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Global asymptotic stabilization for a class of bilinear
systems by hybrid output feedback

Vincent Andrieu and Sophie Tarbouriech

Abstract—This paper deals with the global asymptotic stabilization
problem for a class of bilinear systems. A state feedback camoller solving
this problem is obtained uniting a local controller, having an interesting
behavior in a neighborhood of the origin, and a constant conbller valid
outside this neighborhood. The approach developed is baseh the use of
a hybrid loop, and more precisely a hybrid state feedback. Tis result is
extended to the case where the state of the plant is not fullyailable and
only the measured output can be used for control purposes. lthis case,
a dynamical controller constituted by an observer and a st feedback
is built by means of hybrid output feedback framework. In both cases,
the conditions are expressed by a set of linear matrix inequaies.

Keywords. Bilinear systems, global stabilization, hybrid state and
output feedback.

. INTRODUCTION

In this paper, we focus on global asymptotic stabilizatidran
equilibrium point by means of state or output feedback fdinéar
control systems. Bilinear systems are a special class ofinean
systems, which may represent a wide variety of physical pmema.
Indeed, bilinear models are used to represent electricstes)s,
chemical process, biological model... (see for examplé, [14, [10]
and [16] and the references therein). Moreover, a nonlisgatem
may be approximated by a bilinear model (see [15]).

The stabilization of bilinear systems by means of statelfaeki has
been addressed in [8] (see also [24]) based on some Lyapikeov-
Assumptions. This result has been extended in the outpdbée
context by restricting the class of bilinear systems in [@breover,
it is important to point out that in [8], the practical stabdtion
problem is considered. Hence, the origin of the closed-EBstem is
not globally asymptotically stable but a neighborhood aanihg the
origin is made globally asymptotically stable. Such a neaghood
can be made arbitrarily small (but different from the orjgioy
changing the controller.

In the current paper, we consider the global asymptotidlstation
problem for a class of bilinear systems for which there exist
constant feedback (see Assumption 1) making the trajestoof
the closed-loop system bounded and converging to an equitib
point (which is not the origin). From the knowledge of thimstant
feedback, the problem under investigation is to modify tuistroller
in order to make the origin a globally asymptotically staklgui-
librium. More precisely, the idea of the design is to rely avot
different controllers: A global one (the constant feedbaakd a
linear one (synthesized via an LMI based approach inspirenh f
[22]). With these two controllers in hand, the problem beesnan
uniting controller problem as introduced in [23] and in [1(Bee
also [2]). Employing hybrid state feedback framework, ipissible
to give sufficient conditions allowing us to design such aahle
uniting controller. Due to the fact that the constant feettbdoes

context, the hybrid state feedback framework is employeth \ai
hybrid observer in order to obtain a hybrid output feedbadkctv
stabilizes globally asymptotically the origin of the hybrelosed-
loop system. The approach developed in the paper can be diasve
an alternative technique to those published in the liteeats, for
example, in [8], [5], [9], [11], [4].

The paper is organized as follows. In Section Il the clasystesns
considered in this paper and the stabilization problem wtenih to
solve are defined. Based on a switching strategy, the dedign o
hybrid state feedback making the origin a globally asynipadiy
stable equilibrium is also presented. The output feedbtatklzation
is considered in Section Ill. A numerical example is alsospreed
to illustrate the effectiveness of the technique. FinatlySection IV,
concluding remarks are given.

Il. PROBLEM STATEMENT

A. Class of systems

The class of bilinear systems under interest in this paper is
described by the following ordinary differential equation

P
i’:Ax+Bu+Zuijx, y=Cz,

Jj=1

1)

where the state is in R", the control inputu is in R?, the measured
outputy is in R™ and A, B, C, N;, j = 1,...,p, are matrices in
R™ ™ R™P R™ ™ andR"*". u;, j = 1, ..., p, are the components
of the vectoru.

