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Matching Raw GPS Measurements on a Navigable
Map Without Computing a Global Position

Clément Fouque and Philippe Bonnifait

Abstract—Map-matching means determining the location of
a mobile with respect to a road network description stored in
a digital map. This problem is usually addressed using GPS-
like fixes. Unfortunately, there are many situations in urban
areas where few satellites are visible because of outages due to
tall buildings. In this paper, map-matching is solved using raw
GPS measurements (pseudoranges and Doppler measurements),
avoiding the necessity to compute a global position. The problem
is formalized in a general Bayesian framework in order to handle
noise, which is able to perform multi-hypothesis map-matching
when there is not enough information to make unambiguous
decisions. This tightly-coupled GPS-Map fusion has to cope
simultaneously with identifying the road and estimating the
mobile’s position on that road. A marginalized particle filter is
proposed for solving this hybrid estimation problem efficiently.
Real experimental results are reported to show that this approach
can be initialized with fewer than four satellites. It is also able to
track the location with two satellites only, once the road selection
has been solved.

Key words: Map-Matching, Global Positioning Systems
(GPS), Hybrid state estimation, particle filtering.

I. INTRODUCTION

Map-matching is a key element in driving assistance and
is a feature of many Intelligent Transportation Systems (ITS)
[22]. In a common map-matching approach [10], [23], [27],
[7], a vehicle’s global position needs to be obtained before
its location with respect to the representation of the road
network can be estimated. This pivotal issue for ITS has often
been addressed using either topology or the geometry of the
network [17], [28]. Fundamentally, it is a hybrid problem:
a symbolic road identification needs to be combined with
a metric positioning relative to the origin of the road. For
instance, the authors of [14] include a prior estimation step to
compute the pose of the vehicle using the fix of a GPS receiver.
Then, this estimation is used to select the corresponding road
from the map using a nearest-neighbor approach. Managing
positioning and map uncertainties is of prime importance for
map-matching. For this, several theoretical framework can
be used. In [23], the road identification is performed using
a Bayesian network. This selection can also be performed
using Belief theory as proposed in [7] and in[1]. In [16],
the map-matching approach makes use of a strategy that is
formalized using Bayesian filtering. The main drawback of
such approaches is the quality of the positioning solution,
which is highly dependent on the availability and performance
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of the GPS positioning. In urban areas, GPS performance can
often be poor because of signal outages or multi-path.

To overcome these limitations, an alternative approach con-
sists in solving map-matching simultaneously with positioning
using the raw measurements provided by a GPS receiver. In
[8], a snapshot approach has been proposed to perform map-
matching using a coherency test with the GPS pseudoranges.
Since this approach takes no account of topology, ambiguity
and mismatching may occur in cases of parallel roads or at
junctions. The author of [24] makes use of historic path
data to solve this problem. The matching is then confirmed
using the measurements likelihood. Furthermore, in [25] it
has been shown that GPS corrections can be done using the
map geometry. Such a tightly-coupled approach increases the
map-matching precision that is usually degraded by offsets
affecting the pseudoranges and the map.

A major concern with map-matching is frequent ambiguity
at road junctions or when positioning accuracy is low with
respect to the detailed geometry of the map. One technique
for addressing this problem is to use multi-hypothesis track-
ing. The authors of [13] have proposed a Multi-Hypothesis
Tracking (MHT) approach that uses road connectivity to
merge the map information with GPS data. Hypotheses are
attached to roads and new hypotheses are created at each
new road junction. A similar approach was proposed by
[18]. Constraint approaches can also be employed, as in [5],
where an Interacting Multiple Model (IMM) is used to handle
ambiguities at road junctions: When entering the vicinity of
a road junction, a bank of map-constrained Extended Kalman
Filters (EKF) are used. Similar approaches rely on constrained
Particle Filters (PF) [12], [15]. Here, the evolution of the
particles is constrained by the road geometry and, when
a junction is reached, particles are allocated to connected
roads according to existing knowledge of the topology of the
network. Such an approach is also considered in [4]. In this
paper, we also address the question of Multi-Hypothesis Map-
Matching (MHMM) which provides a means to avoid resetting
the filter each time a mismatch occurs. Moreover, we will
show that MHMM is also an efficient technique for initializing
the method in challenging conditions with few GPS satellites.

Solving MHMM with raw GPS measurements consists in
simultaneously identifying the roads and the corresponding
locations of every hypothesis regarding these roads. It is a
constraint positioning problem, since the space defined by the
network geometry needs to be searched for every possible
candidate. A Bayesian formalization provides an interesting
framework for handling noise present in the measurements.
Moreover, in such a framework, MHMM can be stated as
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a hybrid state estimation problem in the form of a Jump
Markov System. In [4], this has been addressed in a loosely-
coupled way. We here extend this approach to a tightly-
coupled PF using raw GPS measurements, i.e. Pseudoranges
(PR) and Dopplers (also known as shifts of satellite frequency).
Hypothesis estimation can thus be performed without any prior
positioning stage, and every available GPS measurement can
be used, even if there is not enough information to fix a global
position, as can occur frequently in urban areas. An efficient
factorization of MHMM can be done, in order to isolate
the estimation of continuous components from the estimation
of discrete ones. A marginalized particle filter can then be
implemented to perform the estimation process with a limited
number of particles.

