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The generalized Nash equilibrium, where the feasible sets of the players depend on other players' action, becomes increasingly popular among academics and practitionners. In this paper, we provide a thorough study of theorems guaranteeing existence of generalized Nash equilibria and analyze the assumptions on practical parametric feasible sets.

Introduction

In noncooperative game theory, solution concepts had been searched for years at the beginning of the XX th century, cf. [START_REF] Neumann | Theory of Games and Economic Behavior[END_REF]. Thankfully, the Nobel prize laureate, John F. Nash, proposed a unified solution concept for noncooperative games, latter called Nash equilibrium, with [START_REF] Nash | Equilibrium points in N-person games[END_REF][START_REF] Nash | Non-cooperative games[END_REF]. Despite some critiscism, this solution concept is widely used among academics to model noncooperative behavior. Classical applications of Nash equilibrium include computer science, telecommunication, energy markets, and many others, see [START_REF] Facchinei | Generalized Nash equilibrium problems[END_REF] for a recent survey. In this note, we focus on noncooperative games with infinite action space and one-period horizon. Let be N the number of players. The strategy set of player i is denoted by X i ⊂ R ni and the payoff function by θ i : X → R (to be maximized), where X = X 1 × • • • × X N . Player i's (pure) strategy is denoted by x i ∈ X i while x -i ∈ X -i denotes the other players' action, i.e. x -i = (x 1 , . . . , x i-1 , x i+1 , . . . , x N ) and

X -i = X 1 × • • • × X i-1 × X i+1 × • • • × X N .
A game is thus described by (N, X i , θ i (.)). Definition 1.1. A Nash equilibrium is a strategy point x ∈ X such that no player has an incentive to deviate, i.e. for all i ∈ {1, . . . , N },

∀x i ∈ X i , θ i (x i , x -i ) ≤ θ i (x i , x -i ). (1) 
Originally, Nash introduced the equilibrium concept to finite games in [START_REF] Nash | Equilibrium points in N-person games[END_REF][START_REF] Nash | Non-cooperative games[END_REF], i.e. X i is a finite set. Therefore, he used the mixed strategy concept (i.e. a probability distribution over the pure strategies) and proved the existence of such an equilibrium in that context. We report here the existence theorem of [START_REF] Nikaido | Note on non-cooperative convex games[END_REF] for infinite games.

Theorem 1.2 (Nash). Let N agents be characterized by an action space X i and an objective function θ i . If ∀i ∈ {1, . . . , N }, X i is nonempty, convex and compact; θ i : X → R is continuous with X = X 1 × • • • × X N and ∀x -i ∈ X -i , x i → θ i (x i , x -i ) is concave on X i , then there exists a Nash equilibrium.

The concavity assumption of the objective function θ i with respect to x i is sometimes called playerconcavity. When dealing with cost functions rather payoff functions, the concavity assumption has to be replaced by a convexity assumption. Most existence theorems of Nash equilibrium rely on a fixed-point argument, and this from the very beginning. Indeed when Nash introduced his equilibrium concept, a fixed-point theorem is used: the Kakutani theorem in [START_REF] Nash | Equilibrium points in N-person games[END_REF] and the Brouwer theorem in [START_REF] Nash | Non-cooperative games[END_REF].

Since the introduction of games (N, X i , θ i (.)), many extensions have been proposed in the literature: discontinuous payoffs (e.g. [START_REF] Dasgupta | The existence of equilibrium in discontinuous economic games, i:theory[END_REF]), non concave payoffs (e.g. [START_REF] Baye | Characterizations of the existence of equilibria in games with discontinuous and non-quasiconcave payoffs[END_REF]), topological action spaces (e.g. [START_REF] Lu | On the existence of pure-strategy Nash equilibrium[END_REF][START_REF] Park | A variant of the Nash equilibrium theorem in generalized convex spaces[END_REF]), constrained strategy sets (e.g. [START_REF] Debreu | A social equilibrium existence theorem[END_REF][START_REF] Rosen | Existence and uniqueness of equilibrium points for concave N-person games[END_REF]). In the following, we consider the latter extension dealing with games where each player has a range of actions which depends on the actions of other players. This new extension leads to the so-called generalized Nash equilibrium. Let 2 Xi be the family of subsets of X i . Let C i : X -i → 2 Xi be constraint correspondence of Player i, i.e. a function mapping a point in X -i to a subset of X i . Thus, C i (x -i ) defines the ith player action space given other players' action x -i . Typically, the constraint correspondence C i is defined by a parametrized action space as

