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Global asymptotic stabilization for a class of bilinear
systems by hybrid output feedback

Vincent Andrieu and Sophie Tarbouriech

Abstract—This paper deals with the global asymptotic stabilization
problem for a class of bilinear systems. A state feedback controller solving
this problem is obtained uniting a local controller, having an interesting
behavior in a neighborhood of the origin, and a constant controller valid
outside this neighborhood. The approach developed is basedon the use of
a hybrid loop, and more precisely a hybrid state feedback. This result is
extended to the case where the state of the plant is not fully available and
only the measured output can be used for control purposes. Inthis case,
a dynamical controller constituted by an observer and a state feedback
is built by means of hybrid output feedback framework. In both cases,
the conditions are expressed by a set of linear matrix inequalities.

Keywords. Bilinear systems, global stabilization, hybrid state and
output feedback.

I. I NTRODUCTION

In this paper, we focus on global asymptotic stabilization of an
equilibrium point by means of state or output feedback for bilinear
control systems. Bilinear systems are a special class of nonlinear
systems, which may represent a wide variety of physical phenomena.
Indeed, bilinear models are used to represent electrical systems,
chemical process, biological model... (see for example [14], [1], [10]
and [16] and the references therein). Moreover, a nonlinearsystem
may be approximated by a bilinear model (see [15]).

The stabilization of bilinear systems by means of state feedback has
been addressed in [8] (see also [24]) based on some Lyapunov-like
Assumptions. This result has been extended in the output feedback
context by restricting the class of bilinear systems in [9].Moreover,
it is important to point out that in [8], the practical stabilization
problem is considered. Hence, the origin of the closed-loopsystem is
not globally asymptotically stable but a neighborhood containing the
origin is made globally asymptotically stable. Such a neighborhood
can be made arbitrarily small (but different from the origin) by
changing the controller.

In the current paper, we consider the global asymptotic stabilization
problem for a class of bilinear systems for which there exists a
constant feedback (see Assumption 1) making the trajectories of
the closed-loop system bounded and converging to an equilibrium
point (which is not the origin). From the knowledge of this constant
feedback, the problem under investigation is to modify thiscontroller
in order to make the origin a globally asymptotically stableequi-
librium. More precisely, the idea of the design is to rely on two
different controllers: A global one (the constant feedback) and a
linear one (synthesized via an LMI based approach inspired from
[22]). With these two controllers in hand, the problem becomes an
uniting controller problem as introduced in [23] and in [17](see
also [2]). Employing hybrid state feedback framework, it ispossible
to give sufficient conditions allowing us to design such a suitable
uniting controller. Due to the fact that the constant feedback does
not depend on the state of the system, this one can be also used
in the output feedback context. Hence, the case where the state
of the plant is not fully available for feedback is tackled. In this
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context, the hybrid state feedback framework is employed with a
hybrid observer in order to obtain a hybrid output feedback which
stabilizes globally asymptotically the origin of the hybrid closed-
loop system. The approach developed in the paper can be viewed as
an alternative technique to those published in the literature as, for
example, in [8], [5], [9], [11], [4].

The paper is organized as follows. In Section II the class of systems
considered in this paper and the stabilization problem we intend to
solve are defined. Based on a switching strategy, the design of a
hybrid state feedback making the origin a globally asymptotically
stable equilibrium is also presented. The output feedback stabilization
is considered in Section III. A numerical example is also presented
to illustrate the effectiveness of the technique. Finally,in Section IV,
concluding remarks are given.

II. PROBLEM STATEMENT

A. Class of systems

The class of bilinear systems under interest in this paper is
described by the following ordinary differential equation:

ẋ = Ax+Bu+

p
∑

j=1

ujNjx , y = Cx , (1)

where the statex is in R
n, the control inputu is in R

p, the measured
output y is in R

m andA, B, C, Nj , j = 1, . . . , p, are matrices in
R

n×n, Rn×p, Rn×m andRn×n. uj , j = 1, ..., p, are the components
of the vectoru.

