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Monitoring User-System Interactions through
Graph-Based Intrinsic Dynamics Analysis

Sébastien Heymann
LIP6 - CNRS - Université Pierre et Marie Curie
4 place Jussieu, 75252 Paris, France
Email: sebastien.heymann@lip6.fr

Abstract—Monitoring the evolution of user-system interac-
tions is of high importance for complex systems and for informa-
tion systems in particular, especially to raise alerts automatically
when abnormal behaviors occur. However current methods fail at
capturing the intrinsic dynamics of the system, and focus on evo-
lution due to exogenous factors like day-night patterns. In order
to capture the intrinsic dynamics of user-system interactions, we
propose an innovative graph-based approach relying on a novel
concept of time. We apply our method on two large real-world
systems (the Github.com social network and the eDonkey peer-to-
peer system) to automatically detect statistically significant events
in a real-time fashion. We finally validate our results with the
successful interpretation of the detected events.

I. INTRODUCTION
A. Motivation

An information system is, like any complex system, made
of interrelated elements with emergent features, i.e. which
result from the interactions of the system’s constituents and
cannot be directly inferred from these individual constituents.
In other words, a complex system cannot be reduced to
the sum of its constituents; this is precisely what makes it
“complex”. Such systems therefore raise difficult challenges.
For instance, how to design a communication network that is
robust against the failure of some elements? How to guarantee
that its growth will respect the initial design? One of the
famous examples in the history of technology is the growth
of the Internet, in which computers forward messages to one
another through physical or wireless connections. Internet was
initially designed to enable the communication between any
connected computer inside the United States, even in the case
of jamming, interference and the destruction of a large portion
of computers [1]]. However a fifteen-year-old boy paralyzed
many of the Internet’s major sites for one week in February
2000 [2]. How did such a weakness appear? The observation
of the evolution of the Internet over time may have helped in
preventing such issue. It would be the first step to avoid that
such event happens again.

Until recently, real-world complex systems have mostly
been studied as static objects, however most of these networks
are not static but dynamic, as elements and connections ap-
pear and disappear over time. The main body of research is
therefore of little help to monitor, track significant changes,
and predict the evolution of complex networks. Revealing
the underlying phenomena which lead to their evolution, and
answer how and why these networks change over time, is of
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high importance to system administrators and designers, and
for users of such systems in general.

In the context of information system engineering, one
objective is to design systems which meet the objectives
of a given organization by allowing its users to perform
expected tasks efficiently. However, the specification of these
requirements is difficult as users goals may vary according to
their contexts (e.g. the devices they use, their environment, or
their location) and may evolve over time if the objectives of
the organization change.

The goal of this paper is to monitor the interactions which
take place in a complex system in order to have a better
understanding of its operation and to detect -and ultimately
anticipate- its evolution over time. We propose a generic
approach to address this strategic issue, based on the anal-
ysis of the underlying graph’s dynamics. Our contribution
therefore consists in proposing an innovative graph analysis
methodology for the analysis of complex systems dynamics.
This methodology may be applied to any interaction system
to model its behavior, understand its “normal” evolution and
detect potential anomalies, which we call “events”.

Complex systems may indeed be modeled as graphs where
nodes represent the elements of the system and edges represent
interactions between these elements. More specifically, many
interaction systems may be represented as bipartite graphs
when interactions occur between two types of nodes. Also
called two-mode networks, bipartite graphs are made of nodes
(i.e. elements) which belong to two sets usually called top
and bottom, and in which links exist only between nodes of
different sets. Natural applications in the context of infor-
mation systems include client-server architectures where ma-
chines connected as clients make use of resources provided by
machined connected as servers, or processes-messages graphs
where each process is connected to the messages it exchanges,
or file-provider graphs where each file is connected to the
individuals providing it, e.g. in peer-to-peer architectures. The
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Fig. 2. Example of bipartite graph (center), together with its T-projection (left) and its _L-projection (right).

invocations of various services of an information system by a
set of users typically correspond to such a bipartite graph, as
illustrated in Figure[I] The classical approach for studying such
graphs is to turn them into unipartite graphs using a projection,
despite several drawbacks [3]]. For instance, one can build the
graphs of clients where two clients are linked together if they
make use of the same server; one can build the graphs of
processes where two processes are linked together if they have
exchanged a message.

B. Contribution and Organization of the Paper

Our methodology consists in studying the evolution of
specific (internal) features of the graph by considering a sliding
time window, which may be defined with two different time
units: traditional -extrinsic- time, and what we call intrinsic
time. We show that intrinsic time provides more reliable results
in terms of event detection than extrinsic time. Moreover, the
width of the time window has an impact on the observed dy-
namics and we make interesting observations on the “optimal”
value of the window’s width when using intrinsic time. Finally,
in addition to this contribution related to temporal aspects, we
propose to focus on the most stable interactions in the system
(i.e. internal links of the bipartite graph) to capture the essential
system’s dynamics (and neglect marginal -noisy- variations).

We apply this methodology to event detection in two large
interaction networks involving human users and computer
systems: the Github social network, and the eDonkey file
exchange peer-to-peer (P2P) network. The Github dataset
consists in the capture of the stream of public activity on
Github during 18 weeks, involving 336 000 nodes and 2.2
million links. The P2P dataset contains the query logs of an
eDonkey server during 10 weeks, involving 9 billion links and
365 millions nodes recorded every second.