C i (x -i ) = {x i ∈ X i , g i (x i , x -i ) ≥ 0}
, where g i : X → R mi is a constraint function. When g i does not depend on x -i , we get back to standard game. A generalized game is described by (N, X i , C i (.), θ i (.)) and is also called an abstract economy in reference to Debreu's economic work [START_REF] Arrow | Existence of an equilibrium for a competitive economy[END_REF][START_REF] Debreu | A social equilibrium existence theorem[END_REF]. Definition 1.3. The generalized Nash equilibrium for a generalized game (N, X i , C i , θ i ) is defined as a point x solving for all i ∈ {1, . . . , N },

x i ∈ arg max xi∈Ci(x -i ) θ i (x i , x -i ). (2) 
In the present paper, we provide a self-contained survey of existence theorems for generalized Nash equilibrium. We also emphasize the use of fixed-point theorems in the proof of such theorems. A second purpose of this paper is to analyze the assumptions of those theorems on practical applications, and in particular the assumption on the constraint correspondence. Now, we set the outline of this paper. Section 2 gives the minimum required mathematical tools to study generalized Nash equilibria. Then, Section 3 presents the most recent existence theorems. Finally, Section 4 focuses on the analysis of assumptions when dealing with parametrized constrained sets.

Preliminaries

The mathematical tools needed are briefly summarized in this section, so that this paper is self-contained. For further details, we refer readers to the following books [START_REF] Aubin | Optima and Equilibria: An Introduction to Nonlinear Analysis[END_REF][START_REF] Border | Fixed Point Theorems with Applications to Economics and Game Theory[END_REF][START_REF] Ewald | Games, fixed points and mathematical economics[END_REF][START_REF] Ichiishi | Game Theory for Economic Analysis[END_REF][START_REF] Ok | Real Analysis with Economic Applications[END_REF]. In the following, X and Y are two metric spaces.

Quasiconcavity

Refinements of concavity are first presented with characterizations based directly on the function f . Special characterizations when f is continuously differentiable or twice continuously differentiable exists but are omitted here, see [START_REF] Diewert | Nine kinds of quasiconcavity and concavity[END_REF] for a comprehensive study.

Definition 2.1. A function f : X → Y is concave (resp. convex) iff ∀x, y ∈ X, ∀λ ∈ [0, 1], f (λx + (1 -λ)y) ≥ (resp. ≤) λf (x) + (1 -λ)f (y). ( 3 
)
Strict convexity/concavity is obtained when Inequality (3) is strict.

Concavity of f can be also be defined in terms of the graph of f . Let hyp(f ), epi(f ) be the hypograph and the epigraph of f , defined as hyp(f ) = {(x, y), y ≥ f (x)} and epi(f ) = {(x, y), y ≤ f (x)}. The concavity (resp. convexity) of a function f is equivalent to the convexity of hyp(f ) (resp. epi(f )). So, it is immediate that hyp(min(f 1 , f 2 )) = hyp(f 1 ) ∩ hyp(f 2 ): an intersection of two convex sets (resp. epi(max(f 1 , f 2 )) = epi(f 1 ) ∩ epi(f 2 )). The quasiconcavity is now introduced by relaxing Inequality (3).

Definition 2.2. A function

f : X → Y is quasiconcave (resp. quasiconvex) iff ∀x, y ∈ X, ∀λ ∈]0, 1[, f (λx + (1 -λ)y) ≥ min(f (x), f (y)), resp. f (λx + (1 -λ)y) ≤ max(f (x), f (y)). ( 4 
)
Again, strict quasiconvexity/concavity is obtained when Inequality (4) is strict.

A univariate quasiconvex (resp. quasiconcave) function is either monotone or unimodal. Obviously convexity implies quasiconvexity. To better catch the meaning of quasi-concavity in contrast to concavity, we plot on Figure 1 examples of a concave function, a non-concave quasi-concave function and a non-quasiconcave function.
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Correspondences

As unveiled in the introduction, new tools are used to refine the action strategy set from a compact set in Equation ( 1) to a player-dependent constrained set in Equation ( 2). Thus, correspondences, also called multi-valued functions, point-to-set maps or set-valued mappings, are introduced.