Due to the structure of system (1) under strong assumptions
between the matriced’; and A, a controller can be given which
ensures global boundedness of the closed-loop trajestofietu-
ally, we restrict our analysis to the particular case in \whibhere
existS oo = [ Uso Usep | in R such that the matrix

P
A+ ueo,;N; is Hurwitz'. In other words, we make the following
j=1

i=
Assumption.

Assumption 1:There exists a symmetric positive definite matrix
Py in R™™ and a Vectonice = | Uoo,1 Usop | iN RP

such that the following inequality is satisfied:
/

Pe + Po<0. (2

p
A + Z uooJ-N]-
Jj=1

P
A+ s N,
j=1

Note that with Assumption 1, the constant control law= v
does not ensure convergence to the origin of trajectoridseofystem.
However, it can be shown that the trajectories convergerthaaew
equilibrium point given &

-1
Te = — Bueso .

®)

p
A+ oo N,
j=1

not depend on the state of the system, this one can be also usetP asymptotically stabilize by means of output feedbackotfigin
in the output feedback context. Hence, the case where the st@f the system we consider an observer controller switchtraegy.

of the plant is not fully available for feedback is tackled. this
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As we will see in Section II-B and with Theorem 1, we can previd
sufficient conditions under which a hybrid state feedback ba
designed. In Section Ill, we combine this state feedback \ai

UMRghserver to obtain a stabilizing output feedback.

des

1See, for example, [13] to check whether or not Assumption datisfied.

2|t has to be noticed that using this constant control law fabitization
may have some drawbacks especially when the model is uitcera to lack
of robustness properties and control on the stability mmargi



B. A sufficient condition for state feedback stabilization Lemma 1 (Local asymptotic stability with the local conto)t

If z., the attractor of the constant controller, is included desi For the system (1) in closed loop with= Fyz, the origin is locally
the basin of attraction of another controller which asyrtipatly ~@symptotically stable and the following statement arestiatl.
stabilizes the origin, a switching strategy should sole pnoblem. 1) R™\ Dy andD; are forward invariant and included in the basin
Based on the tools given in [7], this switching control can be  of attraction of the origin.
formulated in terms of hybrid systems and provides a (nftura 2) z. is included inD;.
robustness with respect to small enough measurement rssse[{, With Lemma 1, the proof of Theorem 1 follows from [7, Example 1
Theorem 15 p.58] or [17]). p.51].

From this framework, by considering the new stéteq) in R™ x
{0,1}, the closed-loop system under study is a hybrid systemjshatc. piscussion and example

a system with both continuous and discrete dynamics defirreshw Note that once the parametarin R”*™ is selected the sufficient

) Ld condition of Theorem 1 is given in terms of solutions to linea
i = Az+ Beg(z)+ Z (pq(2)); Niz if z €C, (4 matrix inequalities for which some powerful LMI solvers ¢s21]
.~ 0 =t for instance) may be used as illustrated by the numericainpia
¢ = given in the following.
zt = =z if D 5 In order to apply Theorem 1, the first step is to select the
gt = 1—gq } oD ®) matrix A in RP*™, It can be shown that a necessary condition for

inequalities (6), (7) and (8) to have a solution is thisif ;z.|? < Aj.i.
Consequently, the\;;'s have to be selected at least larger than
|Njize|. On another hand, from inequality (7), we see thatdif
is not Hurwitz the);; have to be selected sufficiently small such
that® Opxn ¢ Cos,en, {B+ S¢} whereCo denotes the convex
hull. Note however that no general strategy exists to sdleese
‘parameters.

Example 1:As in [25], consider system (1) with the matricgs
B and N defined as:

whereC, := R" \ Dy, v1(z) = tso, po(x) = Foz, Fo is a matrix to
be designed an®, andD; are two closed subsets &". Equation
(4) defines the continuous dynamics part of the closed-lg@pem
and (5) the discrete dynamics one. In this paper, we consfder
notion of solutions of hybrid dynamical system defined onirthe
hybrid time domainas described in [7]. Hence, in our framework
the hybrid time domainS C R x N, is the union of finitely or
infinitely many time intervaldt;, ¢;+1] x {j}, where the sequence
{t;};>0 is nondecreasing, with the last interval, if it exists, plolys
of the form[¢,T') with T finite or T' = co. A:{ 0 1}732{0]71\/:{0 0 } (10)
In order to develop our switching strategy, we consider tloblem -2 1 1 0 -05

