
HAL Id: hal-00828976
https://hal.science/hal-00828976v1

Preprint submitted on 1 Jun 2013 (v1), last revised 5 May 2014 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Priority-based coordination of robots
Jean Gregoire, Silvère Bonnabel, Arnaud de La Fortelle

To cite this version:
Jean Gregoire, Silvère Bonnabel, Arnaud de La Fortelle. Priority-based coordination of robots. 2013.
�hal-00828976v1�

https://hal.science/hal-00828976v1
https://hal.archives-ouvertes.fr

Priority-based coordination of robots

Jean Gregoire∗ Silvère Bonnabel∗ Arnaud de La Fortelle∗ †

June 1, 2013

Abstract

This paper addresses the problem of coordinating multiple robots in
a common environment with positive velocity along fixed paths. We pro-
pose a priority-based framework, which is an overlay of the coordination
space approach that fits well the positive velocity constraint. The theoret-
ical developments rely on a priority graph that defines the relative order
of the robots. As a primary contribution, the priority graph is proved
to uniquely encode the homotopy classes of feasible trajectories, and a
mathematical characterization of priority cycles leading to deadlock con-
figurations is provided. As a secondary contribution, the framework is
applied to the problem of designing an intersection management system.
This system uses heuristics rules to assign priorities between vehicles, and
once the the priorities are fixed the algorithm is proved to possess optimal-
ity properties. Good performance is observed in numerical experiments
on an open network of intersections. More generally, the framework seems
to open up new avenues of research in the field of coordination.

1 Introduction
When a fleet of robots move in a common environment, coordination must be
carried out to avoid collisions. Safety is indeed the main reason why automated
coordination has become an intensive field of research for applications in air
traffic systems (see, e.g. [1]), railway systems (see, e.g. [2]) or autonomous in-
tersection management (see, e.g. [3, 4]). In this paper, we consider the problem
of coordinating a collection of robots, motivated by applications such as coordi-
nating a fleet of automated guided vehicles (AGVs) in a factory, or autonomous
vehicles in a fully automated transportation system.

Multiple robot coordination with unconstrained paths is a problem of high
combinatorial complexity [5]. In [6], a path-velocity decomposition allowing to
reduce the problem’s complexity was first proposed to the authors’ knowledge.
In this setting, each robot is assumed to move along a predefined path and then
the velocity profiles of the robots along their assigned paths are optimized. The
problem is thus decomposed into a trajectory tracking problem via a low-level
controler, and a high-level planning problem, the latter leading to the realm of
fixed-path coordination algorithms (see, e.g. [7]).
∗Mines ParisTech, Centre de Robotique, Mathématiques et Systèmes, 60 Bd St Michel

75272 Paris Cedex 06, France
†Inria Paris - Rocquencourt, IMARA team, Domaine de Voluceau - Rocquencourt, B.P.

105 - 78153 Le Chesnay, France

1

The fixed-path approach has since become standard in motion planning
[8, 9, 10, 11, 12]. An attempt to take into account dynamics constraints within
this framework has been made in, e.g. [13, 14, 15], and [16] for distributed
algorithms. The configuration of each robot boils down to its curvilinear posi-
tion on its path and the configuration space of the whole system is called the
coordination space. It is a n-dimensional space where n denotes the number
of robots going through the intersection. To prevent collisions between robots,
some configurations of the coordination space must be excluded: they consti-
tute the so-called obstacle region. Such approaches based on the configuration
space turn the motion planning problem into the geometric problem of search-
ing a collision-free trajectory in a n-dimensional space that minimizes a certain
objective function (e.g. the average travel time from the initial to the goal
configuration).

In the coordination problem, the obstacle region has a cylindrical shape
[7, 10], as first noticed in [9]. The papers [17, 18] study the problem of finding
pareto-optimal trajectories (i.e. each robot tries to optimize its own particular
objective function). They propose to first discretize the coordination space, and
then to take advantage of the cylindical structure to turn the coordination space
into a negatively curved discrete space. Uniqueness of locally Pareto-optimal
trajectories in each class of homotopic trajectories appears then as a mere con-
sequence of the uniqueness of geodesics linking two points in a hyperbolic space.
However, enumerating all locally optima in each homotopy class to find a glob-
ally optimal trajectory is a problem of high combinatorial complexity, and the
authors point out the solution proposed is of interest only with a few robots and
a low degree of intersection.

In this paper, building upon (but going far beyond) our preliminary con-
ference paper [19], we introduce an alternative approach to the coordination
problem. We consider the problem of coordinating robots on fixed paths, and
we impose nonnegative velocities along each path. This is a standard assump-
tion (see, e.g. [17]) as an efficient planning algorithm is expected to slow down
or in the worst case stop robots, but not have them move backwards. Such con-
straints are well-known to possibly lead to the so-called deadlock situations, in
which vehicles "block" each other. To address the challenge of building efficient
collision-free and deadlock-free trajectories, the present paper advocates the use
of a priority-based framework. The usual notion of priority is mathematically
captured through a priority graph.

Beyond introducing an intuitive and versatile framework for coordination of
robots, the paper has four main contributions

1. The priority graph is proved to uniquely encode the homotopy classes of
the coordination space described in [17, 18]. Thus, the priority graph
captures the discrete combinatorial part of the problem, and allows to
design efficient algorithms based on intuitive heuristic priority assignment
policies.

2. The priority graph is a very suitable tool to understand the deadlock
phenomenon when robots block each other. We prove that deadlocks
can be prevented by avoiding certain cycles in the priority graph that we
characterize mathematically. Indeed, those cycles would require robots
to wait indefinitely for each other in a cyclic fashion because of cyclic
priorities.

2

3. For a given priority graph, we solve the optimization problem in continuous
time of finding a trajectory within the corresponding homotopy class that
minimizes the average time spent by the robots in the intersection.

4. The proposed theoretical tools are applied to the particular problem of
managing an open network of intersections. The theory is completed by
introducing the intersection graph that captures links between obstacle
regions. Based on the several tools at hand, a collision and deadlock-free
simple algorithm running in real-time is proposed and shown to yield very
satisfactory results in simulations performed on synthetic data.

The paper is organized as follows. Section 2 is mainly expository and
presents the coordination space approach. Section 3 introduces our priority-
based framework. Section 4 is devoted to the problem of optimizing the average
travel time once priorities have been assigned. Section 5 applies the proposed
tools to an intersection management problem, and the results are illustrated by
numerical experiments. Finally, Section 6 is devoted to a discussion, in which a
series of remarks indicate that the proposed versatile framework seems to open
up new avenues in the field of coordination in robotics.

2 The coordination space approach

2.1 The fixed paths assumption
This section is mainly expository and presents the fixed-path coordination space
approach (see, e.g. [7]). This approach dates back to the 1980s (see, e.g. [6]),
and has since become standard (see, e.g. [20]), especially in applications to
automated intersections where the environement is highly constrained and the
vehicles tend to move along very similar paths in normal driving conditions.

Assumption 1 (Fixed paths). Every robot i follows a particular path γi and
we let xi ∈ R denote its curvilinear coordinate along the path. The state
x = (x1, · · · , xn) indicates the configuration of all robots, and x(t) denotes the
evolution of the state x over time t ∈ [0, T].

The approach is illustrated in Figure 1. The curvilinear coordinates are
normalized, so that x ∈ χ = [0, 1]n where n denotes the number of robots
going through the intersection (possibly varying with time). The boundedness
condition on χ is rather technical but ensures that the whole intersection lies in
a bounded region (somehow interactions are limited to a bounded area). The
configuration space χ is known as the coordination space [21]. In the rest of the
paper, {ei}1≤i≤n denotes the canonical basis of χ.

As every robot occupies a non-empty geometric region, some states must be
excluded to avoid collisions between robots.

Definition 1 (Obstacle region, Obstacle-free region). The obstacle region χobs

is the open set of all collision configurations. χfree = χ\χobs denotes the
obstacle-free space.