The paper is organized as follows. In section II, the
MHMM problem is stated in a generic Bayesian framework
and the positioning estimation problem is described. Section
IV presents an application of this general method to a specific
problem: PR and Doppler GPS measurements are combined
with a 3D road map to solve the map-matching problem. For
an efficient implementation, an MPF for taking advantage of
network topology is described. Finally, experimental results
obtained in a situation with few visible satellites are reported
in order to provide an indication of the solver performance as
regards positioning quality and road identification in different
scenarios.

II. BAYESIAN MHMM
This section provides a formalization of MHMM irrespec-

tive of both the type of sensor used and the method of
representation of roads (which may take the form of polylines
or clothoids, for instance). A general Bayesian framework
is used to handle noise while being able to do MHMM
when there is not enough information to make unambiguous
decisions.

A. Map representation

In this work, a navigable road map is assumed to describe
the road network using one carriageway per driving direction.
So, a normal two-way road is represented by two carriageways
having the same geometry but opposite directions. Moreover,
the connections (also called nodes) between the carriageways
are known and stored in the digital map.

Since a navigable road map can represent a large amount of
data, a limited area of the map has to be considered. Below
this will be referred to as the “road cache”. In [3], a method
is described for efficiently handling a map managed by a
Geographical Information System (GIS) with two overlapping
road caches. In the following paragraphs, all the mathematical
developments are done for one road cache that is assumed to
be sufficiently large for the method to converge. In practice,
managing several road caches becomes a problem only where
some hypotheses need to be discarded.

B. State-space model

A map-matching problem can be seen as a hybrid state
estimation problem. Each carriageway is identified by a unique

identification (ID), denoted I, that is discrete. This description
may be extended to address the lane-matching problem [27]
where a road having several lanes is modeled using as many
polylines as lanes.

The location on a carriageway is described by the curvi-
linear abscissa, denoted l, which is a continuous parameter.
Some additional parameters may be needed to solve the state
observation problem, as we shall see later on. So, let x (one
of whose components is l) denote the vector that contains all
the continuous components. We consider a hybrid state vector
sk where the subscript is used to indicate a sample:

sk =
[
Ik xk

]T ∈ N× Rn (1)

In [6], a similar problem is addressed for real-time diag-
nosis, where unknown discrete states are used to describe
normal operation and faulty conditions. We adopt here the
same notation to formalize the MHMM problem using the
following stochastic model:

Ik+1 ∼ P (Ik+1 = I | Ik, xk, yk)

xk+1 = f (Ik, xk) + αk

yk = g (Ik, xk) + βk

(2)

where yk is the observation vector at step k using the
sensors, αk the process error and βk the observation error.
f (.) is the process model describing the evolution of the
continuous components and g (.) the observation model. These
models depend on the carriageway ID because of the map
constraint. Finally, P (.) is a transition kernel depicting the
evolution of the probability of the IDs I contained in the map.
Below we assume a first order Markov chain, depending on
the network topology. Thus, (2) is a Jump Markov System.

C. Bayesian sequential estimation

We recall here the classical Bayesian theory that allows
the state of a system perturbed by noises and errors like
in Eq. (2) to be estimated. The problem consists in esti-
mating sequentially the Probability Density Function (PDF)
p (sk | y1:k) using all the available measurements y1:k from
the start time to the current time. This can be done using an
estimation/prediction mechanism.

Using Bayes factorization, the posterior density can be
rewritten as:

p (sk | y1:k) = p (yk | sk) · p (sk | y1:k−1)

p (yk | y1:k)
(3)

where p (yk | sk) is the observation likelihood according to
the observation model of (2) and p (yk | y1:k) a normalization
factor given by:

p (yk|y1:k−1) =

∫
p (yk|sk) · p (sk|y1:k−1) · dsk (4)

This step needs p (sk | y1:k−1), the prior PDF of sk (also
called prediction) which can be estimated using the process
model and the posterior at step k − 1:
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p (sk | y1:k−1)=

∫
p (sk | sk−1) p (sk−1 | y1:k−1) dsk−1 (5)

Equations (3) and (5) correspond to the estimation and
prediction stages of the Bayesian MHMM.

D. Solutions to Bayesian MHMM

In a limited number of cases, Bayesian filtering has an
analytical solution. For instance, if the equations are linear,
and if the noises are Gaussian, centered and additive, then the
solution is the Kalman filter. To the best of our knowledge,
MHMM has no analytical solution, mainly because of the road
network that gives rise to bifurcations in the evolution model.
Bifurcations are particularly difficult nonlinearities.

Monte Carlo methods provide alternative numerical meth-
ods for solving nonlinear Bayesian problems [2]. Many
numerical approximation schemes have been studied in the
literature, particle filtering being the most popular.

As shown in [4], MHMM can be solved using particle
filtering by sampling directly all the dimensions of the state.
Nevertheless, factoring the PDF can significantly reduce the
computational complexity of the problem.

Let us now explicitly consider the discrete and continuous
components of sk =

[
Ik xk

]T
. The joint posterior

p (xk, Ik | y1:k) can be factored according to Bayes’ rule:

p (xk, Ik | y1:k) = p (xk | Ik, y1:k) .p (Ik | y1:k) (6)

This factoring separates the problem of carriageway iden-
tification, described by p (Ik | y1:k), from the problem
of localizing the mobile on the carriageway, depicted by
p (xk | Ik, y1:k). Interestingly, the physical interpretation cor-
responds to a very common map-matching strategy, namely
find the road and then find where you are on the road.