of designing a local controller ensuring local asymptotabgization First of all, it can be shown that this system doesn't satisfy
of the origin and such that. is included in the basin of attraction assumption of [8, Theorem 3.1]. Consequently, this showas$ tio
of the origin (associated to the local controller). Befon&rdaducing state feedback approach leading to a quadratic Lyapunostifum
our approach, let us define the following notation. Given arixa can be performed and consequently the approach of [8] cammot
A= (Aj’i)je[l,p],ie[l,n] with A, ; > 0 in RP*", we define the set applied. The detailed proof of this statement can be founBjn
Na = {S¢}1<e<anp Of (N0 more thenR™ matrices iNR?*™ such The considered system satisfies Assumption 1 with = 3. The
that for all 1 < ¢ < 2"7, we havé: (Se);, = Ajaor (Se);, = firststepis to select the; ;'s. We selecth;,; = 0.1 andA; 2 = 0.5.

i, 0

—\j.i . Moreover, we rewrite the matriced;, j in {1,...,p}, of In this case, the set of matricé, is given as,
system (1), asV; = [Nj1,..., N;»]'. With these definitions and 0.1 0.1
notation in hand, we can now give the following result to sothie S1= { 0.5 } 152 = { —05 ] )

state feedback stabilization.

Theorem 1 (State feedback stabilizatiod)ssume Assumption 1 Gy — { -0.1 } S, = { -0.1 ]
holds. LetA = ()\,;) in R?*™ be given. If there exist a symmetric 0.5 ’ -0.5
positive definite matri¥y, in R™*™, and a matrixHo in RP*™ such Hence, we get the following solution: W _

that the following inequalities hold, _
o e 2oL 0L, = [ 56732 —6.8629 |
A2, Wo WoN., o —0.4861  1.0000 _
N Wo 17 >0,V A #0,V(5,4) € [Lp]x[L,n], Consequently, the controller obtained from Theorem 1 makes
25

(6) origin of the system (1) globally asymptotically stable twihe data
AWy + WoA' + [B+ Se|Ho+ Hy[B+ S <0, ¥Se € Ny, (7) €= 0005, Fo = [ 1.0283 —6.3633 |.

{ 1w } >0. (8) I1l. OUTPUT FEEDBACK DESIGN
_ ze Wo The output feedback stabilization of bilinear systems Hesady
then by taking been addressed in [9] where a dead-beat observer is use@veigin

Do = {z,a'Wg e > 1}, Di={a,2W;'lz<1-¢}, [9] there is noB matrices and similar approach cannot be employed

. (9) in the present context. The idea of our design will be to fellan
Fo = HoW, observer controller approach. More precisely we assumanigsons
it follows that the equilibrium{0} x {0} C R™ x {0,1} is globally of Theorem 1 hold and we will solve this output feedback peabby
asymptotically stabfefor the system (4)-(5). designing a hybrid observer that asymptotically estimtitesstate of

This result is based on the following Lemma which relies othe system. This strategy differs from the one in [18] whehg/larid
arguments borrowed from [22] (see also [25]). The detailembfp output feedback is obtained based on a norm observer (se28ls
can be found in [3]. for a result on hybrid output feedback).

1—ac’eW0_1ace

€ = 5 5

3The \;,;’'s are parameters allowing us to estimate ffig; . 50Otherwise, one will obtaifiVoA’ + AW, < 0, which contradicts the
4The definition of global asymptotic stability can be found[T. assumption on the fact that is not Hurwitz.