Definition 2.3. A correspondence F : X → 2 Y is an application such that ∀x ∈ X, F (x) is a subset of Y . A correspondence is also denoted by F : X → P(Y ) or F : X ⇒ Y . Given F , the domain is dom(F ) = {x ∈ X, F (x) = ∅}, the range is rg(F ) = x F (x) and the graph is Gr(F ) = {(x, y) ∈ X × Y, y ∈ F (x)}. Example 2.4. Typical examples of correspondences are the inverse of a function f , x → f -1 (x) (since f -1 (x) might be empty, a singleton and a set); a constraint set x → {x, f (x) ≤ c}; the generalized gradient x → ∂f (x) or F : x → [-|x|, |x|]. Definition 2.5. For a correspondence F : X → 2 Y , the image of a subset B by F is defined as F -1 (B) = {x ∈ X, F (x) = B}. The exterior image (also called upper inverse) is F + (B) = {x ∈ X, F (x) ⊂ B} whereas the interior image (also called lower inverse) is F -(B) = {x ∈ X, F (x) ∩ B = ∅}.
A type of continuity for set-valued mappings has been introduced by Bouligand and Kuratowski in 1932: the lower and the upper semicontinuity (abbreviated l.s.c. and u.s.c.). In the literature, there are two concurrent definitions: the semicontinuity in the sense of Berge (e.g. [6, page 109]) and the semicontinuity in the sense of Hausdorff (e.g. [3, page 38-39]). These two definitions depend on the property of the set F (x), yet, they are equivalent if F is compact-valued. In that case, the u.s.c./l.s.c. continuity can be defined on the exterior/interior images of F .

Definition 2.6. F : X → 2 Y is upper semicontinuous (u.s.c.) at x, iff ∀y ∈ Y , F + ({y}) is an open set in X. F : X → 2 Y is lower semicontinuous (l.s.c.) at x, iff ∀y ∈ Y , F -({y}) is an open set in X.
When studying parametrized constrained sets, it is generally more convenient to work with characterizations by sequences. Therefore, the equivalent definition of the semicontinuity in terms of sequences are now given, see e.g. [START_REF] Hogan | Point-to-set maps in mathematical programming[END_REF].

Definition 2.7. F : X → 2 Y is upper semicontinuous (u.s.c.) at x, iff for all sequence (x n ) n ∈ X, x n -→ n→+∞ x, ∀y n ∈ T (x n ) and ∀y ∈ Y , y n -→ n→+∞ y ⇒ y ∈ T (x). Definition 2.8. F : X → 2 Y is lower semicontinuous (l.s.c.) at x, iff for all sequence (x n ) n ∈ X, x n -→ n→+∞ x, ∀y ∈ T (x), there exists a sequence (y k ) k ∈ Y , such that y k -→ n→+∞ y and ∀k ∈ N, y k ∈ T (x k ). Example 2.9. Let F defined by F (x) = [-1, 1] if x = 0 or {0} otherwise. F is l.s.c. in 0 but not u.s.c. Let G defined by G(x) = {0} if x = 0 or [-1, 1] otherwise. G is u.s.c. in 0 but not l.s.c. Let H defined by H(x) = {0} if x = 0 or {-1, 1} otherwise. H is neither u.s.c. nor l.s.c. in 0.

Theorems for correspondences

Thirdly, the necessary fixed-point theorems (for correspondences) are given, namely the Kakutani theorem [START_REF] Kakutani | A generalization of Brouwer's fixed point theorem[END_REF] and the Begle theorem [START_REF] Begle | A fixed point theorem[END_REF]. Let us first recall by the Brouwer theorem that a continuous function f from a finite-dimensional ball into itself admits a fixed-point. The Kakutani theorem is a valuable extention of the Brouwer's theorem to correspondences and is reported from [START_REF] Aubin | Set-valued Analysis[END_REF]. The original theorem of [START_REF] Kakutani | A generalization of Brouwer's fixed point theorem[END_REF] does not have any ambiguity about upper semicontinuity, since the author works in a finite-dimensional space with compact-valued mapping.

Theorem 2.10 (Kakutani). Let K be a nonempty compact convex subset of a Banach space (e.g. R n ) and T : K → 2 K a correspondence. If T is u.s.c. such that ∀x ∈ K, T (x) is nonempty, closed and convex, then T admits a fixed-point theorem.