A collision occurs when two robots occupy a same region of space, so that
[7]:

3

Υ1

Υ5 Υ4

Υ2

Υ3

2

1

4 5
3

Figure 1: The fixed paths assumption. Every robot travels along an assigned
path.

Property 1 (Cylindrical structure). The obstacle region can be described as
the union of n(n− 1)/2 open cylinders χijobs corresponding to as many collision
pairs: χobs = ∪i>jχijobs.

Note that χijobs = χjiobs and χiiobs = ∅. Figure 2 displays the obstacle region
and a collision configuration for a 2-path intersection.

x1

x2

χobs

Υ1

Υ2

Figure 2: The left drawing depicts two paths with two robots in collision in
the current configuration. The left drawing shows the obstacle region associ-
ated to the two paths in the coordination space and the collision configuration
(x1, x2) ∈ χobs corresponding to the collision of the left drawing.

Assumption 2 (Cylinders convexity and regularity). Every cylinder χijobs has
an open bounded convex cross-section (in the plane generated by ei and ej).
Moreover, the boundary of every cylinder χijobs is supposed to be continuous and
piecewise smooth.

This assumption is rather technical and implies that cylinders cross-sections
are simply connected and excludes some cases of real intersections such as a pair
of opposite turn-left. The proofs in the sequel rely on this assumption, but the
results could be extended with a more relaxed assumption, leading to additional
technicalities in the proofs that may complicate the paper in an undesirable way.

4

Cross-sections are open sets so that the complementary set is closed and hence
complete. It also ensures that all cross-sections are included in the interior of
[0, 1]2: no collision can occur for a robot at coordinates 0 or 1.

2.2 Problem formulation
The initial configuration of the robots is xinit ∈ χfree, and the goal region is
χgoal = {1 = (1 · · · 1)} ⊂ χfree. Moreover, robots are assumed to move with
a bounded velocity in the intersection: there is a maximum velocity due to
physical limitations.

Assumption 3 (Bounded velocity).

∀i ∈ {1...n},∀t ∈ [0, T], |x′i(t)| ≤ vmax
i

The coordination space approach enables to formulate very synthetically
what is a feasible trajectory for the coordination problem:

Definition 2 (Feasible trajectory). A feasible trajectory for the considered prob-
lem is a right-differentiable trajectory x : [0, T] → χfree such that x(0) = xinit,
x(T) ∈ χgoal, and ∀t ∈ [0, T], |x′i(t)| ≤ vmax

i .

To define a performance criterion for the motion planning problem, an ob-
jective function c(x) must be introduced to compare feasible trajectories. The
corresponding notion of optimality one seeks depends on the application. A
standard choice for the objective function, that we will consider in the sequel,
is the average time elapsed in the intersection (see, e.g. [16]). When the ob-
jective function is scalar, the optimality problem consists of finding a feasible
trajectory x? that minimizes the cost, i.e. for any feasible trajectory x, we have
c(x∗) ≤ c(x). However, when it is vectorial, as considered in [17], the notion of
optimality must be replaced with the so-called Pareto optimality.

In [17], it has been proved that the set of all feasible trajectories with fixed
endpoints could be classified into homotopy classes (one element of the class is
deformable to the other) in a cylindrical coordination space, and Pareto opti-
mal trajectories are in bijection with homotopy classes. In the latter paper no
semantics is proposed to describe the different homotopy classes. Our priority-
based framework introduced in the next section provides such a semantics by
encoding the homotopy classes thanks to the intuitive concept of priority.

3 The priority-based framework
The planned trajectory is expected to have a positive velocity for all robots
through time. Indeed, it seems natural to slow down or possibly stop robots at
some times to avoid collisions. In particular, for an application to intersection
management, a planned trajectory with non positive velocities would produce
vehicles that move backwards in the intersection area, leading to an unsafe (and
likely to be inefficient) situation.

Assumption 4 (Positive velocity).

∀i ∈ {1...n},∀t ∈ [0, T], x′i(t) ≥ 0

5

Because of the positive velocity constraint, for every couple of robots with
a non-empty collision region, one of the two robots necessarily passes before or
after the other one. In the coordination space, the trajectory passes below or
above the collision cylinder as depicted in the top drawings of Figure 3. This
reflects the intuitive notion of priority, that has already been used for coordina-
tion. In this paper, we propose a novel framework based on this intuitive notion
of priorities: it is an overlay of the coordination space approach that suits well
the positive velocity constraint. Notably, the framework allows to underline the
great impact of priority choices on the structure of the set of feasible trajectories.

3.1 The priority graph
Definition 3 (Cylinder closure). Let χi�jobs denote the set defined by

χi�jobs = χijobs − R+ei + R+ej

xixi

xj

χobs

xi

xj

χobs
j>i

xi

xj

χobs
i>j

xi>j(t)

xj

χobs

xj>i(t)

xi>j(t)

xj>i(t)

Figure 3: The top drawings represent in the plane (xi, xj) the obstacle region
χobs, a feasible trajectory xi�j respecting priority i � j, and a feasible trajectory
xj�i respecting priority j � i. The bottom drawings depict χi�jobs and χj�iobs .

The bottom drawings of Figure 3 display χi�jobs and χj�iobs . Thanks to the
convexity hypothesis of the cylinders of χobs, we can assert that any feasible
trajectory will be necessarily collision-free with respect to χi�jobs or χj�iobs exclu-
sively, assuming χijobs 6= ∅. The geometry of the coordination space thus leads us
to define a natural binary relation corresponding to priority relations between

6

robots: a very familiar and intuitive notion in real life. We say the robot i has
priority over the robot j if the associated path is collision-free with respect to
χi�jobs in the coordination space.

Definition 4 (Priority relation). A feasible trajectory x induces a binary re-
lation � on the set {1...n} as follows. For i 6= j s.t. χijobs 6= ∅, i � j if x is
collision-free with χi�jobs .

Figure 4 provides two graphical representations of priorities and highlights
on a simple example that the priority relation in not necessarily an order. Note
that, whereas priorities are commonly a time related concept (as introduced in
[22] for example), we opt here for a topological definition of priorities in the
coordination space, taking advantage of the cylindrical structure of the obstacle
region.

We propose to encode the priority relations by a graph. As for any collision
pair i, j we have either i � j or j � i, the priority relation can be defined by an
oriented graph G whose vertices are {1...n}.

Definition 5 (Priority graph). Given a feasible trajectory x, we call the priority
graph the oriented graph G whose vertices are {1...n} and such that i G−→ j if
i � j.

Note that, for all i 6= j there is only one arc linking i and j if χijobs 6= ∅ or
zero else. There is no arc linking i to itself. Generally speaking, there are thus
potentially 2

n(n−1)
2 possible priority graphs.

3

1

2

3 1

2

3

1

2

3 1

2

Figure 4: Two representations of priority relations. In each drawing, the rela-
tion is represented in two ways: as a complete oriented graph, where orientation
yields the priority; and as trajectories over time, foreground being first, back-
ground later. The left drawing represents a relation that is an order (even a
total order). The right drawing shows a relation that is not an order.

Note also that since we necessarily have i � j or j � i (exclusively), the
trajectory does not pass through the intersection of regions χi�jobs and χj�iobs .
As a consequence all configurations in χi�jobs ∩ χ

j�i
obs ⊇ χobs are excluded. This

operation corresponds to the South-West closure of the obstacle region proposed
in [21]. Whereas this completion is sufficient to avoid deadlocks involving two
robots, deadlock avoidance with more than two robots is a much more tedious
task, as will be shown in the sequel.

7

An important result associated with the proposed framework is that the
priority graph provides a semantics to describe the homotopy classes of feasible
trajectories, as the priority graph is in bijective correspondance with homotopy
classes. Mathematically, it can be thus stated that the priority graph is an
invariant of every class.