With this hybrid output feedback framework, by considerihg wherev, is any positive real number. Also, the positive real number
new state(z, Z, 7,¢) in R™ x R™ x [0,2] x {0, 1}, the closed-loop wuy is defined as
system under study is a hybrid system described by:

. ug = max (HoWy '), 17
If (mv(i.ﬂ—)vq) € R™ x Cq X {07 1} ) {z,a’ Jlﬁﬁl}alﬁjﬁp
. . d . First of all, note that the control. = ¢,(z) is bounded for
vz Am+B¢q<x)+Zl(%(x))j Nz all (z,2,7,q) in R™ x R™ x [0,2] x {0,1}q.('l')he system under
o consideration being bilinear, this implies that the cambns part of
i = A+ Bpy(z)+ Z (pq(2)); Nj& +9q(Cx,2) > closed-loop system is globally Lipschitz. Consequently,dll initial
j=1 conditions, the corresponding trajectories do not blowtipfanity in
= h(7) finite time. This implies that for all solutions initiatedfn (z, , 7, ¢)
g =0 in R™ x R™ x [0, 2] x {0, 1}, their time domairdom(z, &, 7, ¢) is an
. . . (11) unbounded set.
if (z,(2,7),q) € R" x Dy x {0, 1}, The rest of the proof of Theorem 2 is decomposed in three
v = = Lemmas, which proofs are given at the end of this proof. Thst fir
it = & one establishes asymptotic convergence of the estitnéderard the
™ =0 ’ (12) state of the system.
gt = 1—¢ Lemma 2 (Observer convergencé)here exists~, such that for

. —_— _ allinitial condition (z, &, 7, ¢) in R™ x R™ x [0, 2] x {0, 1}, we have
whereC, = R™ x [0,2] \ D, where, and; are the correction that |(t, £) — z(t, £)| is bounded and
terms associated to the observer. Note that to integrasectbsed-
loop system, only the knowledge @&, 7, ¢) is required to decide lim |Z(t,4) —x(t,€)| =0 .
between jump and flow along the trajectories of the closeg-lo teotee
system. Hence, to implement this feedback, only the knoydeof With the previous Lemma, we can now establish the following

y is required. result concerning boundedness of solutions.
With the constant contral.., we consider the following observ- Lemma 3 (Boundedness of solutionEpr all initial condition
ability assumption. (z,2,7,q) in R™ x R™ x [0,2] x {0,1}, we have thati(¢,¢) and

Assumption 2:The vector us, in Assumption 1 is such that z(¢,¢) are bounded.
P . With the boundedness of solution, with [19, Lemma 3.3], we ge
A+ Zlu"o’ij is observable. the existence of a non empiylimit set denoted(z, £, 7, ¢) which
Given W, obtained from Theorem 1, we can defiie = IS weakly invariant. In other words, for alk, #,7,¢) in Q(, &, 7, q)
{Ty,...,Ton} afinite set of real vectors iR? such that there exists a complete solution to the closed-loop systerh that
= , R for all (¢,7) in its time domain(z(t,j),&(¢, 7), 7(¢,7), q(t, 7)) is
HoWo "w € CofTy, £ =1...,2"} Vo € {z, ' Wy "z <1} (13) Q(z, &, 7,q). Also as stated in [19, Lemma 3.3], the distance
We have the following theorem. from (z(t,7), 2(¢,5), 7(¢,5), q(t, §)) to Q(z,2,7,q) decreases to
Theorem 2 (Output feedbackfissume Assumptions 1 and 2 hold.zero ast + j — +oo. Moreover, as stated in [19, Lemma 3.3],
Assume there exist a matrix in R?*™, a symmetric positive definite this set is the smallest closed set with this property. Hemdgth
matrix Wy in R™*", and a matrixHo in R”*™ such that inequalities Lemma 2, we get that for allz, Z,7,q) in Q(z,%,7,¢) we have
(6), (7), (8) are satisfiéd Assume there exist a symmetric positive? = . Hence all solutions starting 2(x, &, 7, ) satisfy the hybrid
definite matrix@Qo in R™*™ and a matrixDo in R™*" such that system with coptinuous dynamics defined with continuousadyins
if ((z,7),q) € Cq x{0,1}