The Begle theorem ( [START_REF] Begle | A fixed point theorem[END_REF]) is an extension of a fixed-point theorem for locally connected spaces by [START_REF] Eilenberg | Fixed point theorems for multi-valued transformations[END_REF][START_REF] Lefschetz | On the fixed point formula[END_REF], which in turn extends the Brouwer fixed-point theorem. To introduce this theorem, contractible polyhedrons have first to be defined: contractibility is in a sense related to convexity, see e.g. [START_REF] Kuhn | Contractibility and convexity[END_REF]. Definition 2.11. A geometric polyhedron is a finite union of convex hulls of finite-point sets.

Definition 2.12. A polyhedron is a subset S of R n homeomorphic to a geometric polyhedron P , i.e. there exists a bijective function between S and P . Definition 2.13. Contractible sets are nonempty sets deformable into a point by a continuous function (homotopy).

Example 2.14. Any star domain of Euclidean spaces is contractible whereas a finite-dimensional sphere is not. Any convex set of Euclidean spaces is contractible.

The Begle theorem reported here is the version from [START_REF] Debreu | A social equilibrium existence theorem[END_REF], originally contractible sets are replaced by absolute retracts in [START_REF] Begle | A fixed point theorem[END_REF].

Theorem 2.15 (Begle). Let Z be a contractible polyhedron and φ : Z → 2 Z be upper semicontinuous. If ∀z ∈ Z, φ(z) is contractible, then φ admits a fixed point.

Finally, a last theorem needed is the Berge's maximum theorem, see e.g. [29, page 229] and [7, page 64].

Theorem 2.16 (Berge's maximum theorem). Let X, Y be two metric spaces, f : X × Y → R be an objection function and F : X → 2 Y a constraint correspondence. Assume that f is continuous, F is both l.s.c. and u.s.c.; and F is nonempty and compact valued. Then we have

(i) φ : x → max y∈F (x) f (x, y) is a continuous function from X in R. (ii) Φ : x → arg max y∈F (x) f (x, y) is u.s.c. correspondence from X in 2 Y and compact-valued.
As shown in the proof of Theorem 3.1, if in addition f is quasiconcave in y, then Φ is convex valued. Note that Φ(x) is sometimes written {y ∈ F (x), f (x, y) = φ(x)}. The sequel demonstrates that the maximum theorem and the two fixed-point theorems 2.10 and 2.15 are the base recipes for showing the existence of a generalized Nash equilibrium.

State-of-the-art existence theorems

Showing the existence of a generalized Nash equilibrium can be tackled in two different ways: either a direct approach based on fixed-point theorems or a reformulation based on quasi-variational inequalities. Proofs are given to emphasize how the maximum theorem is the link between optimization subproblem (2) and fixed-point theorems.

The direct approach

Firstly, we investigate the direct approach. Theorem 3.1 was established by [START_REF] Arrow | Existence of an equilibrium for a competitive economy[END_REF] in the context of abstract economy, so a simplified version by [START_REF] Ichiishi | Game Theory for Economic Analysis[END_REF] is reported below. Some equivalent reformulations of Theorem 3.1 using a preference correspondence rather than a payoff function are also available in the following books: Theorem 19.8 in [START_REF] Border | Fixed Point Theorems with Applications to Economics and Game Theory[END_REF] and Theorem 3.7.1 in [START_REF] Ewald | Games, fixed points and mathematical economics[END_REF]. Note that [START_REF] Aubin | Optima and Equilibria: An Introduction to Nonlinear Analysis[END_REF] propose a different version, called the Arrow-Debreu-Nash theorem, where objective functions are player-concave rather than player-quasiconcave. Theorem 3.1. Let N players be characterized by an action space X i , a constraint correspondence C i and an objective function θ i : X → R. Assume for all players, we have (i) X i is nonempty, convex and compact subset of a Euclidean space, (ii) C i is both u.s.c. and l.s.c. in

X -i , (iii) ∀x -i ∈ X -i , C i (x -i ) is nonempty, closed, convex, (iv) θ i is continuous on the graph Gr(C i ) 1 , (v) ∀x ∈ X, x i → θ i (x i , x -i ) is quasiconcave on C i (x -i ),
Then there exists a generalized Nash equilibrium.