Due to the structure of system (1) under strong assumptions
between the matricesNj and A, a controller can be given which
ensures global boundedness of the closed-loop trajectories. Actu-
ally, we restrict our analysis to the particular case in which there
existsu∞ =

[

u∞,1 . . . u∞,p

]′
in R

p such that the matrix

A+

p
∑

j=1

u∞,jNj is Hurwitz1. In other words, we make the following

Assumption.
Assumption 1:There exists a symmetric positive definite matrix

P∞ in R
n×n and a vectoru∞ =

[

u∞,1 . . . u∞,p

]′
in R

p

such that the following inequality is satisfied:

P∞

[

A+

p
∑

j=1

u∞,jNj

]

+

[

A+

p
∑

j=1

u∞,jNj

]′

P∞ < 0 . (2)

Note that with Assumption 1, the constant control lawu = u∞

does not ensure convergence to the origin of trajectories ofthe system.
However, it can be shown that the trajectories converge toward a new
equilibrium point given as2:

xe = −

[

A+

p
∑

j=1

u∞,jNj

]−1

Bu∞ . (3)

To asymptotically stabilize by means of output feedback theorigin
of the system we consider an observer controller switching strategy.
As we will see in Section II-B and with Theorem 1, we can provide
sufficient conditions under which a hybrid state feedback can be
designed. In Section III, we combine this state feedback with an
observer to obtain a stabilizing output feedback.

1See, for example, [13] to check whether or not Assumption 1 issatisfied.
2It has to be noticed that using this constant control law for stabilization

may have some drawbacks especially when the model is uncertain due to lack
of robustness properties and control on the stability margin.
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B. A sufficient condition for state feedback stabilization

If xe, the attractor of the constant controller, is included inside
the basin of attraction of another controller which asymptotically
stabilizes the origin, a switching strategy should solve the problem.
Based on the tools given in [7], this switching control can be
formulated in terms of hybrid systems and provides a (natural)
robustness with respect to small enough measurement noise (see [7,
Theorem 15 p.58] or [17]).

From this framework, by considering the new state(x, q) in R
n×

{0, 1}, the closed-loop system under study is a hybrid system, thatis
a system with both continuous and discrete dynamics defined when

ẋ = Ax+Bϕq(x) +

p
∑

j=1

(ϕq(x))j Njx

q̇ = 0











if x ∈ Cq (4)

x+ = x
q+ = 1− q

}

if x ∈ Dq (5)

whereCq := Rn \ Dq, ϕ1(x) = u∞, ϕ0(x) = F0x, F0 is a matrix to
be designed andD0 andD1 are two closed subsets ofRn. Equation
(4) defines the continuous dynamics part of the closed-loop system
and (5) the discrete dynamics one. In this paper, we considerthe
notion of solutions of hybrid dynamical system defined on their
hybrid time domainas described in [7]. Hence, in our framework,
the hybrid time domainS ⊂ R × N, is the union of finitely or
infinitely many time intervals[tj , tj+1] × {j}, where the sequence
{tj}j≥0 is nondecreasing, with the last interval, if it exists, possibly
of the form [t, T ) with T finite or T = ∞.

In order to develop our switching strategy, we consider the problem
of designing a local controller ensuring local asymptotic stabilization
of the origin and such thatxe is included in the basin of attraction
of the origin (associated to the local controller). Before introducing
our approach, let us define the following notation. Given a matrix
Λ = (λj,i)j∈[1,p],i∈[1,n] with λj,i ≥ 0 in R

p×n, we define the set
NΛ = {Sℓ}1≤ℓ≤2np of (no more then)2np matrices inRp×n such
that for all 1 ≤ ℓ ≤ 2np, we have3: (Sℓ)j,i = λj,i or (Sℓ)j,i =
−λj,i . Moreover, we rewrite the matricesNj , j in {1, . . . , p}, of
system (1), asNj = [Nj,1, . . . , Nj,n]

′. With these definitions and
notation in hand, we can now give the following result to solve the
state feedback stabilization.

Theorem 1 (State feedback stabilization):Assume Assumption 1
holds. LetΛ = (λj,i) in R

p×n be given. If there exist a symmetric
positive definite matrixW0 in R

n×n, and a matrixH0 in R
p×n such

that the following inequalities hold,
[

λ2
j,iW0 W0N

′
j,i

Nj,iW0 1

]

> 0 , ∀ λj,i 6= 0 , ∀ (j, i) ∈ [1, p]×[1, n] ,

(6)
AW0 +W0A

′ + [B+Sℓ]H0 +H ′
0[B+Sℓ]

′ < 0, ∀Sℓ ∈ NΛ , (7)
[

1 x′
e

xe W0

]

> 0 . (8)

then by taking

D0 =
{

x, x′W−1
0 x ≥ 1

}

, D1 =
{

x, x′W−1
0 x ≤ 1− ǫ

}

,

ǫ =
1−x′

eW
−1

0
xe

2
, F0 = H0W

−1
0

(9)

it follows that the equilibrium{0} × {0} ⊂ R
n × {0, 1} is globally

asymptotically stable4 for the system (4)-(5).
This result is based on the following Lemma which relies on

arguments borrowed from [22] (see also [25]). The detailed proof
can be found in [3].