P ! P
A+ N(T);| Qo+ Qo |A+ > Nj(Tu); (14) »
J=1 J=1 & = Az+ Bpg(z) + Z (¢q(z)); Njz
+C'Do + DoC <0 VT, €T . , hr) i=1 , (18)
T = T
Then there existK. in R™*", a function » and a positive g = 0
real numberwuo such that the output feedback controller de- ) ) ) ] )
fined with the dataDo = {(i,7),&'W5'é > 1,7 > 1}, D = and discrete dynamics witp, defined in (15),
/ -1
{2,#W5 2 <1-e7>1}, e= 20 % et = &z
. 1, ) to= h D 1. Q@
po(2) = sat u,(HoWg 11') » 91(2) = oo (15) 2+ _ (1)_ q when ((z,7),q) € Dq x {0,1} (19)

t,y) = Qo 'Do(CZ —y) , t,y) = Koo(C2 —y) , (16

Yol@:y) QO o(CE _y) wl(_x v) __( z-y), (16) Note that this system (18)-(19) is similar to the one give(¥in(5)
wheresat ., is the saturation function of positive level’, makes with the data obtained from Theorem 1 but with two differesce
the set{0} x {0} x [0,2] x {0} € R™ x R™ x [0,2] x {0,1} a

1) There is an extra variable corresponding to the timer
globally asymptotically stable set for system (11)-(12). ) P g

2) The functiongo(z) = sat ., (HoW; ') instead ofpo(z) =

Proof: Let h be a locally Lipschitz function such that: HoWz
0 .
vy T=1 The next step in the proof, is to show that these differencesat
h(r) = 30 I< g <2 modify the behavior of the trajectories and that the origintize
T =

system (18)-(19) is globally asymptotically stable.
6n that case, Theorem 1 applies and there exists a stabilitate feedback.  -€Mma 4 (Asymptotic stability of the system (18)-(19pe set

"For i = 1,..,p, each component ofsat,,(u) is defined by {0}>[0,2]x{0}inR"x[0,2]x{0,1} is a globally asymptotically
sat y, (v;) = sign(v;) min(uo, [v;]). stable set for the system (18)-(19).



With Lemma 4, we get that the-limit is simply {0} x [0, 2] x {0}  and such that,
in R™ x [0, 2] x {0, 1}. Since all the trajectories converge toward its At — Moo\ Amax (Qoo) Amax(Qo)
w-limit set (see [19, Lemma 3.3]) we obtain that the §61,0)} x exp ( ) Aanin Qo) Aamin(Q0)
[0,2] x {0} in R™ x R™ x [0,2] x {0,1} is a global attractor for
the system (11)-(12). To finish the proof, we need to showltti Note that by writinge = Z —, the closed-loop system (11)-(12) can
asymptotic stability of this set is also obtained. With inalify (7), Pe rewritten, with continuous dynamics (&, z + e,7,q) € R" x

<1. (23)

Vr

there existsoo a positive real number such that Cq x{0,1}
P
AWo+WoA + B+ Se|Ho+ Hy[B+ Se) < —poWo , VS, 6/\(/;\0,) T = Ax+Bgoq(:r+e)+Z(goq(:c+e))j N;x
j=1
Pre- and post-multiplying this inequality b, = W; ' yields ) P
Y ¢ = A+ (pulate)), Ny | e +(Crate)
Po(A+[B+Se)HoPo)+(A+[B+Se|HoPo)' Py < —poPo ,¥Se € Na . her) j=1
= T
Consider now an initial conditiofz, £, 7, q) in R™ x R x [0, 2] x g = 0
{0,1} with |&| and |z — Z| sufficiently small andg = 0. This _ _ o (24)
implies that there existg such that for allo < s < p, (s,0) is and discrete dynamics {tr,z + ¢, 7,q) € R" x Dy x {0, 1}
in dom(z, &, 7, q). For all s < u, we have v = =z
d . . . N et = e
e (5,0) Poz(s,0) < —poi(s,0) Poi(s,0) A — 0 (25)
+22(s,0) PyQq ' DoCli(s,0) — z(s,0)] . 7" = ge(z,z+e)
Note that from this inequality, we can introduce two positieal To analyze the behavior of the trajectories of this modelsater
numbersCl and Co such that an |n|t|a| Condition(.’ﬁ, i’, T, q) in R"™ x R™ x [O, 2] X {O, 1} a.nd (t, O)
d . L . L in dom(z, &, T, q) with ¢ > 0. Two cases can be distinguished.
75 2(5,0) Pod(s,0) < —c12(s, 0) Poi(s, 0) 1) Assume the initial condition is such thatr, (%,7),q) is