Theorem 1 (Homotopy classes encoding). The homotopy classes of feasible
trajectories are uniquely encoded by the priority graph.

Proof. First we will prove that two homotopic feasible trajectories (thus having
the same endpoints) necessarily have the same graph. Indeed, suppose two
homotopic feasible trajectories x1 and x2 in χfree have two distinct priority
graphs. Say that i � j for x1 and j � i for x2. It means that in the plane
(xi, xj), the trajectory x1 is below χijobs, whereas the trajectory x2 is above
χijobs. As χijobs 6= ∅ and ∀i ∈ {1...n}, x′i ≥ 0, any continuous transformation
transforming x1 into x2 will inevitably collide χijobs (by the intermediate value
theorem). As a consequence, x1 and x2 are not homotopic in χfree, which yields
a contradiction.

To prove uniqueness, consider now a given graph G associated to a feasible
trajectory. We are going to show that all trajectories respectingG are homotopic
to a special trajectory. Homotopy defining an equivalence relation, this will
suffice to conclude. Introduce the trajectory x? respecting the priority graph
G defined in Theorem 3 below (essentially, this trajectory consists of moving
forward the robots at maximum velocity until meeting the boundary of the
closured collision regions and then moving along it until maximum velocity is
again feasible). The result of Theorem 3 is twofold: 1- the trajectory x∗ is
feasible, and 2- any component of any trajectory respecting the priority graph
G and having the same endpoints as x∗, cannot overtake the same component
of x?. The idea of the proof is that any feasible trajectory is somehow a delayed
version of x?. Suppose x is a feasible trajectory with priority graph G. We will
show it is deformable into x∗ by considering the auxiliary trajectory xα defined
as follows:

∀i ∈ {1...n}, xαi (t) = min (xi(t+ α), x?i (t))

The trajectory clearly respects the initial condition as xαi (0) = xi(0) = x?i (0)
as well as the kinetic constraints, reaches the goal region and is collision-free for
all α > 0. Moreover, x0i (t) = xi(t). As the goal is reached in finite time, there
exists a time T > 0 for which xi(T) = 1 for all i. Thus, there exists α0 ≤ T
such that xα0

i (t) ≥ x?i (t) for all i (see Figure 5). As a result, (α, t) 7→ xα(t)
is a function H such that H(0, t) = x(t) and H(α0, t) = x?(t). Moreover it is
continuous because taking the minimum is a continuous operation. By definition
of homotopy, we can assert that x and x? are homotopic. As a consequence,
trajectories respecting a given priority graph G are homotopic. It results that
homotopy classes are uniquely encoded by the priority graph.

The above theorem asserts that the homotopy classes are uniquely encoded
by the priority graphs. It raises the question whether every priority graph can
be mapped to a non-empty class of homotopic trajectories, i.e. is feasible.

8

xi

xj

x*(t)

x(t)
xα(t)

χobs
i>j

Figure 5: The continuous transformation changing any trajectory respecting a
priority graph G into the optimal trajectory x? respecting this priority graph.

3.2 Priorities’ feasibility and deadlocks
In the example of the left drawing of Figure 6, some priorities are obviously
not feasible, i.e. they do not encode a non-empty homotopy class of feasible
trajectories. Indeed, if the the robot 2 passes before the robot 1 and the robot
2 passes before the robot 3, the robot 1 must pass before the robot 3, because
the three paths have a common intersection point. Hence, for this particular
situation, the priority graph cannot be cyclic and the priority relation must be
an order relation to be feasible. If the assigned priorities are cyclic, it will result
in a deadlock situation, each robot waiting for the other to pass. This example
shows that there is a strong link between priorities’ feasibility and deadlocks.
Loosely speaking, a priority graph is feasible, if the assigned priorities do not
result inevitably in a deadlock configuration. In the following, we revisit and
we characterize the familiar notion of deadlock configuration, by tying it to
a priority graph. It allows to provide a necessary and sufficient condition for
priorities’ feasibility.

Definition 6 (Deadlock configuration). Given a priority graph G and a con-
figuration x0 ∈ χ, x0 is a deadlock configuration if there exists a group of robots
such that each robot of the group is at the boundary of either a collision set or
a G-priority violation with another robot of the group.

Note that the above definition is conservative and excludes configurations in
which robots must slide on each other to move forward. This is a pathological
case that should be excluded in practice even if a feasible trajectory exists.

Figure 7 depicts examples of deadlock configurations. The two examples of
Figure 7 underline the strong link between priorities’ cyclicity and deadlocks.
Consider the 3-robot deadlock of the left drawing of Figure 7. In this example,
robot 2 cannot move forward because of robot 3, robot 1 cannot move forward

9

1

x1

x2

x3

Xgoal

2

3

Figure 6: The left drawing represents a 3-path intersection with a common in-
tersection point and 3 robots going through the intersection. The right drawing
depicts what happens in the coordination space when cyclic priorities are as-
signed. Any feasible trajectory respecting cyclic priorities should stay in the red
box [0, 12]3, but reaching the goal obviously requires to cross this box.

1
2
3

Figure 7: Two examples of deadlock configurations. On the left side, 3 robots
are implicated in the deadlock. On the right side, the deadlock is caused by a
priority cycle involving much more robots. In both examples, each robot of the
group is at the boundary of a collision or a priority violation with another robot
of the group.

because of robot 2 and robot 3 cannot move forward because of robot 1. As a
consequence, the configuration x of the system is at the boundary of χ3�2

obs , χ
2�1
obs

and χ1�3
obs , i.e. x ∈ ∂χ

3�2
obs ∩ ∂χ

2�1
obs ∩ ∂χ

1�3
obs , where ∂χ

i�j
obs denotes the boundary

of a χi�jobs , as depicted in Figure 8. This example motivates the following lemma
that yields the set of deadlock configurations associated to a cycle of priorities:

Lemma 1 (Deadlock configurations associated to a cycle of priorities). The
configurations χCdeadlock :=

⋂
i
C−→j

∂χi�jobs associated to any cycle C in the priority
graph are all necessarily deadlocks.

Proof. The group of robots composed of the nodes of C respects the condition
of Definition 6. Indeed, for all i C−→ j, robot i is at the boundary of a collision
or a priority violation with robot j by definition.

The above lemma sketches the role of priority cycles in deadlock formation.
The following theorem provides a necessary and sufficient condition for priori-

10

xi

xj

χobs
i>j

∂χobs
i>j

Figure 8: The boundary of a fixed-priority collision cylinder

ties’ feasibility, i.e. ensuring that assigned priorities will not result inevitably in
a deadlock configuration, and confirms the key role of priority cycles.

Theorem 2 (Priorities’ feasibility). A priority graph G encodes a non-empty
homotopy class of feasible and deadlock-free trajectories if and only if for all
cycles C in G, χCdeadlock :=

⋂
i
C−→j

∂χi�jobs = ∅, in which case the priority graph G
is said to be feasible.

Proof. Suppose that for all cycles C in G, χCdeadlock = ∅, then there exists a
feasible trajectory. It will be constructed the proof of Theorem 3.

Suppose now that for a cycle C in G, we have χCdeadlock 6= ∅. We are going
to build a closed box in the coordination space capturing any trajectory which
respects those priorities. To do so, take x0 ∈ χCdeadlock. For each i ∈ nodes(C),
consider K0

j = {x ∈ χ : xj = x0j and 0 ≤ xi ≤ x0i for i 6= j}. By definition of
χi�jobs we have

x0 ∈ ∂χi�j =⇒ K0
j ⊂ (χi�jobs ∪ ∂χ

i�j
obs)

As ∀i C−→ j, x0 ∈ ∂χi�jobs , applying the latter result yields:

∀i C−→ j,K0
j ⊂ (χi�jobs ∪ ∂χ

i�j
obs)

Any trajectory respecting the subset of priorities defined by C cannot cross⋃
i
C−→j

(χi�jobs ∪ ∂χ
i�j
obs) (see Figure 3). As a consequence, the feasible trajectory

cannot cross the smaller set
⋃
i
C−→j

K0
j , which is equal to

⋃
j∈nodes(C)K

0
j , as every

node is involved in a cycle.
In the configuration space restricted to the coordinates which appear in

C,
⋃
j∈nodes(C)K

0
j is the set of upper faces of the semi-open rectangular paral-

lelepiped [0, x0). As a result, in this restricted configuration space, the trajectory
is confined in [0, x0), which is a closed box, apart at the point x0 which lies on
the boundary, but the trajectory cannot pass through x0 because it is a dead-
lock configuration. Thus, finally, there is no feasible deadlock-free trajectory
respecting the priority graph G.