This kind of factoring is often called “Rao-
Blackwellization” [6], [21]. For instance in [11], it is
used to accelerate a PF to solve the problem of Simultaneous
Localization And Mapping (SLAM) and in [12] the factoring
helps reducing the number of particles for tracking a target.
Below we shall use the term MPF like “Marginalized PF”.

In Eq. (6), p (xk | Ik, y1:k) can be estimated using Kalman
filtering since the continuous components are isolated from
the carriageways. p (Ik | y1:k) can be sampled by a sequential
Monte Carlo using importance sampling with particles [19].
In other words, hypotheses are attached to every candidate
carriageway and several EKFs are used to track the contin-
uous components along it. New candidate carriageways are
randomly chosen at junctions using the connection information
stored in the map.

E. Estimation of map-matched locations

From (6) we may obtain the most likely positioning solution
in the entire road cache.

This strategy is not always the best, especially if the identi-
fication of the carriageway is ambiguous. In this case, it may
be preferable to perform an estimation on a per-carriageway

basis. For a given carriageway I, the positioning hypothesis
MIk is characterized by its posterior and its probability with
respect to the others:

MIk =

{
p (xk | Ik = I, y1:k)
ΩIk = P (Ik = I | y1:k)

with
NI∑
i=1

ΩIk = 1 (7)

If several hypotheses have significant scores ΩIk , MHMM
has multiple solutions.

III. MARGINALIZED PF DEVELOPMENT

The Bayesian MHMM problem is solved using an MPF to
reduce the complexity and improve the robustness. Next, the
carriageway identification is performed by a bootstrap PF.

A. Continuous component tracking

As EKFs estimate the continuous components, errors are
assumed to be zero mean and Gaussian. Thus, process and
observation errors are modeled by Gaussian white noises:
αk ∼ N (0, Qα) and βk ∼ N (0, Qβ). The candidate
positions are approximated by Gaussian densities along the
carriageways. Their mean µk|k and covariance Σk|k define
the probability density function:

p
(
xk|k | Ik, y1:k

)
' N

(
xk|k;µk|k,Σk|k

)
(8)

where N (xk;µk,Σk) denotes Gaussian distribution of ran-
dom variable x given by its mean µk and covariance matrix
Σk.

EKF correction estimates the mean and covariance µk|k and
Σk|k through the use of the optimal Kalman matrix K (see
[26] for a demonstration):

ΓIk = GIk · Σk|k−1 ·
(
GIk
)T

+Qβ

K = Σk|k−1 ·
(
GIk
)T · (ΓIk)−1

µk|k = µk|k−1 +K
(
yk − g

(
Ik, µk|k−1

))
Σk|k =

(
I−K ·GIk

)
· Σk|k−1

(9)

where GIk = ∂g(Ik,xk)
∂x is the Jacobian matrix of the con-

strained observation model evaluated at the prediction stage.
The prediction stage is given by:{

µk+1|k = f
(
Ik, µk|k

)
Σk+1|k = F Ik · Σk|k ·

(
F Ik
)T

+Qα
(10)

where F Ik = ∂f(Ik,xk)
∂x is the Jacobian matrix of the con-

strained process model evaluated according to µk|k. Ik is the
carriageway ID corresponding to the location of the considered
hypothesis. One might remark here that the hypothesis may
go past the end of the carriageway during the prediction
stage. In such a case, the length of the previous carriageway
is subtracted from the curvilinear abscissa. In theory, a
hypothesis may skip several roads if the displacement of the
vehicle is longer than the following carriageway. Additionally,
the process model must be piecewise differentiable to allow
the Jacobian matrix F Ik to be computed. This is the case in
the following development.
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Algorithme 1 Marginalized PF applied to MHMM
1) Prediction step: For i = 1, . . . , N

a) Evolution of I: Iik ∼ p
(
Iik | Iik−1, µik|k−1

)
b) Prediction of the continuous states:〈

µik|k−1,Σ
i
k|k−1

〉
End

2) Update step: For i = 1, . . . , N

a) Importance weight update:
ωik ∝ ωik−1 · p

(
yk | Ii0:k, y1:k−1

)
b) EKF state updates:

〈
µik|k,Σ

i
k|k

〉
End

3) Hypotheses estimation
a) Particle subsets extraction for every carriageway
b) Computation of each MIk

4) Re-sampling
a) Computation of the particle set size according to
Mk

b) Drawing of Nk+1 samples using
p
(
Iik+1|Iik, µik|k

)

B. Sampling of the IDs

For this discrete part of the problem, we perform importance
sampling.

Let us consider a set of N weighted samples of p (Ik | y1:k):

χk =
{
Iik, ωik

}
i=1:N

(11)

where ωik denotes the weight. Therefore, the density
describing the road identification problem is approximated by:

p (Ik | y1:k) =

N∑
i=1

ωik · δIk
(
Ii
)

(12)

where δIk
(
Ii
)

is the Dirac delta function.
To estimate the weight of every particle, standard bootstrap

[19] is applied for the recursion:{
γik = p

(
yk | Ii0:k, y1:k−1

)
ωik = ωik−1.γ

i
k

(13)

The measurement likelihood γik of the current measurement
yk is quantified using a Normal law, assuming that the
measurement errors are Gaussian. It is computed according
to the constraint predicted measurement ŷik|k−1 of the EKF
[21]:

γik = N
(
yk; ŷk|k−1,Γ

I
k

)
(14)

where ΓIk is the covariance of the innovation (see Eq. 9).
Then, weights are normalized such that their sum equals

one.

