de La Grandville
(1989), p. 479, computes for the Solow model with a normalized CES production function a critical
value of the elasticity of substitution above which there is sustained growth of per-worker variables.
Klump and Preisser (2000), p. 48, show that the economy’s asymptotic growth rate increases in
the elasticity of substitution. However, unlike here, the capital intensity tends to infinity as the
economy approaches its balanced growth path.
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Theorem 1 is also robust with respect to modifications in the way the indicators At

and Bt evolve. For instance, I assume in (2.16) that their evolution depends only

on the innovation activity of the respective sector. To relax this assumption, one

may allow for spillovers. As long as these are not too strong, e. g., such that the

evolution of At depends only on the innovation investments in capital-augmenting

technical change and vice versa, the steady-state growth effects of the PES remain

valid.11

Finally, the growth effect of Theorem 1 may also be related to the total elasticity of

substitution between capital and labor.

Corollary 2 If the production technology of two economies is characterized by σ2 >

σ1 and both partial elasticities of substitution are close to unity, then σ̂2 > σ̂1 and

the economy with the greater total elasticity of substitution between capital and labor

has the higher steady-state growth rate.

Hence, if one believes to measure the TES rather than the PES, the prediction of

faster steady-state growth under a greater elasticity of substitution remains valid.

Though, since little is known about the derivatives ∂εj
κ/∂σ, j = A,B, this result

may only be locally valid.

11For instance, one may replace (2.16) by At = At−1

[(
1 − δ + qA

t

)]φ [(
1 − δ + qB

t

)]λ and Bt =

Bt−1

[(
1 − δ + qB

t

)]φ [(
1 − δ + qA

t

)]λ, with φ > 0 and λ ∈ [0, φ]. Here, λ measures the strength of
the spillover from current research in one sector on the productivity indicator of the other sector.
Details are available upon request.
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4 A Numerical Example

This section adds a household sector as in Solow (1956) and Swan (1956) to the neo-

classical economy with endogenous capital- and labor-augmenting technical change

set out in Definition 2 and provides a numerical simulation. The purpose is twofold.

First, it allows me to probe the results derived in Corollary 1, Theorem 1, and

Corollary 2 quantitatively. Second, I use this framework to address the question of

whether and how the TES may vary during the process of development.

Let aggregate savings, St, be a constant fraction, s ∈ (0, 1), of total income accruing

to capital and labor. Then, in equilibrium I have for all t = 1, 2, ...,∞

St = s (wtLt + RtKt)

(4.1)

= s
[
Fσ (BtKt, AtLt) − AtLti

(
gA (κt, σ)

) − BtKti
(
gB (κt, σ)

)]
.

Using IK
t = St in (3.2), I express this difference equation in terms of the state

variables κt and Bt as

κt+1

(
1 − δ + gA (κt+1, σ)

1 − δ + gB (κt+1, σ)

)
=

Bts
[
fσ (κt) − i

(
gA (κt, σ)

) − κt i
(
gB (κt, σ)

)]
1 + gL

(4.2)

+
1 − δK

1 + gL

κt.

From Proposition 1 and (2.17), I obtain

Bt+1 = Bt

(
1 − δ + gB (κt+1, σ)

)
. (4.3)

The dynamical system of the model consists of (4.2) and (4.3) and the initial condi-

tions {K1, L1, A0, B0}. Given, Lt = L1(1+gL), gL > (−1), L1 > 0, it determines a se-
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quence {κt, Bt}∞t=1, and hence sequences of prices {pL,t, pK,t, wt, Rt}∞t=1, of allocations

{Yt, YK,t, YL,t, nt,mt, yl,t, yk,t, q
A
t , qB

t , at, bt, lt, kt, I
K
t , IA

t , IB
t , Ct, St, Kt+1, Lt+1}∞t=1, and

of the indicators of the level of technological knowledge {At, Bt}∞t=1. Notice that κ1

and B1 are pinned down by

κ1 =
B0

(
1 − δ + gB (κ1, σ)

)
K1

A0 (1 − δ + gA (κ1, σ)) L1

> 0, B1 = B0

(
1 − δ + gB (κ1, σ)

)
. (4.4)
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Table 1: Key Results For The Example.