" B 2 in R" x Co x {0}. Since no jump occurs, it follows that
Feald(s,0) =2(s, 017 000y (3(s,0), 7(s,0)), 4(5.0)) is in R* x Co x {0} for all s
On another hand, there exists > 0 such that (this will be formally in [0, ¢]. Note that for alls in [0,t), we have,

proven later in (26)) d
d N ’ . E 6(87 0) =
75 (@(8,0) = &(5,0))' Qo(x(s,0) — &(5,0)) )
< 7A2(£L'(8, 0) - i.(87 0)),Q0(m(87 0) - i.(87 0)) . <A + Z stat uo (HWO_li'(& O)) + QO_IDOC> 6(57 O) .

Hence, there exists a positive real numiesuch that _ .
P From the definition of\; in (21) we get,

%i’(&0)’Poi’(s70)+m(w(870)—5&(s70))’Qo(w(s70)—5&(s70)) <O0. % Z(s,0) < M Z(s,0) , Vs €0,t),

This function being proper and positive definiteznand z we get where Z(s, ¢) is the function defined on the hybrid time domain as
the local asymptotic stability of the s¢t0,0)} x [0,2] x {0}. This  Z(s, ¢) = e(s, £)'Qoe(s, £). Hence, this implies that:

concludes the proof of Theorem 2. [ ]

In the remaining part of this Section we give the proofs of heas Z(5,0) < exp(M15)Z(0,0) , Vs €[0,¢) .
2,3 and 4. Moreover, ift > .- with the definition of7 in (18), it implies
Proof of Lemma 2. Consider a positive real numbas sufficiently 7(s,0) > 1forall s in L%vt]- Since there was no jumg(s, 0) is in
large such that: the subset oR™ defined as{z, ='Wy 'z < 1}. Consequently, with
(A+X7_ | Nju; + Qo' DoC) Qo (21)  (13) and with the definition ofio in (17), it follows that

r A _ v E
+Qo(A+ Y Njuj + Q5 DoC) < MiQo #ol@(s,0) € OATLE=1.... 2%} ¥ s € L;t} ‘
=t This gives the existence df” positive functionsu, : R" — R4

for all |u;| < uo. Note that we have the following Lemma, which 2P
constructive proof based on high-gain techniques (seeig6iiven with Zuz(i’) = 1 for all Z in R™ and such thatpo(&(s,0)) =
in [3]. =1

Lemma 5 (Observer with prescribed convergence spe€hgre Efil we(2(s,0))T,. Consequently/s € [i,t]
exist a matrixKo in R™*™, a symmetric positive definite matrix
Qo in R™*™ and a positive scalah. such that the following — e(s,0)
matrix inequality is satisfied: ds

2P p
(A + 220 oo i N + Kooo) Qoo (22) = ; 11e(2(s,0)) <A + 21 N;(Te); + Q01D00> e(s,0) .
Z =
P . . .
+Qoo <A + Zuoo,ij + KOOC> < 2O Hence with (14) it yields

j=1 d 1

- < -
Is Z(s,0) < =X\2Z(s,0) ,V s € L}T,t} , (26)

8This one can simply be computed employing LMI tools. where )\, is a positive real number such that foe= 1, ..., 2P,



Qo <A+ZN1(Te)j> + <A+ZNJ’(TZ)J'> Qo
j=1 Jj=1
+DoC 4+ C' Do < —Xa2Qo .

Consequently, it implies:

Z(t,0) < exp (ﬁ — Ao max {t - i,o}) 2(0,0) .