Proof. Since θ i is continuous, C i is both l.s.c. and u.s.c.; and C i is nonempty and compact valued, the maximum theorem implies that the best response correspondence defined as

x -i Pi -→ arg max xi∈Ci(x-i) θ i (x i , x -i )
is u.s.c. and compact valued. Furthermore, as θ i is player quasiconcave, P i is convex valued. Let z i , y i ∈ P i (x -i ). By definition of maximal points, ∀x i ∈ C i (x -i ), we have θ i (y i , x -i ) ≥ θ i (x i , x -i ) and θ i (z i , x -i ) ≥ θ i (x i , x -i ). Let λ ∈]0, 1[. By the quasiconcaveness assumption, we get

θ i (λy i + (1 -λ)z i , x -i ) ≥ min (θ i (y i , x -i ), θ i (z i , x -i )) ≥ θ i (x i , x -i ).
Hence, λy i + (1 -λ)z i ∈ P i (x -i ), i.e. P i (x -i ) is a convext set. Furthermore, P i is also nonempty valued since C i (x -i ) is nonempty. Now, consider the Cartesian product of P i (x -i ) to define Φ as

Φ : X → 2 X1 × • • • × 2 X N x → P 1 (x -1 ) × • • • × P N (x -N )
where X is a subset of R n with n = i n i . This multiplayer best response is nonempty, convex and compact valued. In our finite-dimensional setting and with a finite Cartesian product, the upper semicontinuity of each component P i implies the upper semicontinuity of Φ, see Prop 3.6 of [START_REF] Hogan | Point-to-set maps in mathematical programming[END_REF]. Finally, the Kakutani theorem gives the existence result.

The Debreu theorem ( [START_REF] Debreu | A social equilibrium existence theorem[END_REF]) based on contractible sets is now given. Originally, the upper-semicontinuity is replaced by the closedness of the graph Gr(C i ), but this is equivalent since contractible sets are closed and compact sets. Theorem 3.2. Let N agents be characterized by an action space X i and X = X 1 × • • • × X N . Let a payoff function θ i : X → R and a restricted action space C i (x -i ) given other player actions x -i . Each agent i maximizes its payoff on C i (x -i ). If for all agents, we have

(i) X i is a contractible polyhedron, (ii) C i : X -i → 2 Xi is u.s.c., (iii) θ i is continuous from Gr(C i ) to R, (iv) φ i : x -i → max xi∈Ci(x-i) θ i (x i , x -i ) is continuous, (v) ∀x -i ∈ X -i , the best response set M x-i = {x i ∈ X i (x -i ), θ i (x i , x -i ) = φ i (x -i )} is contractible,
Then there exists a generalized Nash equilibrium.

Proof. Let G i = Gr(C i ). Again, we work on the best response set, which is defined as

M i = {(x i , x -i ) ∈ X i × X -i , x i ∈ M x-i } = {(x i , x -i ) ∈ G i , θ i (x i , x -i ) = φ i (x -i )}.
This set is closed since the functions φ i and θ i are continuous and c i is u.s.c.. Let Φ be the correspondence defined as Φ(x) = M x-1 × • • • × M x -N . Using the Cartesian product, the graph of Φ is given by

Gr(Φ) = {(x, y) ∈ X × X, y ∈ Φ(x)} = N i=1 {(x, y) ∈ X × X, (y i , x -i ) ∈ M i },
a finite intersection of closed sets. As Gr(Φ) is closed, Φ is u.s.c.. Moreover for all x, Φ(x) is contractible as a finite Cartesian product of contractible sets. Applying the Begle fixed-point theorem completes the proof.

The QVI reformulation

The generalized Nash equilibrium problem (2) can be reformulated in the quasi-variational inequality (QVI) framework. Variational inequality and QVI are first described and then the existence theorem is given. Definition 3.3 (Variational Inequality). Given a function F : R n → R n and a set K ⊂ R n a Variational Inequality, denoted by V I(K, F (.)), is to find a vector x such that x ∈ K and ∀y ∈ K, (y -x ) T F (x ) ≥ 0. Definition 3.4 (Quasi-Variational Inequality). Given a function F : R n → R n and a correspondence K : R n → 2 R n , a Quasi-Variational Inequality, denoted by QV I(K(.), F (.)), is to find a vector x such that x ∈ K(x ) and ∀y ∈ K(x ), (y -x

) T F (x ) ≥ 0.
For examples of applications of variational inequality problems and links with optimization, see e.g. [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementary Problems[END_REF][START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementary Problems[END_REF]. Definition 1.3 can be reformulated as the Quasi-Variational Inequality problem QV I(C(.), Θ(.)) with

C(x) = C 1 (x -1 ) × • • • × C N (x -N ) and Θ(x) =    ∇ x1 θ 1 (x)
. . .