σ - PES σ̂(κ∗(σ), σ) - TES g∗ Roots Modulus

0.1 0.23 0.15% 0.17 ± 0.55i 0.57

0.25 0.36 0.43% 0.13 ± 0.71i 0.73

0.5 0.57 0.83% 0.1 ± 0.8i 0.8

0.75 0.79 1.17% 0.1 ± 0.83i 0.83

1 1 1.47% 0.1 ± 0.84i 0.84

2 1.85 2.38% 0.13 ± 0.81i 0.82

5 4.41 3.72% 0.29 ± 0.56i 0.63

8 6.97 4.3% 0.48, 0.33 n.a.

10 8.67 4.52% 0.81, 0.1 n.a.

I apply the de La Grandville normalization to the CES production function of (2.1)

for the special case where κ̄ = 1. It follows that ȳ = Γ, m̄ = (1−γ)/γ, Γ(σ) = Γ, and

γ(σ) = γ. As to the remaining parameters I choose the following values: γ = 1/3,

s = 0.2, gL = 0, Γ = 1, v0 = 1, v = 2, δ = 0.225, and δK = 0.2.12 Key results for

σ ∈ {0.1, 0.25, 0.5, 0.75, 1, 2, 5, 8, 10} are shown in Table 1.13

The second column of Table 1 states the TES at the steady state. As σ increases

so does σ̂(κ∗(σ), σ). However, in accordance with Corollary 1, σ � σ̂(κ∗(σ), σ)

as long as σ � 1 with equality only in the Cobb-Douglas case. Column 3 confirms

Theorem 1: the greater σ, the greater is the steady-state growth rate of the economy.

12These choices are not made to get close to a particular economy. For this purpose, more
information would be needed, e. g., to justify the values chosen for v0, v, or δ. See Klump and Saam
(2008) for a proposal how to calibrate the normalized CES in dynamic one-sector macroeconomic
models.

13All computations presented in this section use Mathematica. The notebooks are available upon
request. I detail the method used to analyze the local stability of the steady state as well as the
computations underlying Figures 1 - 4 in Appendix 6.2.
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In addition, it suggests that the function g∗(σ) = gA (κ (σ) , σ)−δ is concave. Taken

together, the first three columns also suggest that the validity of Corollary 2 may

not be confined to a neighborhood of σ = 1: an economy with a greater σ has

greater values for σ̂(κ∗(σ), σ) and g∗.

Columns 4 and 5 show that the steady state is locally stable for all considered

values of σ. However, σ may affect the local transitional dynamics. For σ ∈
{0.1, 0.25, 0.5, 0.75, 1, 2, 5} the distinct complex roots with modulus strictly smaller

than unity indicate spiral convergence towards the steady state. For σ ∈ {8, 10}
both roots are distinct, real, strictly positive, and smaller than unity such that

convergence is monotonic.14

Next, I turn to the analysis of the transitional dynamics of the TES in the neighbor-

hood of the steady state. To cover the cases of spiral and monotonic convergence, I

focus on σ = 0.5 and σ = 8. I assume that these economies are in their steady state

at t = 1. Then, they experience a one-time shock such that κ2 > κ∗, for instance

due to a one-time increase of the savings rate. This shock is assumed to be so small

that the transition to the steady state may be studied using linear approximations.

Figures 1 and 2 depict the adjustment paths to the TES following the shock. In both

cases, the evolution of σ̂t inherits the properties of the adjustment of κt, i. e., spiral

convergence in the case of σ = 0.5 and monotonic convergence if σ = 8. Hence, the

TES varies over time. Another difference occurs as to the initial response of the

TES to an increase in κ above its steady state level. For σ = 0.5, Figure 1 reveals

that σ̂2 < σ̂(κ∗) whereas Figure 2 shows the opposite for σ = 8. This may be traced