Ur Vr

@7

2) Assume the initial condition is such thatr, (2,7),q) is
in R™ x C1 x {1}. Since there is no jump,
( (s,0),(2(s,0),7(s,0)),q(s,0)) is in R™ x C; x {1} for all s
n [0, ¢]. With (22), it yields that we have for all <t
% e(s,0)' Quooe(s,0) < —Asce(s,0) Qooe(s,0) .
Consequently, for alls such that(s,0) is in dom(z, (£,7),q), it
yields,

Amax(Qoo) 2
e(s,0))? < exp(—Aoos) 22222/ 16((). 0
6, 0) < exp(—Aoos) FHE1e(0,0)
Since, for alle in R", we haveﬁOQ—) <le* < —&OQ— this
implies that,
Z(t,0) < Amaz (Q0) Amax (Qoo) exp(—At)Z(0,0) . (28)

~ Amin (Q0) Amin (Qoo)

For the asymptotic behavior of the trajectories, note thaéee
possibilities have to be considered: a) after finitely manjtching,
# stays inCo; b) after finitely many switchingj stays inCs; c) there
are infinitely many switching.

For the a) and b) cases, because the system does not blowup,

finitely many transitions may be ignored, and without losgefier-
ality, one may assume thatis always in(fq (g =0 or 1). Then, by
(27) or (28),lim; 1o Z(t,0) = 0.

For c) case, by omitting the first transition if necessarythaut
loss of generality, one may assume thastarts fromCo. For all
0 < k there existst, such that(tx, k) and (tx,k + 1) are in

it yields that

this implies that the function defined B (¢, £) = (¢, £)’
satisfies

Psoi(t,0)

gvl(t 0) < —poas Vit 0) + 28t 0) P Koo C(3(t, £) — 2(t,0)) |

where po is solution of the following linear matrix inequality (a
solution exists since equation (2) is satisfied in Assunmpfij

P P !
A+ e N. A+ oo N,
j=1 =1

P < _pooPoo
Hence we can introduce two positive real numbersand ¢4 such
that

0 2
— <
S Vit 0) < #(t, 0)

From Lemma 2, this implies thdt; is bounded. The functioiv;
being proper inz, this contradicts the fact that| is unbounded.
In case b), for allj there existst; such that(¢;,7) and
(tj,j + 1) is in domz,, 7, q). Consider the functiorV(s,£) =
%(s, €)' Poz(s,£). The control input being bounded and being
bounded and going to zero, we get for alln don{z, z, 7, q) the
existence of two positive real numbers and ¢s such that

Vo
ot

Without loss of generality, we may assume théto, 0) is in Co. Let
to < to be two positive real numbers [, ¢1] such thatis (g, 0) =

1 andVo(s,0) > 1 for all s in (t,,t;). Note that we havey — t; <
i. Hence, it yields,

—c3V1 (t,é) + C4|i’(t, é) — (29)

(t Z) < CsVo(t f) + cs

, Vs € [to,to] -

s exp (l%:) -1

s o (2) + ZLELL
Vr Cs

The functionV, being proper ing, this implies thatz is bounded

betweent, andt;. Note that for allt is [t1,t2] Vi satisfies equality

(29) and consequently is bounded. |

Proof of Lemma 4. Note that with this definition of.o in equation

dom(z, %, 7,q), 7(tk, k) > 1 and 7 (tk, k + 1) = 0. Moreover, since (17) for all z in the subset ofR™ defined as{z,2'W; 'z < 1}
887'(8 k,‘) < v, for all (8 k) in the time domain this lmplles that we havewo( ) — HOWO x. Consequenﬂy, we recover the data
ty —tr—1 > o= ,Vk > 1, which shows that there is a strictly of Theorem 1. The fact that the s€0} x [0,2] x {0} is locally
positive dwell time between two successive jumps. Sincevéeh asymptotically stable follows the same line as in the prédfreeorem
Z(tk, k) and Z(tk+2, k + 2) two jumps occur this implies that both 1. To show global attractivity, consider an initial poift, 7, ¢) in
the previous cases have to be considered. Employing the te& fiR™ x [0,2] x {0,1}. Note that, the solutions being complete and
items of this analysis, we get for all < k < ¢ that, due to the structure of the timer, there exigts £o) in don(z, 7, ¢)