∇ x N θ N (x)    , (5) 
see e.g. [START_REF] Harker | Generalized Nash games and quasi-variational inequalities[END_REF] and [START_REF] Facchinei | Generalized Nash equilibrium problems[END_REF] for a proof. Note that this reformulation assumes the differentiability of objective function θ i . An existence theorem based on the QVI approach developped in [START_REF] Fukushima | Quasi-variational inequalities, generalized Nash equilibria, and multileader-follower games[END_REF] is now given.

Theorem 3.5. Let N players be characterized by an action space X i , a constraint correspondence C i and an objective function θ i : X → R. Assume for all players, θ i is continuously differentiable on the graph Gr(C i ).

Let C(x) = C 1 (x -1 ) × • • • × C N (x -N ). Assume there exists a compact convex subset T ⊂ R n , (i) ∀x ∈ T , C(x) is nonempty, closed, convex subset of T , (ii) C is both u.s.c. and l.s.c. in T ,
Then there exists a generalized Nash equilibrium.

Proof. Using Θ as given in Equation ( 5), the correspondence F : T → 2 T is defined as

F (x) = arg max z∈C(x) -(z -x) T Θ(x).
Let x be a fixed-point of F . We have

x ∈ F (x ) ⇔ x ∈ arg max z∈C(x ) -(z -x ) T Θ(x ) ⇔ ∀z ∈ C(x ), -(z -x ) T Θ(x ) ≤ -(x -x ) T Θ(x ) = 0 ⇔ ∀z ∈ C(x ), (z -x ) T Θ(x ) ≥ 0.
Thus, the QVI reformulation of (2) turns out to be a fixed-point problem. By assumption, C is nonempty, compact valued and both u.s.c. and l.s.c.. The function (z, y) → -(z -y) T Θ(y) is continuous since θ i is continuously differentiable. Therefore by the maximum theorem, the correspondence F is u.s.c. and compact valued. Furthermore, the function z → -(z -x) T Θ(x) is a linear function (hence convex). So, F is also convex-valued (by the maximum theorem), hence F (x) is a contractible set for all x ∈ T . Applying the Begle fixed-point theorem completes the proof.

A significative part of games are such that player strategies are required to satisfy a common coupling constraint (such games are called jointly convex games) see [START_REF] Facchinei | Generalized Nash equilibrium problems[END_REF] and the references therein. In jointly convex games, the contraint correspondence simplifies to

C i : X -i → 2 Xi x -i → {x i ∈ X i , (x i , x -i ) ∈ K}, (6) 
where

K ⊂ X 1 × • • • × X N is a nonempty convex set.
We are now interested in points solving the (classical) variational inequality problem V I(K, Θ(.)) with K given in Equation ( 6) and Θ given in Equation ( 5). As expected, not all solutions of the generalized Nash equilibrium (2) (i.e. solutions of QV I(C(.), Θ(.))) solves this variational inequality problem. Therefore, a special type of generalized Nash equilibrium has been introduced: a variational equilibrium also called a normalized equilibrium. A variational equilibrium has a special interpretation in terms of Lagrange multipliers of the corresponding KKT systems of the GNEP, see e.g. [START_REF] Facchinei | On generalized Nash games and variational inequalities[END_REF][START_REF] Fukushima | Quasi-variational inequalities, generalized Nash equilibria, and multileader-follower games[END_REF].

Definition 3.6 (Variational equilibrium). A strategy x is a variational equilibrium of a generalized game (N, X i , C i (.), θ i (.)) if x solves V I(K, Θ(.)) with K given in Equation ( 6) and Θ given in Equation ( 5).

Theorem 3.7. Let N players be characterized by an action space X i , a constraint correspondence C i and an objective function θ i : X → R. Assume for all players, θ i is continuously differentiable on the graph Gr(C i ) and there exists a nonempty convex compact set K ⊂ R n such that C i (x -i ) = {x i ∈ X i , (x i , x -i ) ∈ K}, then there exists a variational equilibrium.