C. Algorithm

Algorithm 1 describes the realization of the MPF. To avoid
particle set degeneracy, a classical re-sampling strategy is
used [19]. We have also chosen an adaptive approach, as

proposed by the authors of [9]. The size of the particle set is
then adjusted according to the number of likely hypotheses.
When approaching a junction for instance, N is automatically
increased. N is minimal when there is only one carriageway
to track.

A positioning hypothesis (7) is obtained from the subset χIk
of the particles moving along the given carriageway I through
a Gaussian mixture:

MIk =


∑NI

k
i=1 ω

i
k · N

(
xk;µik|k,Σ

i
k|k

)
ΩIk =

∑NI
k

i=1 ω
i
k

(15)

where NIk is the dimension of this particle subset. Thus,
the hypothesis mean state is given by:

µIk =
1

ΩIk
·
Nr

k∑
i=1

ωik · µik|k (16)

and its covariance is obtained by:

ΣIk =
1

ΩIk
·
NI

k∑
i=1

ωik ·
(

Σik|k +
(
µik|k − µIk

)2)
(17)

The estimated covariance of the hypothesis state is also an
interesting feature of this approach. It means that a confidence
interval can be estimated for every map-matched solution.

IV. SOLVING THE MHMM USING RAW GPS AND
POLYLINES

In this section, we show how to solve the Bayesian MHMM
when using raw GPS measurements and when the carriage-
ways are described by polylines. A measurement of vehicle
speed is also used.

Since we use raw GPS measurements to compute the
Bayesian inference, additional continuous parameters are
needed, so:

xk =
[
lk vk dk ḋk

]
(18)

where vk is the speed along the carriageway. dk and ḋk
represent the clock offset and the clock drift of the receiver,
respectively multiplied by the speed of light in vacuum.

A. Evolution of the carriageway IDs

The kernel transition for the carriageway IDs I is given
by a topological approach: if a hypothesis reaches the end
of its carriageway, the transition depends on the connected
carriageways CI . By assuming an equiprobable transition, the
sampling can be done as follows:

P
(
Ik+1 = Ik | Ik, lk < LIk

)
=1

P
(
Ik+1 = J | Ik, lk ≥ LIk

)
=

1

dim CI ∀J ∈ CI
(19)

where LIk is the total length of carriageway Ik.
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B. Evolution of the continuous components

Next, the process model for the continuous components is
introduced.

1) Process Model: As constrained hypotheses are used, the
process model xk+1 = f (Ik, xk) reduces to a conditionally
linear model. When moving along a carriageway, the process
model is equivalent to an integrator of the hypothesis speed
and clock drift. So, the process model is given by:

xk+1 =

{
A · xk +B · uk + C · LIk if Ik+1 6= Ik
A · xk +B · uk else

(20)

With a constant sampling period Te, the process matrices
A and B are invariant and given by:

A =


1 Te 0 0
0 1 0 0
0 0 1 Te
0 0 0 1

 B =


0
1
0
0

 (21)

Matrix C is useful to reset the curvilinear abscissa when
switching from one road to another. It is given by:

C =
[
−1 0 0 0

]T
(22)

From Eq. (20) it can be seen that the evolution model is non-
linear owing to discontinuities at road junctions. This induces
a reinitialization of the curvilinear abscissa. Moreover, these
discontinuities can be considered as deterministic changes that
only affect the curvilinear abscissa since, in the expression of
the PDF p (xk | Ik, y1:k), the IDs are known. As a result,
the variance of the prediction error is not affected by the
discontinuities and can be computed using a linear expression.
This is a nice characteristic of this formalization.

2) Random input: To allow changes in hypothesis velocity,
a model noise is added in the form of a random input of
the process model. In order to quantify the variance of this
shaping parameter, one needs to consider the confidence in
the model with respect to the road geometry. Indeed, if the
vehicle is moving along a straight road, there is a strong
similarity between the distance covered along the polyline
and the effective motion. Thus, one can have confidence in
the map. On the other hand, when the vehicle undergoes a
sharp turn, the similarity decreases because often maps are
roughly sampled. An efficient way of dealing with this kind
of situation is to make the particle explore the network in a
random fashion, in which case the input uk that is applied to
every particle, is drawn from a Gaussian white noise:

uk ∝ N (0, Qζ) (23)

where the variance Qζ describes the confidence in the
constant heading model. It is defined according to a measured
yaw rate of the vehicle, denoted ψ̇, obtained using a low-cost
yaw-rate gyrometer. We propose using the following Gaussian
model:

Qζ = σ2
ζ ·
[

1− exp

(
− ψ̇2

2σ2
ψ̇

)]
(24)

SI
1

SIj

SIn
L
I
j
· UI

j

SI
j+1

SI
j

Figure 1: Geometrical description of a carriageway.

where σψ̇ is the standard deviation of the yaw-rate measure-
ment and σζ the maximum standard deviation of the model
noise. This can be seen as a tuning parameter of the method.
Thanks to the use of this mechanism, the confidence in the
map geometry is introduced into the estimation process. We
have noticed that it enhances the filter behavior, particularly
when the spatial-sampling of the map is low and at junctions.