3The λj,i ’s are parameters allowing us to estimate theNj,ix.
4The definition of global asymptotic stability can be found in[7].

Lemma 1 (Local asymptotic stability with the local controller):
For the system (1) in closed loop withu = F0x, the origin is locally
asymptotically stable and the following statement are satisfied.

1) R
n\D0 andD1 are forward invariant and included in the basin

of attraction of the origin.
2) xe is included inD1.

With Lemma 1, the proof of Theorem 1 follows from [7, Example 1
p.51].

C. Discussion and example

Note that once the parameterΛ in R
p×n is selected the sufficient

condition of Theorem 1 is given in terms of solutions to linear
matrix inequalities for which some powerful LMI solvers (see [21]
for instance) may be used as illustrated by the numerical example
given in the following.

In order to apply Theorem 1, the first step is to select the
matrix Λ in R

p×n. It can be shown that a necessary condition for
inequalities (6), (7) and (8) to have a solution is that|Nj,ixe|

2 < λj,i.
Consequently, theλj,i’s have to be selected at least larger than
|Nj,ixe|. On another hand, from inequality (7), we see that ifA
is not Hurwitz theλj,i have to be selected sufficiently small such
that 5 0p×n /∈ CoSℓ∈NΛ

{B + Sℓ} whereCo denotes the convex
hull. Note however that no general strategy exists to selectthese
parameters.

Example 1:As in [25], consider system (1) with the matricesA,
B andN defined as:

A =

[

0 1
−2 1

]

, B =

[

0
1

]

, N =

[

0 0
0 −0.5

]

. (10)

First of all, it can be shown that this system doesn’t satisfythe
assumption of [8, Theorem 3.1]. Consequently, this shows that no
state feedback approach leading to a quadratic Lyapunov function
can be performed and consequently the approach of [8] cannotbe
applied. The detailed proof of this statement can be found in[3].
The considered system satisfies Assumption 1 withu∞ = 3. The
first step is to select theλi,j ’s. We selectλ1,1 = 0.1 andλ1,2 = 0.5.
In this case, the set of matricesNΛ is given as,

S1 =

[

0.1
0.5

]

, S2 =

[

0.1
−0.5

]

,

S3 =

[

−0.1
0.5

]

, S4 =

[

−0.1
−0.5

]

.

Hence, we get the following solution: W0 =
[

2.5091 −0.4861
−0.4861 1.0000

]

, H0 =
[

5.6732 −6.8629
]

..

Consequently, the controller obtained from Theorem 1 makesthe
origin of the system (1) globally asymptotically stable with the data
ǫ = 0.005, F0 =

[

1.0283 −6.3633
]

.

III. O UTPUT FEEDBACK DESIGN

The output feedback stabilization of bilinear systems has already
been addressed in [9] where a dead-beat observer is used. However, in
[9] there is noB matrices and similar approach cannot be employed
in the present context. The idea of our design will be to follow an
observer controller approach. More precisely we assume Assumptions
of Theorem 1 hold and we will solve this output feedback problem by
designing a hybrid observer that asymptotically estimatesthe state of
the system. This strategy differs from the one in [18] where ahybrid
output feedback is obtained based on a norm observer (see also [20]
for a result on hybrid output feedback).

5Otherwise, one will obtainW0A
′ + AW0 < 0, which contradicts the

assumption on the fact thatA is not Hurwitz.
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With this hybrid output feedback framework, by consideringthe
new state(x, x̂, τ, q) in R

n × R
n × [0, 2] × {0, 1}, the closed-loop

system under study is a hybrid system described by:

If (x, (x̂, τ ), q) ∈ R
n × Ĉq × {0, 1} ,







































ẋ = Ax+Bϕq(x̂) +

p
∑

j=1

(ϕq(x̂))j Njx

˙̂x = Ax̂+Bϕq(x̂) +

p
∑

j=1

(ϕq(x̂))j Nj x̂+ ψq(Cx, x̂)

τ̇ = h(τ )
q̇ = 0

,

(11)
if (x, (x̂, τ ), q) ∈ R

n × D̂q × {0, 1} ,














x+ = x
x̂+ = x̂
τ+ = 0
q+ = 1− q

, (12)

where Ĉq = Rn × [0, 2] \ D̂q whereψ0 andψ1 are the correction
terms associated to the observer. Note that to integrate this closed-
loop system, only the knowledge of(x̂, τ, q) is required to decide
between jump and flow along the trajectories of the closed-loop
system. Hence, to implement this feedback, only the knowledge of
y is required.