11

From a theoretical viewpoint, the latter theorem gives insight into the strong
relationship between deadlocks and priorities, as it proves the set of priority
graphs G such that χCdeadlock = ∅ for all cycles C in G is in bijective correspon-
dance with the set of homotopy classes of feasible deadlock-free trajectories.
The fact that cycles in priorities may result in deadlocks had been known for
long [23, 24, 25], and preventing cycles in priorities has been a naive and con-
servative way to avoid deadlocks. The latter theorem refines this knowledge by
characterizing (only) the problematic cycles, and puts it on firm mathematical
grounds.

4 Coordinating robots with assigned priorities
The priority graph captures the combinatorial discrete part of the coordination
problem. As a result, when priorities are assigned, optimization is a much
easier task because it boils down to a continuous problem: finding an optimal
trajectory over a set of homotopic trajectories.

In the following, we provide a solution to the problem of finding an optimal
trajectory respecting a priority graph, i.e. coordinating robots with assigned
priorities, for a particular but meaningful objective function. The problem
and its solution being in continuous time, the optimal solution is not readily
implementable. We thus propose a discrete-time algorithm that approaches the
optimal solution as the time-step decreases.

Note that, the question at hand can be linked to the problem of finding
Pareto optima as described in [18], where a discrete-time version of the optimal
trajectory below has been already proposed and referred to as left-greedy tra-
jectory. In the latter paper, its optimality follows from the fact the state-space
is discrete and negatively curved. In the present paper we propose a more ele-
mentary proof in continuous time. In continuous time, the definition is however
slightly different as it strongly relies on properties of the priority graph.

4.1 Optimal trajectory for assigned priorities
In the following, we suppose that the priority graph G is fixed so the problem
boils down to finding an optimal trajectory satisfying the priorities assigned in
G. As an optimality criterion, we propose to focus on the the particular but
meaningful cost function c(x) = 1

n

∑n
i=1 Ti = 1

n

∑n
i=1 x

−1
i (1) with x−1i (1) de-

noting the first date at which xi reaches coordinate 1 and Ti = x−1i (1) being
the exit time for the robot i. Such objective functions penalizing the average
time elapsed to reach the goal region are standard (see, e.g. [16]). The consid-
ered optimality problem consists of finding a feasible trajectory x? respecting
priorities defined by G that minimizes the average exit time of the robots, that
is, c(x∗) ≤ c(x) for any feasible trajectory x with priority graph G.

Algorithm 1 provides the optimal velocity vector for any configuration x0.
The algorithm belongs to the so-called "bug familly" (see [26]). The idea is to
allow the robots to move at maximum speed along their paths, i.e. x′(t) = vmax,
until the boundary of a fixed priority collision cylinder ∂χj�iobs is reached. In this
case, the boundary is followed at maximum possible speed. When x(t) belongs
to ∂χi�jobs and i G−→ j, x′j(t) must be lower or equal to x′i(t)

∂xj

∂xi

∣∣∣
∂χi�j

obs

(x(t)), where

12

∂xj

∂xi

∣∣∣
∂χi�j

obs

denotes the partial derivative of xj in the direction xi along ∂χ
i�j
obs .

Otherwise, x would inevitably collide χi�jobs just after time t. In order to maximize
the velocity of robot j, we thus let: x′j(t) = min(vmax

i , x′i(t)
∂xj

∂xi

∣∣∣
∂χi�j

obs

(x(t))).

The following algorithm outputs a feasible optimal velocity for any given input
configuration. The underlying principle is illustrated in Figure 9.

Algorithm 1 Maximum velocity
Input: x0, feasible G

function maximumVelocity
G′ := {i G−→ j : x0 ∈ ∂χi�jobs }
for j ∈ nodes(G′) from higher to lower priority do

v0j ← min

(
vmax
j ,min

i
G′−→j

v0i
∂xj

∂xi

∣∣∣
∂χi�j

obs

(
x0
))

5: end for
return v0

end function

5

3

4

6

7

1

2 8

Figure 9: An example of directed acyclic graph (DAG). Suppose that this graph
is the sub-graph G′ as defined in Algorithm 1. Algorithm 1 will assign every
velocity v0i for example in the order defined by the labelling, i.e. from v01 to
v08 . Robots at the roots will be assigned a maximal velocity: v02 = vmax

2 and
v01 = vmax

1 . When computing v07 , for instance, v04 and v05 will be already defined,
and v07 will be computed as follows: v07 = min(vmax

7 , v04
∂x7

∂x4

∣∣∣
∂χ4�7

obs

, v05
∂x7

∂x5

∣∣∣
∂χ5�7

obs

)

Theorem 3 (Optimality for assigned priorities). Given a feasible priority graph
G and an initial configuration xinit, the trajectory x? defined by the differential
equation x∗′(t) = v(x∗(t), G) with initial condition xinit and velocity profile re-
turned at all times by Algorithm 1 is optimal.

Proof. The proof is based on the following steps: the solution is shown 1- to be
well-defined 2- to reach the goal in finite time 3- to be optimal.

1- The velocity profile output by Algorithm 1 is uniquely defined because
there is no cycle C such that

⋂
i
C−→j

∂χi�jobs 6= ∅. Indeed, as a consequence, the

sub-graph G′ of G retaining only edges i → j such that x0 ∈ ∂χi�jobs is acyclic.

13

G′ is a directed acyclic graph (DAG); as a result, it can be traversed from higher
priorities to lower priorities. Moreover, the returned velocity does not depend
on the order in which nodes are traversed because at line 4, v0j depends only
on the projected velocities of higher priority nodes pointing to j (see Figure 9).
The maximal solution x? of the proposed differential equation exists because
the boundary of every cylinder χijobs is supposed to be continuous and piecewise
smooth (see Assumption 2).

2- There is always at least one robot at maximal velocity (the one(s) such
that no robot has priority over it), so it reaches coordinate 1 in finite time.
Once it has exited the intersection, there is at least another robot at maximal
velocity unless the goal has been reached. As there is a finite number of robots,
a simple induction ensures x? reaches χgoal in finite time.

3- Suppose the trajectory x? as defined in the theorem is not optimal. Then
there exists a distinct trajectory x̃ such that c(x̃) < c(x?). Let T 0 be the
first time at which a component of x̃ becomes (strictly) greater than the same
component of x? after T 0: ∀i ∈ {1...n},∀t ≤ T 0, x?i (t) ≥ x̃i(t) and ∀t ∈ (T 0;T 0+

ε), x?j (t) < x̃j(t) for some ε > 0. If there is no i G−→ j such that x(T 0) ∈ ∂χi�jobs ,
then x′?j (t) = vmax

j at time T 0 and x̃′j(t) should be greater than vmax
j , which is

impossible. As a result, there exists a vertex i G−→ j such that x∗ follows ∂χi�jobs

after T 0. If x̃j becomes greater than x?j after T 0, it means the velocity associated
to the trajectory x̃ is pointing strictly inside χi�jobs , which is impossible as it has
been assumed to be collision-free. The trajectory x? is thus optimal.