14These results suggest a threshold value of the PES that separates a region with spiral from one
with monotonic convergence. Unfortunately, it is not straightforward to see what this threshold
will depend on or even when it exists.
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Figure 1: The Evolution of the TES, σ̂t = σ̂ (κt, σ), for σ = 0.5.
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back to the differential response of σ̂(κ, σ) to changes in κ. Figure 3 shows this

relationship to be negative for σ = 0.5. However, it is positive in the case of σ = 8

as shown in Figure 4.15

Summing up, these results suggest that the TES may vary throughout the process

of development as conjectured by Arrow, Chenery, Minhas, and Solow (1961). How-

ever, extending the findings of Miyagiwa and Papageorgiou (2007), its evolution may

not be monotonic.

15Figures 3 and 4 are representative in the sense that for all considered values σ < 1 there is a
neighborhood of κ∗ such that σ̂ (κ, σ) is decreasing whereas for σ > 1 it is increasing.
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Figure 2: The Evolution of the TES, σ̂t = σ̂ (κt, σ), for σ = 8.
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5 Concluding Remarks

This paper suggests that there are new effects linking the predicted growth perfor-

mance of an economy to the elasticity of substitution once I leave the setting of the

one-sector growth models of de La Grandville (1989) and Klump and de La Grandville

(2000). In the three-sector economy under scrutiny here the direction of technical

change, i. e., the economy’s choice between capital- and labor-augmenting technical

change, is endogenous. I find that an economy with a greater PES between capital

and labor has a greater steady-state growth rate of output per worker. This is due to

the efficiency effect of the elasticity of substitution of Klump and de La Grandville

(2000), i. e., for a given efficient capital intensity, output per efficient labor increases

in the elasticity of substitution. In the present context, innovation investments that

raise the productivity of labor become more profitable due to the efficiency effect.

Therefore, the steady-state growth rate is higher.

Unlike other channels linking the elasticity of substitution to a country’s growth
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Figure 3: The Dependence of the TES, σ̂ (κ, σ), on κ in a neighborhood of κ∗ for
σ = 0.5.
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performance, the central result of this paper does not depend on particular assump-

tions on the household side of the economy. All relevant steady-state conditions

on growth rates follow from Uzawa’s Steady-State Growth Theorem. Theorem 1

derives a great deal of its generality from this fact. The price, however, is that it

does not include predictions concerning transitional dynamics.

To make a first step in the analysis of the role of the PES for transitional dynamics,

I consider a household sector with a constant savings rate. My findings suggest that

the PES may determine whether the adjustment to the steady state is characterized

by spiral or monotonic convergence. The transitional evolution of the TES inherits

these properties. Hence, as conjectured by Arrow, Chenery, Minhas, and Solow

(1961), the TES changes during the process of development. However, my results

suggest that the relationship between the state of the economy and its TES may be

complex. Untangling this complexity remains an open question for future research.

The present paper points to an issue a possible answer has to take into account:
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Figure 4: The Dependence of the TES, σ̂ (κ, σ), on κ in a neighborhood of κ∗ for
σ = 8.
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endogenous technical change is a reason for why an economy’s TES is endogenous.
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6 Appendix

6.1 Proofs

6.1.1 Proof of Proposition 1

Upon substitution of (2.6) and (2.7) in the respective zero-profit condition of (2.15) gives

fσ (κt) − κt f ′
σ (κt) = (1 − δ + q̂A

t )i′(q̂A
t ) + i(q̂A

t ), (6.1)

f ′
σ (κt) = (1 − δ + q̂B

t )i′(q̂B
t ) + i(q̂B

t ). (6.2)

Denote the right-hand side of both conditions by RHS
(
q̂j

)
, j = A, B. Due to the properties of

the function i defined in (2.10), the range of RHS
(
q̂j

)
is R+. Moreover, RHS′ (q̂j

)
> 0 on R+.