With the constant controlu∞, we consider the following observ-
ability assumption.

Assumption 2:The vector u∞ in Assumption 1 is such that
(

C,A+

p
∑

j=1

u∞,jNj

)

is observable.

Given W0 obtained from Theorem 1, we can defineΓ =
{T1, . . . , T2p} a finite set of real vectors inRp such that

H0W
−1
0 x ∈ Co{Tℓ, ℓ = 1 . . . , 2p},∀x ∈ {x, x′W−1

0 x ≤ 1}. (13)

We have the following theorem.
Theorem 2 (Output feedback):Assume Assumptions 1 and 2 hold.

Assume there exist a matrixΛ in R
p×n, a symmetric positive definite

matrixW0 in R
n×n, and a matrixH0 in R

p×n such that inequalities
(6), (7), (8) are satisfied6. Assume there exist a symmetric positive
definite matrixQ0 in R

n×n and a matrixD0 in R
m×n such that

[

A+

p
∑

j=1

Nj(Tℓ)j

]′

Q0 +Q0

[

A+

p
∑

j=1

Nj(Tℓ)j

]

(14)

+C′D0 +D0C < 0 ,∀Tℓ ∈ Γ .

Then there existK∞ in R
m×n, a function h and a positive

real number u0 such that the output feedback controller de-
fined with the dataD̂0 =

{

(x̂, τ ), x̂′W−1
0 x̂ ≥ 1, τ ≥ 1

}

, D̂1 =
{

x̂, x̂′W−1
0 x̂ ≤ 1− ǫ, τ ≥ 1

}

, ǫ =
1−x′

eW
−1

0
xe

2

ϕ0(x̂) = satu0
(H0W

−1
0 x̂) , ϕ1(x̂) = u∞ , (15)

ψ0(x̂, y) = Q−1
0 D0(Cx̂− y) , ψ1(x̂, y) = K∞(Cx̂− y) , (16)

wheresatu0
is the saturation function of positive levelu0

7, makes
the set{0} × {0} × [0, 2] × {0} ⊂ R

n × R
n × [0, 2] × {0, 1} a

globally asymptotically stable set for system (11)-(12).
Proof: Let h be a locally Lipschitz function such that:

h(τ ) =







vτ τ ≤ 1
> 0 1 ≤ τ < 2
0 τ = 2

6In that case, Theorem 1 applies and there exists a stabilizing state feedback.
7For i = 1, ..., p, each component ofsatu0

(u) is defined by
satu0

(vi) = sign(vi)min(u0, |vi|).

wherevτ is any positive real number. Also, the positive real number
u0 is defined as

u0 = max
{x,x′W

−1

0
x≤1},1≤j≤p

(H0W
−1
0 x)j (17)

First of all, note that the controlu = ϕq(x̂) is bounded for
all (x, x̂, τ, q) in R

n × R
n × [0, 2] × {0, 1}. The system under

consideration being bilinear, this implies that the continuous part of
closed-loop system is globally Lipschitz. Consequently, for all initial
conditions, the corresponding trajectories do not blow up at infinity in
finite time. This implies that for all solutions initiated from (x, x̂, τ, q)
in R

n ×R
n× [0, 2]×{0, 1}, their time domaindom(x, x̂, τ, q) is an

unbounded set.
The rest of the proof of Theorem 2 is decomposed in three

Lemmas, which proofs are given at the end of this proof. The first
one establishes asymptotic convergence of the estimatex̂ toward the
state of the system.

Lemma 2 (Observer convergence):There existsK∞ such that for
all initial condition (x, x̂, τ, q) in R

n×R
n× [0, 2]×{0, 1}, we have

that |x̂(t, ℓ)− x(t, ℓ)| is bounded and

lim
t+ℓ→+∞

|x̂(t, ℓ)− x(t, ℓ)| = 0 .

With the previous Lemma, we can now establish the following
result concerning boundedness of solutions.