3 1

2

x1

x2
x2

x3 x1

κij

x3

χobs
2>3

χobs
1>3

χobs
1>2

Figure 10: The bottom-right drawing depicts a 3-path intersection where pri-
orities are fixed to 1 � 2, 2 � 3 and 1 � 3. The three other plots visualize in
each plane (xi, xj) the obstacle region and the optimal trajectory of Theorem
3. The color of the trajectory changes when a collision pair leaves or reaches
the boundary of the obstacle region.

14

Figure 10 illustrates the trajectory defined in Theorem 3 for a 3-path-
intersection.

4.2 Algorithm in discrete time
The optimal trajectory x? of Theorem 3 has been defined as the solution of a
differential equation in continuous time, and is thus not implementable numer-
ically. We propose here an easy-to-implement algorithm in discrete time that
approaches the optimal trajectory as the time-step decreases.

The main idea of Algorithm 2 is to use a bang-bang type control, and to
discretize the time with a time-step ∆T . The robots travel at maximum speed
along the paths, i.e. x′i(t)← vmax

i and xi(t+ ∆T)← xi(t) + vmax
i ∆T (see line

9) until a boundary is reached. When the boundary of a fixed priority collision
cylinder ∂χj�iobs is approached at a distance less than vmax

j ∆T in the direction
j (see lines 5 and 6), the robot j is merely stopped for the next time-step, i.e.
x′j(t)← 0 and xj(t+ ∆T)← xj(t) (see line 7).

Algorithm 2 The collision avoidance algorithm with fixed priorities
Input: xinit, χobs, χgoal, G

function fixedPrioritiesOptimalTrajectory
x(0)← xinit

while x(T) /∈ χgoal do
for i ∈ {1...n} do

5: x̂← x(T) + vmax
i ∆Tei

if ∃j G−→ i s.t. x̂ ∈ χj�iobs then
xi(T + ∆T) = xi(T)

else
xi(T + ∆T) = xi(T) + vmax

i ∆T
10: end if

end for
T ← T + ∆T

end while
return x : [0, T]→ χ

15: end function

5 Application to intersection management
Due to the promises in autonomous cars design, automated intersection man-
agement has attracted much interest recently [27, 28, 29, 30, 3]. Two main goals
motivate the research in this topic. The first one is to avoid accidents due to col-
lisions that occur mainly at intersections and because of human errors. Indeed,
human error is a leading factor in over 90% of all road accidents [31, 32]. The
second one is to enhance road traffic efficiency, given that intersections represent
bottlenecks in the traffic network.

Traditionally, intersection management systems are formalized as a multi-
agent system and heuristics algorithms are used to optimize the traffic through
the intersection [3, 33]. When vehicles request to go through the intersection,
they are assigned a planned trajectory by the intersection manager, and they

15

need to follow the planned trajectory to ensure collision-freeness, deadlock-
freeness and efficiency. Such methods have proved their ability to reduce traffic
congestion [20] and the risk of accidents [34].

In the context of Intelligent Transportation Systems, due to unpredictable
events or cooperation with human-driven vehicles for example, following a planned
velocity is not robustly feasible and replanning is of high complexity. With our
priority-based framework, safety is ensured as long as the priority graph is re-
spected: it is a less restrictive condition thus providing robustness.

As already mentioned, the number of potential priority graphs is 2n(n+1)/2.
Enumerating all possible graphs, retaining the feasible ones, and computing
the cost associated to the (locally) optimal trajectories very quickly becomes of
prohibitive numerical complexity when the number of cars in the intersection n
grows. On the other hand, a naive algorithm which would eliminate all cycles
would possibly lead to very suboptimal trajectories. As a result, a high-level
planning algorithm is needed to construct feasible graphs of interest in which
some cycles are allowed to appear, as long as they lead to deadlock-free trajec-
tories in accordance with Theorem 2. This algorithm can be based on several
heuristics depending on the application.

Regarding the application to intersection management, we propose to build
high-level heuristics upon a very natural and intuitive concept: the notion of
storage capacity of the intersection between two successive collision zones, and
a companion mathematical tool, the intersection graph.

5.1 The intersection graph and the capacity concept

Υ1 = Υ2 = Υ3 = Υ4

Υ5 = Υ6
Υ7 = Υ8

Υ11 = Υ12

Υ9 = Υ10

12

11

4321

8

7

6

5

10

9

Figure 11: Vehicles at an intersection area. Vehicles travelling along the same
path are depicted with the same color.

A key difference in intersection management compared to general coordina-
tion of robots with fixed paths is that vehicles in the same lane going in the
same direction travel along the same path. Let Γ denote the set of paths of the
intersection, ∀i ∈ {1...n}, γi ∈ Γ, as depicted in Figure 11. This justifies the
definition of the collision region associated to two distinct paths:

Definition 7 (Collision region). Given two paths (Γa,Γb) (possibly the same),
Kab ⊂ [0, 1]2 denotes the set of positions (xa, xb) such that a vehicle on Γa at
xa and a vehicle on Γb at xb collide.

16

Note that for γi = Γa and γj = Γb, Kab is the cross-section of χijobs (in other
words the projection onto a 2-dimensional plane), and we define similarly Ka�b
and ∂Ka�b, as depicted in Figure 12.

xa

xb

Kab

xa

xb

Ka>b

∂Ka>b

Figure 12: The collision region, the fixed-priority collision region and its bound-
ary.

In the following, we introduce the intersection graph and the concept of
storage capacities that enable to build very efficient priority assignment rules in
the particular context of intersection management.

The intersection graph Essentially, the intersection graph is a graph rep-
resenting the sequence of collision points that vehicles cross through a given
intersection in a synthetic way.

Definition 8 (Intersection graph). The intersection graph is the graph of nodes
{Kab}a 6=b and edges defined as follows:{

Kab → Kbc : a, b, c distinct, inf
x∈∂Kb�a

xb ≤ inf
x∈∂Kb≺c

xb

}
More prosaically, there is an arrow from Kab to Kbc if a vehicle on path Γb

crosses intersection area Γb∩Γc after crossing Γa∩Γb. Figure 13 shows a 3-path
intersection and the associated intersection graph.

The storage capacity concept The intersection graph enables to decompose
the paths of the intersection into sections that lie between two collision regions.
It is of high interest to note that a limited number of vehicles can be stored
in these sections without blocking the traffic on the intersecting paths. For
example, in the intersection depicted in Figure 14, at most 5 vehicles can be
stored in the section Kab → Kbc. If more vehicles enter this section, e.g. 6
vehicles, as depicted in the right drawing of Figure 14, the traffic is obviously
blocked on path Γa.

In the following formal definition of the capacity concept, for simplicity’s
sake, we assume that all vehicles have the same shape and size. The definition
could easily be extended to take into account the different sizes of the vehicles.

Definition 9 (Capacity). Given three distinct paths Γa, Γb and Γc, the capac-
ity of the section Kab → Kbc of the intersection graph is the maximum num-

17

Kab

Kbc

Kca
Γa

Γb

Γc

Figure 13: An example of intersection graph associated to a 3-path intersection.
Note that the intersection graph here is cyclical.

ber of vehicles that can be stored on Γb between coordinates maxx∈Kab
xb and

minx∈Kbc
xb.

Note that, when some sections of the intersection graph are occupied beyond
their capacity, it can lead to very inefficient situations as depicted in the left
drawing of Figure 15. As vehicle 1 has created an over capacity in section
Kab → Kbc, the traffic is blocked on Γa, and vehicles 2, 3, ... and 7 are blocked: it
is very inefficient. When such a situation is propagated through the intersection,
it can lead to a deadlock configuration as depicted in the right drawing of Figure
15.

In the following, we present the principle of dynamic priority assignment
that consists of assigning priorities one after the other, leading to the realm
of real-time algorithms, allowing one to tackle the challenging case of an open
intersection with varying number of vehicles. Then, we introduce heuristics
rules based on the occupancy of the intersection graph meant to assign priorities
without creating inefficient situations.