Similarly, denote by LHSj (κt, σ), j = A, B, the left-hand sides of these conditions. Due to the

properties of the CES function, LHSj (κt, σ) is continuous and strictly positive on R++. Hence,

for any pair (κt, σ) ∈ R
2
++ there is a unique q̂A

t = gA (κt, σ) > 0 that satisfies (6.1) and a

unique q̂B
t = gB (κt, σ) > 0 that satisfies (6.2). Total differentiation of (6.1) and (6.2) delivers

dq̂A
t /dκt ≡ gA

κ (κt, σ) > 0 and dq̂B
t /dκt ≡ gB

κ (κt, σ) < 0, respectively. �

6.1.2 Proof of Proposition 2

In total there are 19 variables and 19 equations. By (2.6) and (2.7) the prices pL,t and pK,t depend

on κt in a unique way. Proposition 1 shows that q̂A
t and q̂B

t depend on κt through single-valued

functions. Then, an application of the equilibrium conditions of Definition 1 reveals that there are

unique values lt, kt, wt, Rt, at, bt, At, Bt, nt, mt, YK,t, YL,t, Yt depending on κt ∈ R++ through

either q̂A
t or q̂B

t . Recall that yl,t = yk,t = 1 for all t ≥ 1 in accordance with Proposition 1. �

6.1.3 Proof of Corollary 1

Immediate from Proposition 1 and equation (2.26). �
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6.1.4 Proof of Proposition 3

For a steady state, the evolution of At and Bt as given by (2.17) requires qA
t = qA and qB

t = qB

for all t ≥ τ . Since Ij
t > 0 I have qj > 0, j = A, B. With this in mind, the neoclassical economy

with endogenous capital- and labor-augmenting technical change is isomorphic to the environment

to which the Steady-State Theorem of Uzawa (1961) applies.

To see this, consider the resource constraint (3.4), which may be written as

Ct + IK
t + AtLti

(
qA

)
+ BtKti

(
qB

)
= Yt. (6.3)

Define net output as

Ỹt = F̃σ (BtKt, AtLt) ≡ Fσ (BtKt, AtLt) − AtLti
(
qA

) − BtKti
(
qB

)
. (6.4)

One readily verifies that the net production function F̃ has constant returns to scale in Kt and Lt,

and, using (6.1), (6.2) and the properties of fσ and i, positive and diminishing marginal products

of Kt and Lt.

Hence, the environment described by (i) Ỹt = F̃σ (BtKt, AtLt), (ii) the resource constraint Ct +

IK
t = Ỹt, (iii) capital accumulation according to (3.2), and (iv) growth of the labor force at a

constant rate is the one to which the Steady-State Growth Theorem of Uzawa (1961) applies (see,

Schlicht (2006) and Jones and Scrimgeour (2008)). Hence, in a steady-state it must be that qB = δ

and g∗ = qA − δ. �

6.1.5 Proof of Theorem 1

From (3.7) a change in σ affects κ∗ since such a change must leave gB unaffected. Denote this

relationship by κ∗ = κ∗(σ). An application of the implicit function theorem to (6.2) reveals that

κ∗(σ) satisfies

dκ∗

dσ
= −∂f ′

σ

∂σ

1
f ′′

σ

, (6.5)

where the argument of fσ is κ∗.
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To study the effect of σ on the growth rate of output per worker, write g∗ = gA (κ∗(σ), σ)− δ such

that

dg∗

dσ
=

∂gA (κ∗, σ)
∂κ∗

dκ∗

dσ
+

∂gA (κ∗, σ)
∂σ

. (6.6)

From (6.1), I derive

∂gA

∂κ
= − κ∗ f ′′

σ

(1 − δ + gA) i′′ (gA) + 2i′ (gA)
, (6.7)

∂gA

∂σ
=

∂fσ

∂σ − κ∗ ∂f ′
σ

∂σ

(1 − δ + gA) i′′ (gA) + 2i′ (gA)
, (6.8)

where the argument of gA is (κ∗, σ) and the argument of fσ is κ∗. Substitution of (6.5), (6.7), and

(6.8) in (6.6) gives

dg∗

dσ
=

∂fσ

∂σ

(1 − δ + gA) i′′ (gA) + 2 i′ (gA)
> 0. (6.9)