Lemma 3 (Boundedness of solutions):For all initial condition
(x, x̂, τ, q) in R

n × R
n × [0, 2] × {0, 1}, we have that̂x(t, ℓ) and

x(t, ℓ) are bounded.
With the boundedness of solution, with [19, Lemma 3.3], we get

the existence of a non emptyω-limit set denotedΩ(x, x̂, τ, q) which
is weakly invariant. In other words, for all(x, x̂, τ, q) in Ω(x, x̂, τ, q)
there exists a complete solution to the closed-loop system such that
for all (t, j) in its time domain(x(t, j), x̂(t, j), τ (t, j), q(t, j)) is
in Ω(x, x̂, τ, q). Also as stated in [19, Lemma 3.3], the distance
from (x(t, j), x̂(t, j), τ (t, j), q(t, j)) to Ω(x, x̂, τ, q) decreases to
zero ast + j → +∞. Moreover, as stated in [19, Lemma 3.3],
this set is the smallest closed set with this property. Hence, with
Lemma 2, we get that for all(x, x̂, τ, q) in Ω(x, x̂, τ, q) we have
x̂ = x. Hence all solutions starting inΩ(x, x̂, τ, q) satisfy the hybrid
system with continuous dynamics defined with continuous dynamics
if ((x, τ ), q) ∈ Ĉq × {0, 1}

ẋ = Ax+Bϕq(x) +

p
∑

j=1

(ϕq(x))j Njx

τ̇ = h(τ )
q̇ = 0



















, (18)

and discrete dynamics withϕq defined in (15),

x+ = x
τ+ = 0
q+ = 1− q







when ((x, τ ), q) ∈ D̂q × {0, 1} . (19)

Note that this system (18)-(19) is similar to the one given in(4)-(5)
with the data obtained from Theorem 1 but with two differences:

1) There is an extra variable corresponding to the timerτ .
2) The functionϕ0(x) = satu0

(H0W
−1
0 x) instead ofϕ0(x) =

H0W
−1
0 x.

The next step in the proof, is to show that these differences do not
modify the behavior of the trajectories and that the origin of the
system (18)-(19) is globally asymptotically stable.

Lemma 4 (Asymptotic stability of the system (18)-(19)):The set
{0}× [0, 2]×{0} in R

n× [0, 2]×{0, 1} is a globally asymptotically
stable set for the system (18)-(19).
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With Lemma 4, we get that theω-limit is simply {0}×[0, 2]×{0}
in R

n × [0, 2]×{0, 1}. Since all the trajectories converge toward its
ω-limit set (see [19, Lemma 3.3]) we obtain that the set{(0, 0)} ×
[0, 2] × {0} in R

n × R
n × [0, 2] × {0, 1} is a global attractor for

the system (11)-(12). To finish the proof, we need to show thatlocal
asymptotic stability of this set is also obtained. With inequality (7),
there existsρ0 a positive real number such that8,

AW0+W0A
′+[B+Sℓ]H0+H

′
0[B+Sℓ]

′ < −ρ0W0 ,∀Sℓ ∈ NΛ ,
(20)

Pre- and post-multiplying this inequality byP0 =W−1
0 yields

P0(A+[B+Sℓ]H0P0)+(A+[B+Sℓ]H0P0)
′P0 < −ρ0P0 ,∀Sℓ ∈ NΛ .

Consider now an initial condition(x, x̂, τ, q) in R
n × R

n × [0, 2]×
{0, 1} with |x̂| and |x − x̂| sufficiently small andq = 0. This
implies that there existsµ such that for all0 < s < µ, (s, 0) is
in dom(x, x̂, τ, q). For all s < µ, we have

d

ds
x̂(s, 0)′P0x̂(s, 0) ≤ −ρ0x̂(s, 0)

′P0x̂(s, 0)

+2x̂(s, 0)′P0Q
−1
0 D0C[x̂(s, 0)− x(s, 0)] .

Note that from this inequality, we can introduce two positive real
numbersc1 and c2 such that
d

ds
x̂(s, 0)′P0x̂(s, 0) ≤ −c1x̂(s, 0)

′P0x̂(s, 0)

+c2|x̂(s, 0)− x(s, 0)|2 .

On another hand, there existsλ2 > 0 such that (this will be formally
proven later in (26))

d

ds
(x(s, 0)− x̂(s, 0))′Q0(x(s, 0)− x̂(s, 0))

≤ −λ2(x(s, 0)− x̂(s, 0))′Q0(x(s, 0)− x̂(s, 0)) .

Hence, there exists a positive real numberκ such that

d

ds
x̂(s, 0)′P0x̂(s, 0)+κ(x(s, 0)−x̂(s, 0))

′Q0(x(s, 0)−x̂(s, 0)) < 0 .

This function being proper and positive definite inx and x̂ we get
the local asymptotic stability of the set{(0, 0)} × [0, 2]× {0}. This
concludes the proof of Theorem 2.

In the remaining part of this Section we give the proofs of Lemmas
2, 3 and 4.
Proof of Lemma 2. Consider a positive real numberλ1 sufficiently
large such that:

(A+
∑p

j=1Njuj +Q−1
0 D0C)′Q0 (21)

+Q0(A+

p
∑

j=1

Njuj +Q−1
0 D0C) ≤ λ1Q0 ,

for all |uj | ≤ u0. Note that we have the following Lemma, which
constructive proof based on high-gain techniques (see [6])is given
in [3].