Proof. For ease of notation, the subscript i is removed, x i and x -i are denoted by x and w, respectively. Let f be the function f (x, w) = min(g 1 (x, w), . . . , g m (x, w)). which is continuous by the continuity of g j . By the concavity with respect to x, f is also concave with respect to x. The upper level lev ≥0 f is the graph of C. By the continuity of f , the graph Gr(f ) is closed.

lev ≥0 f = {(x, w), f (x, w) ≥ 0} = {(x, w), ∀i = 1, . . . , m, g i (x, w) ≥ 0} = {(x, w), x ∈ C(w)} = Gr(C).
So C is u.s.c.. The level set of a convex function is also convex, so is lev ≥0 f (., w) with respect to x for all w. As f is continuous and g(x, w) > 0, there exists an open set O, such that ∀w ∈ O, f (x, w) > 0.

Since the upper level set lev ≥0 f (., w) for any w is convex and f is continuous, the interior intC(w) is nonempty. This guarantees the lower semicontinuity of C at w. Indeed, for all w ∈ O and all x ∈ intC( w), by the continuity of f and the assumption at (x, w), there exists a neighborhood W ⊂ O × intC( w) such that f is strictly positive on W , and also W ⊂ gph(C). As w → w, then certainly x belongs to the inner limit of C(w). This inner limit is a closed set, and so includes intC( w) ⊃ cl(intC( w)). Since C( w) is a closed convex set with noempty interior, cl(intC( w)) = C( w). Hence, the inner limit of C(w) contains C( w), i.e. C is l.s.c. at w by Theorem 5.9 of [START_REF] Rockafellar | Variational Analysis[END_REF].

The previous property is also given in Theorem 12 of [START_REF] Hogan | Point-to-set maps in mathematical programming[END_REF] and proved using the sequence characterization of semicontinuity. Theorem 13 of [START_REF] Hogan | Point-to-set maps in mathematical programming[END_REF] is reported here as it gives weaker conditions for the correspondence to be lower semicontinuous than Theorem 12. Proposition 4.3. Let C i : X -i → 2 Xi be the feasible set mapping as defined above. Let C i be the correspondence

C i (x -i ) = {x i ∈ X i , g i (x i , x -i ) > 0}. If each component g ij is lower semicontinuous (i.e. closedness of the epigraph) on x-i × C i (x -i ) and C i (x -i ) ⊂ cl( C i (x -i )), then C i is lower semicontinuous at x-i .
Proof. For ease of notation, the subscript i is removed, x i and x -i are denoted by x and w, respectively. If C( w) = ∅, then by assumption, C( w) = ∅ and the conclusion is trivial. Otherwise, when C( w) = ∅, we choose x ∈ C( w) and w n → w. Since C( w) ⊂ cl( C( w)), there exists a sequence (x m ) m of elements in C( w) such that x m → x. Construct the sequence n m such that n 0 = 0 and n m = max(n m-1 + 1, arg min k (∀l ≥ k, g(w l , x m ) > 0)). The sequence is well defined by the lower semicontinuity of g. Furthermore, the sequence (x nm ) m≥0 is such that x nm ∈ C(w nm ) with x nm → x, w nm → w and x ∈ C( w), i.e. C is l.s.c. at w. Continuous selections introduced by [START_REF] Michael | Continuous selections. 1[END_REF] can be used to further relaxed assumptions on g i . Originally, [START_REF] Michael | Continuous selections. 1[END_REF] works with topological spaces and uses the Berge's semicontinuity. Their Proposition 2.3 is reported below.

Proposition 4.4. If φ : X → 2 Y is l.s.c. and φ : X → 2 Y such that for every x ∈ X, cl(φ(x)) = cl(ψ(x)), then ψ is also l.s.c.. Property 4.4 has strong consequences on the lower semicontinuity of the correspondence C i and justifies the [START_REF] Hogan | Point-to-set maps in mathematical programming[END_REF]'s approach to use the correspondence C i rather than C i , since images have the same closure set. Therefore, the lower semicontinuity of each component g ij suffices to get the lower semicontinuity of C i . With the continuity of g ij , it is even more straightforward to see that for all x i ∈ C i (x -i ), there exists a sequence (x -i,n ) n and x i,n ∈ C i (x -i,n ) such that for all n ≥ n 0 , g i (x i,n , x -i,n ) > 0. Other types of conditions not based on strict inequalities are given in [START_REF] Hogan | Point-to-set maps in mathematical programming[END_REF] .