5.2 Dynamic priority assignment
In this application, we propose to iteratively build the trajectory in the coor-
dination space and to dynamically update the priority graph. This will lead to
algorithms that are suited to real time, and open intersections. The basic prin-
ciple is as follows. Consider the example of Figure 16 with only two vehicles on
two distinct paths. The algorithm just moves forward the vehicles without as-
signing priorities until (x1(t0) + vmax

1 ∆T, x2(t0)) ∈ K2�1. At time t0, priorities
1 � 2 and 2 � 1 are still both possible. The algorithm can choose to let vehicle
1 move forward and assign priority 1 � 2 (as in the example of Figure 16), or
to slow down vehicle 1 and assign priority 2 � 1. Time t0 thus appears as a
key instant when a decision has to be made. In the following, we opted for the
natural decision to let vehicle 2 move forward, unless it violates a rule among a
set of rules designed to avoid ending up in inefficient or deadlock configurations.
When the vehicle 2 is authorized to move forward, the priority graph must be
updated: 2 � 1.

18

Γa

Γb

Γc

Γd

5

1

Γa

Γb

Γc

Γd

6 > 5
over-capacity

Figure 14: Definition of the capacity concept. At most 5 vehicles can be stored
in the section Kab → Kbc, and only 1 in the section Kbc → Kcd. On the left
drawing, 6 vehicles have entered the section Kab → Kbc whereas the capacity
of this section is 5. The traffic is blocked on path Γa.

The inefficiency of acyclic priority assignment Before going any further
into the proposed algorithm, we would like briefly discuss two naive approaches
to assign priorities iteratively. First of all, note that traffic lights constitute a
very naive approach to assign priorities. It leads to very safe situations, and
the rule assignment is easily understood by any driver. However, it is evidently
very suboptimal especially at low density, at least in the framework of this
paper, where a central planner is allowed to assign the vehicles’ velocities at all
times. Then, a somehow more sophisticated approach but still naive consists of
eliminating all cycles in the priority graph. This basic rule ensures deadlock-
freeness but is suboptimal as Theorem 2 proves that acyclic priority graphs can
be deadlock-free. The key role of cycles in the deadlock prevention problem of
resource allocations systems is well-known [23, 24, 25].

Consider for instance the situations depicted in Figure 17: a vehicle can be
stopped at the intersection because of a resulting cycle, whereas there would be
no deadlock if it passed, which is a source of inefficiency. The storage capacities
of edges of the intersection graph play a key role in detecting and preventing
this kind of situations.

5.3 Efficient heuristic rules for deadlock-free priority as-
signment

In this section, we advocate that the most important rule to follow is to avoid
over capacity propagation through the intersection as depicted in Figure 18.
Mathematically it boils down to avoiding the creation of two adjacent over
capacity sections. Moreover, when vehicles enter in a section beyond its capacity,
they will have to enter the next section in order to free the current section,
otherwise the over capacity will stay for ever. That is why we introduce a
propagation mechanism: the first vehicles of the current section will request to
enter in the next section.

In the actual implementation, the rule described in Figure 18 can be a little

19

1 2 3 4 5 6 7

Γb

Γc

Γa

Γd

Γb

Γc

Γa

Γd

Figure 15: The left drawing depicts an example of inefficiency due to over
capacity in the section Kab → Kbc of the intersection graph, and the right
drawing represents a deadlock configuration due to over capacity propagation.

1

2

x2

x1

χobs
2 > 1

1 > 2χobs

χobs
1 > 2 2 > 1

χobs∩
x(t0)

Figure 16: An example illustrating the dynamic priority assignment approach.
When computing iteratively the trajectory, the priority between vehicles 1 and
2 needs to be assigned when the boundary of one the fixed-priority obstacle
regions is reached, i.e. at x(t0).

relaxed in order to anticipate the fact that a section is about to be freed, i.e.
the over capacity is about to disappear. It enables to grant the permission to
enter the collision region in certain cases although the following section presents
an over-capacity, leading to substantial gains in the efficiency. A final rule
that leads to important gains in efficiency consists of clustering some vehicles
travelling along the same path. Each vehicle in a cluster of vehicles following
each other is allowed to to request the entry in a given section at the same time
as the first vehicle of the group. It enables to create clusters that share the same
priorities when travelling through the intersection.

5.4 Numerical experiments
The algorithms presented in this paper have been implemented into a simulator
coded in Java and have proved their ability to run in real-time. Only straight
paths are implemented and all vehicles are supposed to be circle-shaped with a
common diameter. They clearly illustrate the benefits of the introduced frame-

20

1

2

3

Figure 17: Two examples of inefficiency of the acyclic priorities approach. In
both cases, a vehicle is not authorized to enter the intersection because it would
cause a cycle the priority graph. However, it would be much more efficient to
let it enter the intersection.

over-capacity

Priority assignment
refused for vehicle 1

Γa

Γb

Γc

Γd1
Priority assignment
refused for vehicle 1

Γa

Γb

Γc

Γd

1

over-capacity

Figure 18: The principle of over capacity propagation avoidance. In both draw-
ings, the vehicle 1 is stopped because otherwise, it would result in two adjacent
over-capacity sections.

work, not only for the case of an usual simple intersection, but also for the more
complex case of a network of intersections, where an acyclic priority graph is
evidently far from optimal, because of cycles involving different intersections
that should be allowed most of the time.

The proposed algorithm is compared with a naive acyclic priority assignment
policy. In order to evaluate the performance of each algorithm, the following
criteria are proposed. First, the increase in travel time in percentage measures
the average ratio (∆Ttravel −∆T travel)/(∆T travel) over vehicles, where ∆Ttravel
is the actual travel time of the vehicle through the intersection and ∆T travel

is the ideal travel time of the vehicle in the absence of other vehicles, that is
the length divided by the maximum velocity. This quantity thus represents the
increase in travel time due to other vehicles. We propose to plot it against the
input traffic flow (in percentage), that represents the ratio between the actual
input traffic flow and a continuous traffic flow on each path taken as reference
(i.e. an input traffic flow of vmax

a /D on each path Γa where D denotes the
diameter of the circle-shaped vehicles). The vehicles are generated randomly at

21

a constant rate over time.
Note that 50% is a natural upper bound for the performance of the inter-

section manager of the 4-path intersection. Indeed, when the traffic flow is very
high, the best strategy is to alternate the traffic in each direction, so that only
two of the four paths can output vehicles, it yields a 50% traffic flow ratio as
depicted in the left drawing of Figure 21.

Case of a simple 4-paths intersection Simulations were carried out for a
simple 4-path intersection depicted in the left drawing of Figure 19. Figure 20
presents a performance comparison between the proposed algorithm and a basic
acyclic priority assignment policy.

Figure 19: Screen-shot of the intersections used for the presented simulation
results.

40.0%

50.0%

60.0%

P
e

rf
o

rm
a

n
ce

:
in

p
u

t
tr

a
ff

ic
 f

lo
w

 (
%

)

Acyclic priorities Rules-based priority assignment

0.0%

10.0%

20.0%

30.0%

0.0% 50.0% 100.0% 150.0%

P
e

rf
o

rm
a

n
ce

:
in

p
u

t
tr

a
ff

ic
 f

lo
w

 (
%

)

Increase in travel time (%)

Figure 20: Performance comparison of priority assignment using rules based
on intersection graph occupancy and acyclic priorities assignment for a 4-path
intersection.

22

Γb

Γc

Γa

Γd

Γb

Γc

Γa

Γd

Figure 21: Saturation traffic flow of 50% for the rules-based priority assignment
algorithm (left drawing) and of 25% for the acylic priorities algorithm (right
drawing).