Lemma 5 (Observer with prescribed convergence speed):There
exist a matrixK∞ in R

n×m, a symmetric positive definite matrix
Q∞ in R

n×n and a positive scalarλ∞ such that the following
matrix inequality is satisfied:
(

A+
∑p

j=1 u∞,jNj +K∞C
)′

Q∞ (22)

+Q∞

(

A+

p
∑

j=1

u∞,jNj +K∞C

)

< −λ∞Q∞ ,

8This one can simply be computed employing LMI tools.

and such that,

exp

(

λ1 − λ∞

ντ

)

λmax(Q∞)λmax(Q0)

λmin(Q∞)λmin(Q0)
< 1 . (23)

Note that by writinge = x̂−x, the closed-loop system (11)-(12) can
be rewritten, with continuous dynamics if(x, x + e, τ, q) ∈ R

n ×
Ĉq × {0, 1}

ẋ = Ax+Bϕq(x+ e) +

p
∑

j=1

(ϕq(x+ e))
j
Njx

ė =

[

A+

p
∑

j=1

(ϕq(x+ e))
j
Nj

]

e+ ψq(Cx, x+ e)

τ̇ = h(τ )
q̇ = 0







































(24)
and discrete dynamics if(x, x+ e, τ, q) ∈ R

n × D̂q × {0, 1}

x+ = x
e+ = e
τ+ = 0
q+ = gq(x, x+ e)















. (25)

To analyze the behavior of the trajectories of this model consider
an initial condition(x, x̂, τ, q) in R

n×R
n× [0, 2]×{0, 1} and(t, 0)

in dom(x, x̂, τ, q) with t ≥ 0. Two cases can be distinguished.
1) Assume the initial condition is such that(x, (x̂, τ ), q) is
in R

n × Ĉ0 × {0}. Since no jump occurs, it follows that
(x(s, 0), (x̂(s, 0), τ (s, 0)), q(s, 0)) is in R

n × Ĉ0 × {0} for all s
in [0, t]. Note that for alls in [0, t), we have,

d

ds
e(s, 0) =
(

A+

p
∑

j=1

Njsatu0
(HW−1

0 x̂(s, 0)) +Q−1
0 D0C

)

e(s, 0) .

From the definition ofλ1 in (21) we get,

d

ds
Z(s, 0) ≤ λ1Z(s, 0) , ∀ s ∈ [0, t) ,

whereZ(s, ℓ) is the function defined on the hybrid time domain as
Z(s, ℓ) = e(s, ℓ)′Q0e(s, ℓ). Hence, this implies that:

Z(s, 0) ≤ exp(λ1s)Z(0, 0) , ∀ s ∈ [0, t) .

Moreover, if t > 1
vτ

with the definition of τ̇ in (18), it implies
τ (s, 0) ≥ 1 for all s in [ 1

vτ
, t]. Since there was no jump,̂x(s, 0) is in

the subset ofRn defined as{x, x′W−1
0 x < 1}. Consequently, with

(13) and with the definition ofu0 in (17), it follows that

ϕ0(x̂(s, 0)) ∈ Co{Tℓ, ℓ = 1 . . . , 2p} ,∀ s ∈

[

1

vτ
, t

]

.

This gives the existence of2p positive functionsµℓ : R
n → R+

with
2p
∑

ℓ=1

µℓ(x̂) = 1 for all x̂ in R
n and such thatϕ0(x̂(s, 0)) =

∑2p

ℓ=1 µℓ(x̂(s, 0))Tℓ. Consequently∀s ∈
[

1
vτ
, t
]

d

ds
e(s, 0)

=

2p
∑

ℓ=1

µℓ(x̂(s, 0))

(

A+

p
∑

j=1

Nj(Tℓ)j +Q−1
0 D0C

)

e(s, 0) .

Hence with (14) it yields

d

ds
Z(s, 0) ≤ −λ2Z(s, 0) , ∀ s ∈

[

1

vτ
, t

]

, (26)

whereλ2 is a positive real number such that forℓ = 1, . . . , 2p,
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Q0

(

A+

p
∑

j=1

Nj(Tℓ)j

)

+

(

A+

p
∑

j=1

Nj(Tℓ)j

)′

Q0

+D0C + C′D0 ≤ −λ2Q0 .