A1 = Aso ) Amax (Q0) Amax (Qoo) such thatr(to, £o) > 1. Due to the fact that no more than one jump
Z(tr, k) < exp < o ) Aonin (Q0) i (o) Z(tk—2,k—2)  happens in the proof of Theorem 1, we employ the same argsment
to obtain global attractivity. a
Consequently, Example 2:As seen in Section Il, Theorem 1 applies and we
A= Ao\ Amax (Q0) Amax (@oo) 1" can construct a stabilizing state feedback. Assume now ttneat
Z(tar, 2k) < {eXP ( o ) Ao (Q0) henin (Q0) Z(t0,0) - measurement available for feedback is giveryas Cz whereC' =

[ 1 0 ]. Hence, from Assumption 2I' = {6.9137, —6.9137}.
Moreoveru., = 3 satisfies Assumption 2 (in this particular case any
U Satisfies Assumption 2). Now, employing the solver Sedurdi an
Yalmip (see [12]), we get that the sufficient condition (1¢lsatisfied

Note that with the definition of\.,

(*5)
exp
vr

in equation (23), we get that

Amax (QO)Amax (Qoo)
)\min (QO))\min (Qoo)

<1.

Consequently, this implies that we halien; ¢, oo Z(¢t,¢) = 0. with,
This function being proper ir, it follows that e is bounded and Qo = 4.0484  —0.2247 Do — —2.3251
goes to zero along the solution. a 07| —0.2247  0.0219 » 0T 35102

Proof of Lemma 3. Consider now an initial conditiofz, &, 7, ¢) in

R™ xR™ x [0, 2] x {0, 1}. Assume there exists a trajectory initialize
from this point which is unbounded. Since from Lemma 2, weehav
that | — x| is bounded this implies thag| is unbounded. Two cases Koo
may be distinguished: a) after finitely many switchingsr remain in
C1; b) there is a infinite number of switching. In case a), thiglies
that possibly after a finite number of switchings,= u~. Hence,

We select the data;, = 10; With these data we obtaim = 7.0360.
dFoIIowmg the design described in the proof of Theorem 2, w& g
—115
o L —1757 }
tion with discretization stepsize equal @001 Figures 1 and 3 are

10}

#(0,0) = { 0

. With Matlab and employing an Euler discretiza-

obtained for the initial dataz(0)

4.5



7(0,0) = 0, ¢(0,0) = 0. The evolution of a solution to the closed-an uniting controller. Two cases were carried out: a stageldack
loop system with this initial data is given on Figures 1, 3+ala controller and an output feedback controller when only treasured

3-b. Consequently, the hybrid output feedback controlletaimed
from Theorem 2 makes the origin a globally asymptoticallgbtt
equilibrium for the system (1).

4
Time

Fig. 1. Evolution of the state and the observer state
15
A
0.5
0
-0.5
1 2 3 4 5 6 7
Fig. 2. Evolution of variabley.
’ t)

Fig. 3. Evolution of the controk.

IV. CONCLUSION

We considered a particular class of bilinear systems fockttiere
exists a constant feedback (see Assumption 1) making tjeetoaies
of the closed-loop system bounded and converging to anileduih
point (which is not the origin). From the knowledge of thimstant
feedback, a modification of this controller in order to make trigin
a globally asymptotically equilibrium point has been pregd by
relying on two different controllers, namely a global orlee(tonstant
feedback) and a linear one (synthesis via an LMI-based aphjo
Employing hybrid state feedback framework, it was possiblgive
some sufficient conditions in terms of LMI allowing us to dgsi

output can be used for control purposes. In this last contivet
hybrid state feedback framework has been augmented wittbadhy
observer to obtain an output feedback globally stabilizimg origin
of the hybrid closed-loop system.
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