Figure 20 shows that the proposed algorithm yields very good performances
as even for pretty high traffic flow, such as 35%, the average delay is below 40%
in travel time increase. Moreover, it obviously outperforms the acyclic priorities
approach. Also, it asymptotically approaches the upper bound on the perfor-
mance when the increase in travel time grows to infinity. This is a remarkable
feature, as the algorithm that consists only of avoiding cycles saturates for an
input traffic flow around 30%, which can be explained in the following way: this
algorithm carries out maximally permissive deadlock avoidance, and inefficient
situations such as the one depicted in Figure 15 occur and propagate in three
adjacent sections. As a result, when the traffic flow is high, only one path of
the four paths can output vehicles, as depicted in the right drawing of Figure
21; it yields a saturation traffic flow of around 25%. Note that it illustrates that
maximally permissive deadlock avoidance (see, e.g. [35]) in the context of inter-
sections management is not a good strategy in terms of traffic flow efficiency.

Case of a network of intersections Simulations have also been carried out
for a large scale intersection, such as the one depicted in the right drawing of
Figure 19. The performance results for this intersection are depicted in Figure
22. Good performance is observed as even with a pretty high input traffic
flow such as 20%, the average delay is lower than 10%, using the heuristic
rules based on intersection graph occupancy. The performance of the acyclic
priorities policy is particularly low in such a large scale intersection, because of
the inefficient situations as depicted in Figure 17. The video attached to this
paper1 shows how vehicles are coordinated at such a large scale intersection area
using the heuristic rules. One can easily notice how vehicles take care about not
propagating over capacity. This video and the performance results of Figure
22 demonstrate that our naive heuristics rules guarantee an efficient scalable
coordination of the vehicles.

1available at http://www.youtube.com/watch?v=urcQMdsnRyM

23

http://www.youtube.com/watch?v=urcQMdsnRyM

25.0%

30.0%

35.0%

40.0%

P
e

rf
o

rm
a

n
ce

:
in

p
u

t
tr

a
ff

ic
 f

lo
w

 (
%

)
Acyclic priorities Rules-based priority assignment

0.0%

5.0%

10.0%

15.0%

20.0%

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

P
e

rf
o

rm
a

n
ce

:
in

p
u

t
tr

a
ff

ic
 f

lo
w

 (
%

)

Increase in travel time (%)

Figure 22: Performance comparison of priority assignment using rules based on
intersection graph occupancy and acyclic priorities assignment for network of
intersections.

6 Discussion
The key contribution of the present paper is the introduction and a mathemati-
cal study of the priority graph. It is a topological invariant encoding simply the
homotopy classes for trajectories with non-negative velocities. Moreover, prior-
ities give a semantics for these classes that enables the practitioner to build fast
and efficient heuristics for motion planing in spite of its inherent complexity.
The framework was applied to intersection management. It was coupled with
a high-level planning heuristic and has proved to yield an efficient real-time
coordination algorithm for intersection management. The framework proves
versatile, and seems to open up new avenues in the field of robots coordination.
Indeed in the following, we would like to provide a list of concluding remarks
and points that deserve attention, for which the use of the proposed framework
seems relevant. The several ideas seem to confirm the potential strength of the
framework, but exploring each one would be naturally beyond the scope of the
present paper.

Introducing dynamic constraints In the present paper, vehicles are al-
lowed to start and stop instantly. However, in concrete applications, and in
particular for an application to intersection management, vehicles have inertia.
Actually, introducing dynamic constraints in our algorithms is a not-so-hard
task, as explained in the companion paper [36]. Therein, the main point is an-
ticipation of braking possibilities of vehicles (i.e. slowest trajectory at a given
moment) to assign priorities.

24

Distribution The field of distributed control and multi-agent systems has at-
tracted considerable interest over the last decade, notably for their good prop-
erties in term of robustness or scalability. We anticipate that two main avenues
of research could build upon the interplay between the realm of distributed
algorithms and the priority-based framework. First of all, priorities could be as-
signed by a central planning algorithm, and the choice of a particular trajectory
over the corresponding homotopy class could be transferred to the vehicles in a
distributed manner. Basically, this is the principle beneath traffic lights in in-
tersection management: scheduling is centralized while dynamics is distributed.
The central planner could take into account several criteria to assign priorities,
such as time elapsed since a waiting vehicle has arrived, inertia of each vehicle,
that is cars versus trucks, energy spent by each vehicle in order to adapt its
velocity, emergency prioritary vehicles.

Distributing priority assignment is more challenging yet feasible. The prior-
ity graph is a very synthetic structure that could itself be constructed iteratively
in a distributed way. A very basic distributed algorithm would be a first-come
first-served policy: each vehicle waits for the others to exit the collision region
before moving forward. Obviously this would work only for simple intersec-
tions and few vehicles. This lead is more exploratory, but it may be possible
to develop distributed coordination systems and communication protocols that
assign priorities in a distributed way.

Robustness and account of uncertainty Since the priority graph is a
topological invariant, it is robust against small perturbations in trajectories.
Therefore we believe our framework enables to develop more robust coordina-
tion algorithms taking into account several sources of uncertainty. Indeed, in
the present framework, once a feasible priority graph has been found, in order
to prevent collisions from occurring one only needs to check whether the priority
graph is respected at all times. Compared to motion planning algorithms that
can ensure safety only if the planned trajectory x(t) is followed (possibly with
an error margin), our framework potentially allows for a much wider range of
uncertainties, as essentially the only requirement is that the actual trajectory
remains in the homotopy class. Moreover, when assigning priorities, it should
be possible to take into account uncertainties in the control and the sensors
available in each particular vehicle, in the spirit of [37]. For example, priority
assignment policies that are efficient but need a very reliable motion control
will be reserved to very reliable automated cars, whereas cars with less motion
control accuracy or even human-driven cars could be assigned priorities that are
easier to execute.

Rule-based priority assignment The priority graph not only provides a
simple coding for the homotopy classes of feasible trajectories; it provides also
a semantics that is very intuitive, human-understandable. The consequence is
two-fold. First simplicity opens new avenues to develop easy-to-implement and
fast algorithms than can reason on a very synthetic discrete object: the priority
graph. Second, semantics enables to develop intuitive heuristic rules to assign
priorities, as illustrated by the application of Section 5.

25

Intersection management Finally, priority-based intersection management
builds a bridge between multiple robot motion planning using the coordination
space and heuristic algorithms used for intersection (and more generally traf-
fic) management. Motion planning based on the configuration space in robotics
comes with very efficient tools, such as the machinery of sampling-based meth-
ods like Rapidly exploring Random Trees. Casting some traffic management
problems into this usual motion-planning framework of robotics seems very
promising as illustrated by the results of Section 5. Thus, the next step is
to deploy such algorithms on robots and intelligent vehicles.

Finally, one sees that priority-based coordination of robots can be very likely
extended to real dynamical systems — even with uncertainties; it could be
hybridized with some distribution techniques to inherit their good scalability
and robustness properties; its semantics and its simplicity may lead to better
algorithm design especially in intersection management. For all these reasons
we believe that priority-based coordination will be concretely applied. This is
one of the next issues we will address: deploy such algorithms on robots and
intelligent vehicles.

References
[1] C. Tomlin, G. Pappas, and S. Sastry, “Conflict resolution for air traffic

management: a study in multiagent hybrid systems,” Automatic Control,
IEEE Transactions on, vol. 43, pp. 509 –521, apr 1998.

[2] I. Sahin, “Railway traffic control and train scheduling based on inter-train
conflict management,” Transportation Research Part B: Methodological,
vol. 33, no. 7, pp. 511 – 534, 1999.

[3] K. Dresner and P. Stone, “A multiagent approach to autonomous inter-
section management,” Journal of Artificial Intelligence Research, vol. 31,
pp. 591–656, March 2008.

[4] L. Alvarez and R. Horowitz, “Safe platooning in automated highway sys-
tems,” Institute of Transportation Studies, Research Reports, Working
Papers, Proceedings qt1v97t5w1, Institute of Transportation Studies, UC
Berkeley, Jan. 1997.