C. Constrained observation models

The main idea here is to use the raw GPS measurements,
PR and Dopplers, and the speed of the vehicle to estimate
the likelihood of every hypothesis. This section presents the
tightly-coupled observation models.

1) Extraction of the geometrical parameters: Let us con-
sider a polyline composed of n + 1 segments. Each segment
is defined by its origin SIi , its length LIi and its orientation
in space UIi (see Figure (1)). The last segment is set with
LIn+1 = 0. Here, we use 3D maps: UIi and SIi are 3D
vectors.

To find the global position XIk , we first need to extract the
segment indexed j such that:

j∑
i=1

LIi < l <

j+1∑
i=1

LIi (25)

Thus, we can express the position in the global frame in
terms of the geometry of carriageway I:

XIk = SIj +

(
lk −

j−1∑
i=1

LIi

)
· UIj (26)

Identically, the motion is also constrained: the vehicle direc-
tion is assumed to be collinear to the direction of carriageway
I:

V Ik = vk · UIj (27)

The constraint on the vehicle motion means that vehicle
directions can be used for estimating the likelihood of a
hypothesis. Without this, the estimation relies on position
only, which may lead to mismatches if map offsets are large.

2) Map-constrained models: Constrained position –
Eq.(26)– and velocity –Eq.(27)– are introduced in the
standard observation models [20].

For a given satellite, the pseudorange is given by the
geometrical range biased by the receiver clock offset dk. In-
troducing the constrained position (26) in this model provides
the constrained observation model for one satellite:
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ρIk =

∥∥∥∥∥SIj +

(
lk −

j−1∑
i=1

LIi

)
· UIj −Xs

k

∥∥∥∥∥+ dk (28)

where Xs
k is the satellite position reconstructed from the

broadcast ephemeris.
The same approach is used for the Doppler measurement.

The expression of the constrained velocity (27) is therefore
incorporated into the standard model. The Doppler measure-
ment is given by a dot product (denoted •):

ρ̇Ik =
(
vk · UIj − V sk

)
• ulos + ḋk (29)

where V sk is the satellite velocity obtained from the broad-
cast ephemeris [29], ulos is the line-of-sight vector between
the receiver and the satellite, and ḋk the clock drift of the
receiver.

Since the position is constrained, ulos depends also on the
map geometry:

ulos =
SIj +

(
lk −

∑j−1
i=1 L

I
i

)
· UIj −Xs

k∥∥∥SIj +
(
lk −

∑j−1
i=1 L

I
i

)
· UIj −Xs

k

∥∥∥ (30)

Finally, the measurement likelihood p
(
yk | Ii0:k, y1:k−1

)
is quantified according to the GPS raw measurements and
the vehicle longitudinal speed, denoted yv,k, provided by
the vehicle. The measurement errors are assumed to be
Gaussian for both sensors. Moreover, we assume that GPS
measurements and the speed are not correlated, which is a
reasonable assumption given that two independent sources of
information are used. Using the same notation as in Eq. (14),
the likelihood is given by:

γk = p
(
yk|Ii0:k, y1:k−1

)
(31)

γk = N
(
yv,k; ŷiv,k,Γ

i
v,k

)
· N

(
yGPS,k; ŷiGPS,k,Γ

i
GPS,k

)
where yv,k is the measured speed:

yv,k =
[

0 1 0 0
]
· xk (32)

and yGPS,k the concatenation of all the available raw GPS
measurements (two measures for each satellite in view). With
p visible satellites:

yGPS,k =
[
ρI1,k ... ρIp,k ρ̇I1,k ... ρ̇Ip,k

]T
(33)

In order to implement the EKF, the Jacobian matrix of the
observation models needs to be computed. The most important
parameters are given in the appendix.

D. Initialization of the particle set

For a positioning system, initialization is a critical issue
particularly in dense urban areas. Standard strategies require
a GPS fix to initialize the positioning filter. In such condi-
tions, at least 4 satellites are necessary before performing the
tracking.
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Figure 2: Trajectory –dashed– vs. map-matched trajectory
–plain– in an ENU frame centered on the map.

The MHMM method proposed here is able to do the
initialization by itself, provided that an appropriate particle set
is used. For a correct convergence, the initialization process
relies on two main assumptions. First, the current location of
the vehicle has to be located inside the road cache. Secondly,
the receiver clock dynamics (which are also unknown) have to
be correctly sampled. For many GPS receivers, it is possible
to know the clock offset boundaries and the magnitude of the
clock drift. For the GPS receiver used in the experiments, it
is also possible to select these values. Knowing these bounds,
a particle set may be drawn such that the entire state-space is
adequately covered.

In practice, the particle set can be initialized according to
the following algorithm. Each carriageway in the road cache
is uniformly sampled to provide a set of initial locations.
For every candidate location, the receiver clock parameters
are sampled according to the boundaries. Additionally, the
velocity of every candidate is set according to the measured
speed value. This approach solves the problem of tracking ini-
tialization with little prior knowledge of the vehicle location.