The nonemptyness, the closedness and the convexity

Finally, we turn our attentions to other assumptions. Theorems 3.1, 3.2 and 3.5 also require C i to be nonempty, convex and closed valued. The convexity assumption on C i (x -i ) is satisfied when g i is quasiconcave with respect to x i . This is not immediate with the definition of quasi-concavity given in Section 2. But an equivalent definition for a function f to be quasiconcave is that all upper level sets U f (r) = {x ∈ X, f (x) ≥ r} are convex for all r, see [START_REF] Diewert | Nine kinds of quasiconcavity and concavity[END_REF]. Thus, if g i is quasiconcave, then U gi (0) is convex. The nonemptyness assumption is the most challenging assumption. Except to have a strict inequality condition and the continuity of g i 's, it is hard to find general conditions. Finally, the closedness assumption is satisfied when g i 's are continuous.
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 1 Figure 1: Examples and counter-examples of quasi-concavity

There is no need for θ i to be continuous on the whole space X, since only feasible points (i.e. those in Gr(C i )) matters in Equation (2).

Proof. Same proof as Theorem 3.5 with C(x) replace by K which has the same properties.

Parametrized constrained sets

This final section aims to provide criteria to guarantee the assumptions of previous theorems, as well as, proofs for such criteria. For this purpose, a parametrized constraint set is considered

for x -i ∈ X -i , where

A central assumption of Theorems 3.1, 3.2 and 3.5 is to require C i to be both lower and upper semicontinuous. Yet, Theorem 3.2 requires C i to be u.s.c. and φ to be continuous, by Berge's maximum theorem, a sufficient condition is that C i is also l.s.c.. Other assumptions of these theorems are nonemptyness, convexity and closedness of C i (x -i ). Theorem 3.2 also requires X i and M i to be contractible: a sufficient condition is X i to be a convex and θ i to be player-quasiconcave.

The upper-semicontinuity

[31] devote a full chapter on set-valued analysis. Despite they formulate the outer and inner semicontinuity through superior limit of sets, they work with the Berge's semicontinuity (respectively the lower and upper semicontinuity). Their Theorem 5.7 of [START_REF] Rockafellar | Variational Analysis[END_REF] gives equivalent reformulations of upper semicontinuity using the graph properties, for which their Example 5.10 is a direct application. A small variant is given here by removing equality constraints. Proposition 4.1. Let C i : X -i → 2 Xi be the feasible set mapping defined in Equation [START_REF] Border | Fixed Point Theorems with Applications to Economics and Game Theory[END_REF]. Assume X i ⊂ R ni is closed and all components g ij 's are continuous on X i × X -i ⊂ R n , then the correspondence C i is u.s.c. on X -i .

Proof. For all j = {1, . . . , m}, by the continuity of the jth component g ij , the set of

A weaker assumption on the constraint function g i is given in Theorem 10 of [START_REF] Hogan | Point-to-set maps in mathematical programming[END_REF]. [START_REF] Hogan | Point-to-set maps in mathematical programming[END_REF] only assumes that each component g ij is an upper semicontinuous function (i.e. the closedness of the hypograph g ij ).

The lower-semicontinuity

Generally, conditions on g i in order that the correspondence is l.s.c. are harder to find. Nevertheless, [START_REF] Rockafellar | Variational Analysis[END_REF][START_REF] Hogan | Point-to-set maps in mathematical programming[END_REF] provide conditions for it. An application of Theorem 5.9 of [START_REF] Rockafellar | Variational Analysis[END_REF] to the constraint correspondence in Equation ( 7) is presented. Proposition 4.2. Let C i : X -i → 2 Xi be the feasible set mapping defined in Equation [START_REF] Border | Fixed Point Theorems with Applications to Economics and Game Theory[END_REF]. Assume g ij 's are continuous and concave in x i for each x -i . If there exists x such that g i (x i , x-i ) > 0 for all i, then C i is l.s.c. at x-i and in some neighborhood of x-i (and also u.s.c.).