[5] J. Hopcroft, J. Schwartz, and M. Sharir, “On the complexity of motion plan-
ning for multiple independent objects: pspace-hardness of the ‘warehouse-
man’s problem’,” The International Journal of Robotics Research, vol. 3,
no. 4, pp. 76–88, 1984.

[6] K. Kant and S. W. Zucker, “Toward efficient trajectory planning: The path-
velocity decomposition,” The International Journal of Robotics Research,
vol. 5, no. 3, pp. 72–89, 1986.

[7] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univer-
sity Press, 2006. Available at http://planning.cs.uiuc.edu/.

[8] J.-C. Latombe, Robot Motion Planning. Norwell, MA, USA: Kluwer Aca-
demic Publishers, 1991.

26

[9] S. M. LaValle and S. A. Hutchinson, “Optimal motion planning for multiple
robots having independent goals,” in Robotics and Automation, 1996. Pro-
ceedings., 1996 IEEE International Conference on, vol. 3, pp. 2847 –2852
vol.3, apr 1996.

[10] S. Leroy, J. P. Laumond, and T. Simeon, “Multiple path coordination for
mobile robots: A geometric algorithm,” in In Proc. of the International
Joint Conference on Artificial Intelligence (IJCAI, pp. 1118–1123, 1999.

[11] T. Lozano-Perez, “Spatial planning: A configuration space approach,” 1980.

[12] T. Fraichard and C. Laugier, “Planning movements for several coordinated
vehicles,” in Intelligent Robots and Systems ’89. The Autonomous Mobile
Robots and Its Applications. IROS ’89. Proceedings., IEEE/RSJ Interna-
tional Workshop on, pp. 466 –472, sep 1989.

[13] S. Akella and S. Hutchinson, “Coordinating the motions of multiple robots
with specified trajectories,” in Robotics and Automation, 2002. Proceedings.
ICRA ’02. IEEE International Conference on, vol. 1, pp. 624 – 631 vol.1,
2002.

[14] J. Peng and S. Akella, “Coordinating multiple robots with kinodynamic
constraints along specified paths,” in International Journal of Robotics Re-
search, pp. 221–237, Springer-Verlag, 2002.

[15] M. Hafner, D. Cunningham, L. Caminiti, and D. Del Vecchio, “Automated
vehicle-to-vehicle collision avoidance at intersections,” in Proceedings of
World Congress on Intelligent Transport Systems, 2011.

[16] Y. Guo and L. Parker, “A distributed and optimal motion planning ap-
proach for multiple mobile robots,” in Robotics and Automation, 2002.
Proceedings. ICRA ’02. IEEE International Conference on, vol. 3, pp. 2612
–2619, 2002.

[17] R. Ghrist, J. M. O’Kane, and S. M. LaValle, “Computing pareto optimal co-
ordinations on roadmaps,” The International Journal of Robotics Research,
vol. 12, pp. 997–1012, 2005.

[18] R. Ghrist and S. M. Lavalle, “Nonpositive curvature and pareto optimal co-
ordination of robots,” SIAM Journal on Control and Optimization, vol. 45,
pp. 1697–1713, November 2006.

[19] J. Gregoire, S. Bonnabel, and A. de La Fortelle, “Optimal cooperative
motion planning for vehicles at intersections,” in Navigation, Perception,
Accurate Positioning and Mapping for Intelligent Vehicles, Workshop, 2012
IEEE Intelligent Vehicles Symposium, 2012.

[20] K. Dresner and P. Stone, “Multiagent traffic management: a reservation-
based intersection control mechanism,” in Autonomous Agents and Multia-
gent Systems, 2004. AAMAS 2004. Proceedings of the Third International
Joint Conference on, pp. 530 –537, july 2004.

27

[21] P. O’Donnell and T. Lozano-Periz, “Deadlock-free and collision-free coor-
dination of two robot manipulators,” in Robotics and Automation, 1989.
Proceedings., 1989 IEEE International Conference on, pp. 484 –489 vol.1,
may 1989.

[22] S. J. Buckley, “Fast motion planning for multiple moving robots,” in
Proceedings IEEE International Conference on Robotics & Automation,
pp. 322–326, 1989.

[23] M. Lawley and S. Reveliotis, “Deadlock avoidance for sequential resource
allocation systems: Hard and easy cases,” IEEE Transactions on Automatic
Control, vol. 46, pp. 1572–1583, 2001.

[24] E. G. Coffman and M. J. Elphick, “System deadlocks,” Computing Surveys,
vol. 3, pp. 67–78, 1971.

[25] M. Jäger and B. Nebel, “Decentralized collision avoidance, deadlock de-
tection, and deadlock resolution for multiple mobile robots,” in In IROS,
pp. 1213–1219, 2001.

[26] V. J. Lumelsky and A. A. Stepanov, Path-planning strategies for a point
mobile automaton moving amidst unknown obstacles of arbitrary shape,
pp. 363–390. New York, NY, USA: Springer-Verlag New York, Inc., 1990.

[27] J. A. Misener, “Cooperative intersection collision avoidance system (cicas):
signalized left turn assist and traffic signal adaptation,” tech. rep., 2010.

[28] O. Mehani and A. de La Fortelle, “Trajectory planning in a crossroads
for a fleet of driverless vehicles,” in Proceedings of the 11th international
conference on Computer aided systems theory, EUROCAST’07, (Berlin,
Heidelberg), pp. 1159–1166, Springer-Verlag, 2007.

[29] A. Colombo and D. Del Vecchio, “Efficient algorithms for collision avoidance
at intersections,” Hybrid Systems: Computation and Control, 2012.

[30] I. Zohdy and H. Rakha, “Optimizing driverless vehicles at intersections,” in
10th ITS World Congress Vienna, Austria, October 2012.

[31] J. Treat, N. Castellan, R. Stansifer, R. Mayer, R. Hume, D. Shinar, S. Mc-
Donald, and N. Tumbas, Tri-level Study of the Causes of Traffic Accidents:
Final Report. Volume I: Causal Factor Tabulations and Assessments. 1977.

[32] NCSA, “National center for statistics and analysis, traffic safety facts 2003,”
tech. rep., U.S. DOT, Washington, DC, 2004.

[33] V. Hirankitti and J. Krohkaew, “An agent approach for intelligent traffic-
light control,” in Modelling Simulation, 2007. AMS ’07. First Asia Inter-
national Conference on, pp. 496 –501, march 2007.

[34] K. Dresner and P. Stone, “Mitigating catastrophic failure at intersections
of autonomous vehicles,” in AAMAS Workshop on Agents in Traffic and
Transportation, (Estoril, Portugal), pp. 78–85, May 2008.

28

[35] S. Reveliotis and E. Roszkowska, “On the complexity of maximally permis-
sive deadlock avoidance in multi-vehicle traffic systems,” Automatic Con-
trol, IEEE Transactions on, vol. 55, no. 7, pp. 1646–1651, 2010.

[36] J. Gregoire, S. Bonnabel, and A. de La Fortelle, “Introducing dynamic con-
straints in priority-based intersection management,” in 52nd IEEE Confer-
ence on Decision and Control, 2013.

[37] J. Van Den Berg, P. Abbeel, and K. Goldberg, “Lqg-mp: Optimized path
planning for robots with motion uncertainty and imperfect state infor-
mation,” The International Journal of Robotics Research, vol. 30, no. 7,
pp. 895–913, 2011.

29

	Introduction
	The coordination space approach
	The fixed paths assumption
	Problem formulation

	The priority-based framework
	The priority graph
	Priorities' feasibility and deadlocks

	Coordinating robots with assigned priorities
	Optimal trajectory for assigned priorities
	Algorithm in discrete time

	Application to intersection management
	The intersection graph and the capacity concept
	Dynamic priority assignment
	Efficient heuristic rules for deadlock-free priority assignment
	Numerical experiments

	Discussion