V. EXPERIMENTAL RESULTS

In this section, several experimental results are reported
to show the performance of the MHMM approach. First,
the experimental setup is summarized. Next, the benefit to
be gained by using Doppler measurements when crossing a
road junction is investigated. Map-matching performance is
then evaluated in both open-sky and limited satellite visibility
conditions. Finally, the initialization process is studied for a
moving and a stationary vehicle.

A. Experimental setup

The proposed algorithm uses raw GPS measurements, a
measure of the speed, and a measure of the yaw rate of
the vehicle. Tests were carried out with our experimental
car in the vicinity of Compiègne. The GPS measurements
were provided by a Septentrio PolaRx2e outputting raw data
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Figure 3: Dimension of the particle set according to the
number of likely carriageways.

at 10Hz. Simultaneously, the speed and the gyro were logged
through a gateway of the experimental vehicle. Data was
post-processed using an accurate time-synchronization of the
measurements.

A road cache of 750m radius was extracted from a com-
mercial TeleAtlas map. A working frame was set as an East-
North-Up (ENU) frame centered on the map. Figure 2 shows
the true trajectory –dashed– versus the map-matched trajectory
–bold– and the road cache –light gray–. The TeleAtlas map
used has an offset of roughly 15 meters in Compiègne.

Below, we compare the results of the road selection to
a manually-performed map-matching using a method similar
to the one presented in [4] for map-matching evaluation.
The map-matching position is estimated using the curvilinear
abscissa along the polylines see Eq.(26), and it is compared
with the position computed by the PolaRx2e.

B. Tuning of the filter parameters
The variance of the model noise σζ is considered as a

tuning parameter corresponding to the quality of the map. In
these experiments, the navigable map has large biases and a
low spatial sampling. Thus, we set a large variance for the
model noise: σζ = 10m.s−1 and the variance of the yaw-
rate measurement is set to σψ̇ = 0.05 rad.s−1. As the model
noise propagates through the process model, the model noise
Qα is set to zero for the velocity and the curvilinear abscissa.
Conversely, a noise model Qα is added to allow the variation
of the receiver clock drift. It is set to 3m.s−1.

In order to quantify the standard deviation of the PRs and
Doppler measurements, we used broadcast EGNOS informa-
tion. EGNOS is the European augmentation system similar
to WAAS. Corrections (mainly ionospheric and tropospheric)
were also applied individually to each PR using fast and long
term corrections.

Figure 3 shows the number of particles used versus the
number of carriageways. It will be remarked that the use
of a MPF allows a limited number of particles to be used.
Moreover, there is no exponential growth of this figure when
a number of roads need to be tracked.

C. Benefits of the Doppler measurements
To illustrate the benefits of Dopplers for road identification,

the crossing of a single road junction is considered in Figure 4.
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(b) Without Dopplers.

Figure 4: Vehicle path –dashed– versus map-matched position
of the most likely hypothesis –dot.

Two cases are considered: with PRs and Dopplers –4a–
and without Dopplers –4b. Additionally, Figure 5 shows
the variation of the hypothesis scores with respect to time.
The scores of the correct carriageways are highlighted with
bold lines. The maximum number of candidate carriageways
is equal to five, since all the roads are two-directional (a
hypothesis that reaches the end of the current carriageway can
come back in the opposite direction).

Without Dopplers, road identification relies exclusively on
the particles’ positions through the constrained PR model of
Eq.(28). Thus, several wrong selections are made at the
junction, given that the map has an offset. When using
the Dopplers, the road is correctly identified since identi-
fication makes use of the heading information provided by
the Dopplers and expressed in Eq.(29). This phenomenon
is also clearly illustrated by the way the hypothesis scores
evolve. Without Dopplers, an ambiguity remains for 2.5
seconds (instead of less than 1 second with Dopplers), and
the wrong hypothesis score can be significantly high. This is
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Figure 5: Number of hypotheses –upper curve– and hypothe-
ses relative likelihoods –lower curve. The correct carriageways
are highlighted –bold lines.
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Figure 6: Gaussian mixtures for two particle sets.

why a wrong matching occurs while crossing the junction in
Figure 4b. So, it may be concluded that, without Dopplers,
the road identification is more ambiguous and less robust than
with Dopplers.

Considering Figure 4, it should be noticed that the hypoth-
esis never reaches the end of a carriageway. Two phenomena

One hypothesis Several hypotheses Total
OK NOK Amb. NOK OK Amb. NOK

Mean 97% 3% 98% 2% 89% 8% 3%
Best 99% 1% 100% 0% 90% 9% 1%

Worst 93% 7% 96% 4% 87% 7% 6%

Table I: Road Identification in open-sky conditions.
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Figure 7: Estimation results with a good visibility: Position
–up– and clock offset –down–.
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Figure 8: Estimation results with a good visibility: Velocity
–up– and clock drift –down–.

can explain this behavior: when switching from one road to
another, particles are unlikely to have a null abscissa, as a
result of the model noise and the subtraction of the length of
the previous carriageway. Moreover, the use of a Gaussian
mixture on particle subset magnifies this phenomenon as
shown in Figure 6. In this example, there are 4 Gaussians.
When the Gaussians are distributed along two different roads,
the mean values of all hypotheses are at some distance from
the node of the junction.