Consequently, it implies:

Z(t, 0) ≤ exp

(

λ1

vτ
− λ2 max

{

t−
1

vτ
, 0

})

Z(0, 0) . (27)

2) Assume the initial condition is such that(x, (x̂, τ ), q) is
in R

n × Ĉ1 × {1}. Since there is no jump, it yields that
(x(s, 0), (x̂(s, 0), τ (s, 0)), q(s, 0)) is in R

n × Ĉ1 × {1} for all s
in [0, t]. With (22), it yields that we have for alls ≤ t

d

ds
e(s, 0)′Q∞e(s, 0) ≤ −λ∞e(s, 0)

′Q∞e(s, 0) .

Consequently, for alls such that(s, 0) is in dom(x, (x̂, τ ), q), it
yields,

|e(s, 0)|2 ≤ exp(−λ∞s)
λmax(Q∞)

λmin(Q∞)
|e(0, 0)|2

Since, for alle in R
n, we have e′Q0e

λmax (Q0)
≤ |e|2 ≤ e′Q0e

λmin (Q0)
, this

implies that,

Z(t, 0) ≤
λmax (Q0)λmax (Q∞)

λmin (Q0)λmin (Q∞)
exp(−λ∞t)Z(0, 0) . (28)

For the asymptotic behavior of the trajectories, note that three
possibilities have to be considered: a) after finitely many switching,
x̂ stays inĈ0; b) after finitely many switching,̂x stays inĈ1; c) there
are infinitely many switching.

For the a) and b) cases, because the system does not blowup,
finitely many transitions may be ignored, and without loss ofgener-
ality, one may assume that̂x is always inĈq (q = 0 or 1). Then, by
(27) or (28),limt→+∞ Z(t, 0) = 0.

For c) case, by omitting the first transition if necessary, without
loss of generality, one may assume thatx̂ starts fromĈ0. For all
0 ≤ k there existstk such that(tk, k) and (tk, k + 1) are in
dom(x, x̂, τ, q), τ (tk, k) ≥ 1 andτ (tk, k + 1) = 0. Moreover, since
∂
∂s
τ (s, k) ≤ vτ for all (s, k) in the time domain, this implies that

tk − tk−1 ≥ 1
vτ

,∀k > 1, which shows that there is a strictly
positive dwell time between two successive jumps. Since between
Z(tk, k) andZ(tk+2, k + 2) two jumps occur this implies that both
the previous cases have to be considered. Employing the two first
items of this analysis, we get for all2 ≤ k ≤ ℓ that,

Z(tk, k) ≤ exp

(

λ1 − λ∞

vτ

)

λmax (Q0)λmax (Q∞)

λmin (Q0)λmin (Q∞)
Z(tk−2, k− 2)

Consequently,

Z(t2k, 2k) ≤

[

exp

(

λ1 − λ∞

vτ

)

λmax (Q0)λmax (Q∞)

λmin (Q0)λmin (Q∞)

]k

Z(t0, 0) .

Note that with the definition ofλ∞ in equation (23), we get that

exp

(

λ1 − λ∞

vτ

)

λmax (Q0)λmax (Q∞)

λmin (Q0)λmin (Q∞)
< 1 .

Consequently, this implies that we havelimt+ℓ→+∞Z(t, ℓ) = 0.
This function being proper ine, it follows that e is bounded and
goes to zero along the solution. �

Proof of Lemma 3. Consider now an initial condition(x, x̂, τ, q) in
R

n×R
n× [0, 2]×{0, 1}. Assume there exists a trajectory initialized

from this point which is unbounded. Since from Lemma 2, we have
that |x̂−x| is bounded this implies that|x̂| is unbounded. Two cases
may be distinguished: a) after finitely many switchings,x̂, τ remain in
Ĉ1; b) there is a infinite number of switching. In case a), this implies
that possibly after a finite number of switchings,u = u∞. Hence,

this implies that the function defined byV1(t, ℓ) = x̂(t, ℓ)′P∞x̂(t, ℓ)
satisfies

∂

∂t
V1(t, ℓ) ≤ −ρ∞V1(t, ℓ) + 2x̂(t, ℓ)′P∞K∞C(x̂(t, ℓ)− x(t, ℓ)) ,

where ρ∞ is solution of the following linear matrix inequality (a
solution exists since equation (2) is satisfied in Assumption 1):

P∞

[

A+

p
∑

j=1

u∞,jNj

]

+

[

A+

p
∑

j=1

u∞,jNj

]′

P∞ < −ρ∞P∞ .