The sign of dg∗/dσ follows since sign[∂fσ (κ∗) /∂σ] > 0 for κ∗ 	= κ̄ in accordance with the proof of

Theorem 1 of Klump and de La Grandville (2000). �

6.1.6 Proof of Corollary 2

From (2.26) it follows that

dσ̂

dσ
=

1
1 + σ (εA

κ − εB
κ )

[
1 + εA

κ − εB
κ + σ(1 − σ)

(
∂εA

κ

∂σ
− ∂εB

κ

∂σ

)]
. (6.10)

Evaluated at σ = 1, I have dσ̂/dσ = 1. In view of Theorem 1, Corollary 2 follows immediately. �

6.2 Local Stability of the Dynamical System of Section 4

In this Appendix, I establish that the two difference equations (4.2) and (4.3) may be transformed

into a single second-order, autonomous, non-linear difference equation in κt. The linear approxi-

mation of this equation at κ∗ may then be used to analyze the local stability of the steady state

of (4.2) and (4.3).
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Rewrite (4.2) as

Bt = φ (κt+1, κt) , (6.11)

where φ : R
2
++ → R++. Upon replacing the latter in (4.3), I find

φ (κt+2, κt+1) = φ (κt+1, κt)
(
1 − δ + gB (κt+1, σ)

)
, (6.12)

which implicitly defines a second-order, autonomous, non-linear difference equation in κt given κ1

and κ2. I denote this difference equation by κt+2 = η (κt+1, κt). Its steady state, κt = κ∗ for all t,

is given by δ = gB (κ∗, σ).

To analyze the local stability of the steady state I study the linear approximation of η(·, ·) at

κt+1 = κt = κ∗. Denote φi, i = 1, 2, the partial derivative of φ with respect to the ith argument.

The total differential of (6.12) evaluated at the steady state delivers

dκt+2

dκt+1
=

∂η

∂κt+1
=

φ1 + φgB
κ (κ∗) − φ2

φ1
≡ a1, (6.13)

dκt+2

dκt
=

∂η

∂κt
=

φ2

φ1
≡ a2, (6.14)

where the argument of φ and η is (κ∗, κ∗).

With (6.13) and (6.14), I may approximate κt+2 in a sufficiently close neighborhood of the steady

state by

κt+2 = a1κt+1 + a2κt + R, (6.15)

where R = κ∗ (1 − a1 − a2). The stability of the linear difference equation (6.15) is determined by

its characteristic equation μ2 − a1μ− a2 = 0. The roots of the latter are given in the forth column

of Table 1. In case of distinct complex roots, I add their modulus in Column 5.

Figures 1 and 2 show the evolution of σ̂t = σ̂ (κt, σ) for t = 1, ..., 31 in the neighborhood of the

steady state for the cases σ = 0.5 and σ = 8, respectively. To derive these trajectories, I solve (6.15)

for κ1 = κ∗(σ) and κ2 = κ∗(σ) + 0.005, and use the solution {κt}31
t=1 to compute σ̂t = σ̂ (κt, σ).

Figures 3 and 4 depict σ̂ (κ, σ) of equation (2.26) for κ ∈ (κ∗ − 0.007, κ∗ + 0.007).
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Figure 5: The Global Relationship between the TES, σ̂ (κ, σ), on κ for σ = 0.5.
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6.3 The Global Relationship between the TES and κ

The purpose of this appendix is to show by example that the relationship between the TES, σ̂,

and κ is non-monotonic. Figure 5 makes this point for parameter values underlying Table 1 and

a PES equal to .5. The TES, σ̂ (κ, .5), is first increasing and then decreasing. The steady-state

efficient capital intensity is equal to κ∗ = 0.724. It lies in the region where σ̂ (κ, .5) decreases in κ.

This is consistent with the local perspective taken in Figure 3.

For larger values of the PES, the relationship between the TES and κ remains non-monotonic. For

instance, if σ = 8, the graph of σ̂ (κ, 8) looks as in Figure 5. However, given the parameter values

of Table 1, the steady-state efficient capital intensity lies in the region where the TES increases in

κ as shown in Figure 4 .
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