D. Performance under normal visibility conditions

1) Road identification: The performance of the proposed
method is here evaluated with a good satellite visibility (up to
9 satellites in this experiment). As the solver acts like a Monte
Carlo method, the data set was processed one hundred times.
Because of the limited accuracy of the manually-performed
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road selection ground truth, results were rounded to the nearest
percent. Table I shows these figures where:

– OK means “Road identification correctly done (the cor-
rect road is the only hypothesis)”.

– Amb. means “An ambiguous area is identified and the
set of hypotheses includes the correct road”.

– NOK means “Wrong selection (the correct ID is not
included in the set of hypotheses)”.

In spite of the map offset, the method delivers satisfactory
results, since the wrong selection rate remains low. Moreover,
ambiguous areas are well identified, and the best and worst
cases have similar rates. These results show that the proposed
method provides a good identification of ambiguous areas, a
correct road identification and a low rate of wrong matches,
despite the low map accuracy.

2) Positioning quality: Road identification is only one
aspect of the problem. The quality of the position tracking
also has to be evaluated. We consider here the mean estimate
of the particle set. Figure 7 shows the estimation errors
for the position and the receiver clock offset with respect to
those computed by the receiver itself (these values are called
“first order parameters”). Additionally, Figure 8 displays the
estimation errors for the derivative parameters: velocity and
clock drift.

Considering the first order parameters, the estimation errors
are not centered because of the tight integration of the map in
the fusion process. The mean value for the position error is
between 12m and 15m. This bias corresponds to the map
offset. Identically, the clock offset estimation error is not
centered, meaning that part of the map offset carries over to
the clock offset estimation. Conversely, estimation errors for
the derivative parameters are centered: the map constraint has
a limited impact on these parameters. These results show that
the proposed method provides a good estimation of location
in open-sky conditions.

E. Performance with few visible satellites

In these experiments, urban canyons are simulated. Several
satellites are simply removed from the computation using a
sectoral mask (see Figure 9).

1) 3 available satellites: Table II shows the results of the
road identification behavior. Regarding road identification,
no significant variation is observed with respect to the full
visibility condition, except for the worst case. Here, the wrong
selection rate significantly increases. As the number of mea-
surements is reduced, the effectiveness of road identification
decreases. Despite the lack of measurement redundancy, the
method still provides interesting results since the dispersion is
limited.

2) 2 available satellites: Measuring only 2 satellites is a
very challenging situation. In this case, the identification per-
formance significantly decreases, as shown in Table III. More-
over, the dispersion of the results is significantly increased:
the worst case gives about 50% wrong selections, whereas the
best case has similar results to open-sky conditions. These
results are due to the lack of redundancy with only 2 satellites.
With 2 satellites only 5 measurements are available to estimate
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Figure 9: Sectoral masks used to simulate urban canyoning.
Red line stands for the 3SV configuration and blue line for
the 2SV configuration.

One hypothesis Several hypotheses Total
OK NOK Amb. NOK OK Amb. NOK

Mean 95% 5% 97% 3% 84% 12% 4%
Best 99% 1% 99% 1% 87% 12% 1%

Worst 88% 12% 94% 8% 77% 12% 11%

Table II: Road identification with 3 satellites.

One hypothesis Several hypotheses Total
OK NOK Amb. NOK OK Amb. NOK

Mean 83% 17% 86% 14% 71% 13% 16%
Best 97% 3% 95% 5% 84% 12% 4%

Worst 53% 47% 43% 57% 44% 7% 49%

Table III: Road identification with 2 satellites.
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Figure 10: Positioning error with 2 satellites in the best case.
Open sky conditions are also reported for comparison
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Figure 11: Initialization process for a moving vehicle.

the state vector, the dimension of which is 5. Owing to the
absence of redundancy, an erroneous hypothesis can be more
likely than the true one. Then, at a road junction, the particle
set may be resampled according to this erroneous hypothesis,
leading to a filter degeneracy.

Figure 10 shows the positioning errors obtained in the best
case of road identification. With different satellite configura-
tions, errors are quite similar. This is a important result: the
method is able to track the vehicle location with only two
measurements when road identification is correctly solved. In
practice, if the road identification is correctly done, one can
rely on the computed position between two junctions even with
only 2 satellites.

Thus, one may conclude that information redundancy is
vital for performing road identification efficiently, but fewer
measurements are needed for position tracking.

F. Global initialization evaluation

Let now look at the behavior of the global initialization
strategy, as proposed in Section IV-D. Considering the good
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Figure 12: Initialization process for a stopped vehicle. The
vehicle starts moving at t = 4s.

performance of the map-matching tracking in open-sky con-
ditions, only limited visibility conditions are investigated here
using 3 satellites (See Figure 9 for the satellite locations). The
convergence of the method is considered for a moving vehicle
(Figure 11) and a stationary vehicle (Figure 12). For each test
case, sub-figure (a) presents the convergence of the particle set
during the first second. In both cases, convergence is reached
in approximately 1 second and a positioning error of ∼ 12m
is obtained (which is consistent with the observed map offset).
This fast convergence means a fast reduction of the particle set
size, which is an interesting feature for an embedded system.

In order to assess the initialization process, positioning
and road identification are to be considered jointly. Sub-
figures (b) of Figures 11 and 12 show the evolution of those
parameters. The upper curve provides the positioning error for
the barycenter of the particle set (the error is plotted in a semi-
log) and the lower curve depicts the evolution of the hypothesis
scores. The two carriageways forming part of the correct road
are highlighted: the solid line represents the correct driving
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direction and the dashed line represents the opposite direction.
The proposed initialization process gives interesting results.