Hence we can introduce two positive real numbersc3 and c4 such
that

∂

∂t
V1(t, ℓ) ≤ −c3V1(t, ℓ) + c4|x̂(t, ℓ)− x(t, ℓ)|2 . (29)

From Lemma 2, this implies thatV1 is bounded. The functionV1

being proper in̂x, this contradicts the fact that|x̂| is unbounded.
In case b), for all j there exists tj such that (tj , j) and

(tj , j + 1) is in dom(x, x̂, τ, q). Consider the functionV0(s, ℓ) =
x̂(s, ℓ)′P0x̂(s, ℓ). The control input being bounded ande being
bounded and going to zero, we get for allt in dom(x, x̂, τ, q) the
existence of two positive real numbersc5 andc6 such that

∂V0

∂t
(t, ℓ) ≤ c5V0(t, ℓ) + c6

Without loss of generality, we may assume thatx̂(t0, 0) is in Ĉ0. Let
t′0 < t′′0 be two positive real numbers in[t0, t1] such thatV0(t

′
0, 0) =

1 andV0(s, 0) > 1 for all s in (t′0, t
′′
0 ). Note that we havet′′0 − t′0 ≤

1
ντ

. Hence, it yields,

V0(s, 0) ≤ exp

(

c5
ντ

)

+
exp

(

c5
ντ

)

− 1

c5
, ∀s ∈ [t′0, t

′′
0 ] .

The functionV0 being proper inx̂, this implies thatx̂ is bounded
betweent0 and t1. Note that for allt is [t1, t2] V1 satisfies equality
(29) and consequentlŷx is bounded. �

Proof of Lemma 4. Note that with this definition ofu0 in equation
(17) for all x in the subset ofRn defined as{x, x′W−1

0 x ≤ 1}
we haveϕ0(x) = H0W

−1
0 x. Consequently, we recover the data

of Theorem 1. The fact that the set{0} × [0, 2] × {0} is locally
asymptotically stable follows the same line as in the proof of Theorem
1. To show global attractivity, consider an initial point(x, τ, q) in
R

n × [0, 2] × {0, 1}. Note that, the solutions being complete and
due to the structure of the timer, there exists(t0, ℓ0) in dom(x, τ, q)
such thatτ (t0, ℓ0) ≥ 1. Due to the fact that no more than one jump
happens in the proof of Theorem 1, we employ the same arguments
to obtain global attractivity. �

Example 2:As seen in Section II, Theorem 1 applies and we
can construct a stabilizing state feedback. Assume now thatthe
measurement available for feedback is given asy = Cx whereC =
[

1 0
]

. Hence, from Assumption 2,Γ = {6.9137,−6.9137}.
Moreoveru∞ = 3 satisfies Assumption 2 (in this particular case any
u∞ satisfies Assumption 2). Now, employing the solver Sedumi and
Yalmip (see [12]), we get that the sufficient condition (14) is satisfied
with,

Q0 =

[

4.0484 −0.2247
−0.2247 0.0219

]

, D0 =

[

−2.3251
−3.5102

]

.

We select the data,ντ = 10; With these data we obtainu0 = 7.0360.
Following the design described in the proof of Theorem 2, we get,

K∞ =

[

−115
−1757

]

. With Matlab and employing an Euler discretiza-

tion with discretization stepsize equal to0.001 Figures 1 and 3 are

obtained for the initial data:x(0) =

[

0
4.5

]

, x̂(0, 0) =

[

10
0

]

,
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τ (0, 0) = 0, q(0, 0) = 0. The evolution of a solution to the closed-
loop system with this initial data is given on Figures 1, 3-a and
3-b. Consequently, the hybrid output feedback controller obtained
from Theorem 2 makes the origin a globally asymptotically stable
equilibrium for the system (1).
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Fig. 1. Evolution of the statex and the observer statêx
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Fig. 2. Evolution of variableq.
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Fig. 3. Evolution of the controlu.

IV. CONCLUSION

We considered a particular class of bilinear systems for which there
exists a constant feedback (see Assumption 1) making the trajectories
of the closed-loop system bounded and converging to an equilibrium
point (which is not the origin). From the knowledge of this constant
feedback, a modification of this controller in order to make the origin
a globally asymptotically equilibrium point has been proposed by
relying on two different controllers, namely a global one (the constant
feedback) and a linear one (synthesis via an LMI-based approach).
Employing hybrid state feedback framework, it was possibleto give
some sufficient conditions in terms of LMI allowing us to design

an uniting controller. Two cases were carried out: a state feedback
controller and an output feedback controller when only the measured
output can be used for control purposes. In this last context, the
hybrid state feedback framework has been augmented with a hybrid
observer to obtain an output feedback globally stabilizingthe origin
of the hybrid closed-loop system.
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