When the vehicle is moving, the convergence is fast and
correct. When the vehicle is motionless, the algorithm con-
verges toward a bi-modal solution corresponding to the same
carriageway. This is correct and it is the expected behavior.
Indeed, the direction of the vehicle is not observable in this
case. The estimation process can only rely on the position
of the vehicle. When the vehicle starts moving, the road
identification is correctly performed in a few steps with a time
constant similar to the previous case. This is an interesting
result compared to a standard GPS receiver, which would be
unable to provide a position solution in such a situation with
less than 4 satellites.

VI. CONCLUSION

In this paper, a novel approach to map-matching has been
proposed which does not require knowledge of a precise
global position. This approach relies on a Bayesian formalism
well adapted to hybrid state estimation, in which discrete
and continuous components are to be estimated simultane-
ously. Moreover, this approach is also able to handle multi-
hypothesis tracking, which is an interesting characteristic for
initialization and tracking in ambiguous areas. The state space
is described as a Jump Markov System, given the assumption
of map-constrained motion. Using a factored form of the
positioning posterior, a set of constrained hypotheses can be
estimated with a limited number of hypotheses.

This general modeling has been applied to the problem
of matching pseudoranges and Doppler GPS measurements
to standard navigable maps. Topology and geometry are
both used. The network topology provides the support for
the Markov chain and network geometry depicts the possible
motion of every hypothesis. The factoring of the problem can
be harnessed through the use of a MPF. Moreover, an adaptive
re-sampling strategy allows the particle set to be resized in
relation to the estimation complexity. An initialization scheme
has been also presented to estimate the global position with
little prior knowledge about the position, by assuming only
that the road cache contains the solution.

Experimental results have shown that such an approach is
valid. Moreover, the use of GPS Doppler measurements is
very fruitful and improves the map-matching significantly. The
method is robust to map offsets. It achieves a good road
identification rate and a good positioning precision even if only
3 GPS satellites are available. With only 2 satellites in view,
the performance of the road identification decreases signifi-
cantly. Nevertheless, a good positioning can still be achieved,
which is an interesting property when navigating in dense
areas where GPS outages frequently occur. Furthermore, the
proposed initialization process is able to converge in terms of
road identification and positioning with only 3 satellites. This
interesting feature can also be used to initialize a positioning
system in cases of limited satellite visibility. Moreover, since
the required number of particles is reasonable, this approach
should be easily embedded in small devices.

Further improvements will consider the integrity monitoring
of the positioning hypotheses using the same framework, since

this information is of great interest for many ITS applications.
In urban areas, GPS signal often suffers from multipath and
attenuation leading to erroneous measurements. This should
be taken into consideration for further improvement as this
framework may enhance the detection of faulty measurements.
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APPENDIX

Let detail the components of the Jacobian matrix relative to
the constrained GPS measurements. For a particular satellite,
a PR and a Doppler measurements provide two rows in GIk :

GIk =

 ∂ρ

∂l
0 1 0

∂ρ̇

∂l

∂ρ̇

∂v
0 1

 (34)

Next, we focus on the expression of the component relative
to the velocity and abscissa of the hypothesis.

A. Jacobian matrix for the constrained pseudorange

The constrained pseudorange model is:

ρk =
∥∥XIk −Xs

k

∥∥+ dk (35)

Let consider the term relative to the curvilinear abscissa l:

∂ρ

∂l
=

1

2 ·
∥∥XIk −Xs

k

∥∥ · ∂∂l ((XIk −Xs
k

)2)
(36)

Since Xs
k does not depend on the curvilinear abscissa:

∂

∂l

((
XIk −Xs

k

)2)
= 2 ·

(
XIk −Xs

k

)
• ∂X

I
k

∂l
(37)

Considering Eq.(26), the derivative of XIk is given by:

∂XIk
∂l

= UIi (38)

Thus, the corresponding term of the Jacobian matrix is given
by the dot product, denoted •, of the segment direction and
the line-of-sight vector ulos:

∂ρ

∂l
= ulos • UIi (39)

B. Jacobian matrix for the constrained Doppler

The constrained Doppler model is given by:

ρ̇k =
(
V Ik − V sk

)
• ulos + ḋk (40)

First, we consider the Jacobian matrix component relative
to the hypothesis speed v:

∂ρ̇

∂v
=

∂V Ik
∂v
• ulos (41)

The corresponding component is also given by the dot
product of the segment direction and the line-of-sight vector:

∂ρ̇

∂v
= UIi • ulos (42)

The component relative to the hypothesis abscissa is:

∂ρ̇

∂l
=
(
V Ik − V sk

)
• ∂ulos

∂l
(43)

The variation of the line-of-sight vector is given by:

∂ulos
∂l

=
1∥∥XIk −Xs

k

∥∥2 ·
[∥∥XIk −Xs

k

∥∥− (XIk −Xs
k

)2∥∥XIk −Xs
k

∥∥3
]
·∂X

I
k

∂l

(44)
Thus, the corresponding term is:

∂ρ̇

∂l
=

[
ulos ×

(
ulos ×

V Ik − V sk∥∥XIk −Xs
k

∥∥
)]
• UIi (45)

where × stands for the cross product.
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