The evolution of bipartite graphs of such sizes, as far as
we know, has never been studied before. Current methods
indeed fail at revealing the intrinsic dynamics of the system.
We introduce a novel concept of time which allows us to see
totally different dynamics. Besides, our approach is used to
detect abnormal behaviors of the system, i.e. events which
are statistically different from most others. The observation of
internal links enables us to find novel events, which one could
not see otherwise, while it confirms events detected using basic
metrics. We study the impact of various time scales for the
detection of events. We show that such events can be detected
automatically using Outskewer, a statistical method that we
introduced in a previous paper [27]]. We finally validate the
relevance of the detected events. Our approach can thus be
used to monitor bipartite networks in a real-time fashion, and
to raise alerts automatically when abnormal behaviors occur.
The knowledge gained through these experiments can help in
the design of novel monitoring methods of complex networks.

This document is organized as follows. In Section II we
introduce the modeling of complex systems as bipartite graphs
and we present our datasets. In Section III we introduce
our approach for the monitoring of evolving user-interaction
systems using a sliding window. In Section IV we describe
two concepts of time and study their impacts on the charac-
terization of the evolution of the system. In Section V we
experiment various time scales and study their impacts. In
Section VI we study the dynamics of user-system interactions
using a specific property of graphs, called internal links, and
we detect statistically significant events. In Section VII we
show that these events can be automatically detected in a real-
time fashion. We interpret them and validate their relevance
on a real-world system. We finally conclude and present our
perspectives in Section VIII.

II. MODEL OF THE SYSTEM & DATASETS
A. Bipartite Graph Model

A bipartite graph is a triplet G = (T, L, E) where T is the
set of fop nodes, L is the set of bottom nodes, and £ C T x L
is the set of links. Bipartite graphs do not form a particular type
of networks as one could think. Quite the opposite, all complex
networks have an underlying bipartite structure [4]]. Graphs
which do not display a bipartite structure are indeed projections
of bipartite graphs. As defined in [3]], the L -projection of G is
the graph G, = (L, £/} ) in which two nodes of L are linked
together if they have at least one neighbor in common in G:
E, ={(u,v),3x € T : (u,z) € F and (v,z) € E}. The
T-projection G is defined dually, as shown in Figure

B. Datasets

Github.com is an online platform created in 2008 to help
developers share open source code and collaborate. Built
on the Git decentralized versioning system, it facilitates the
contributions and discussions by providing a Web interface.
Github reached 3 million users on January 16, 2013, who
collaborate on 5 million source code repositories [5].

1) Github: The Github dataset describes the complete
activity between users and repositories on the platform from
March 11, 2012 to July 18, 2012. We extracted the data from
the Github Archive [6]], which is a record of every public
activity on Github. Then we built the bipartite graph of ”who
contributes to which repository”, where nodes represent users
and repositories, and where links represent any kind of activity
the users have on repositories: commit and push source code,
open and close issues for bug reports, comment on issues,
commits or pull request (i.e. asking for a patch to be merged),
create or delete branches and tags, and edit the repository wiki.
We ignore the other activities: fork (i.e. repository duplication),
mark repositories as favorite, and follow of the timeline of
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Fig. 4. Stream of appearing links split in contiguous time windows.

another user or repository. There are a bit more than 336 000
nodes and 2.2 million links.

In the Github bipartite graph, fop nodes represent users
and bottom nodes represent repositories. A link represents an
activity between a user and a repository.

2) Peer-to-peer: The data comes from a peer-to-peer net-
work in which the activity of an eDonkey server was collected
during almost ten weeks, leading to the observation of 9 billion
messages involving almost 90 million users and more than
275 million distinct files [[7]. The eDonkey protocol is a half-
centralized peer-to-peer protocol: client peers make requests
for some files, and the eDonkey server answers the client peer
with potential source peers. These server responses have been
collected, thus containing a set of sources for each given file,
intended for a specific client. This client then retrieves the file
from sources, which is not visible in the traces because the
server is no longer involved at this stage.

In the P2P bipartite graph, fop nodes represent users and
bottom nodes represent files. A link represents a user query
for a file.

III. OUR APPROACH: USE OF A SLIDING WINDOW

We collected all data necessary to monitor the evolution of
the graph, as we stored all nodes and links over time. Each link
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Fig. 5. Github: number of distinct nodes in the union of 10,000 consecutive
links, computed every 10,000 links, as a function of the number of observed
links.
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Fig. 6. Sliding time window over a stream of appearing links.

is associated with a timestamp indicating the moment when it
has been observed. The data is thus a stream of observed links,
ordered by their timestamp. A node is considered to appear
in the graph when it is attached to an observed link for the
first time. However there is no information in data about the
duration of nodes and links existence. A node may indeed be
observed only once even if it exists during a long period. It
means that we do not observe the nodes which appeared before
the beginning of the measurement and for which no link is
observed during the measurement, i.e. who do not contribute
or for which there is no activity during the studied period.
We thus miss the registered users who are not active in the
social network during the measurement, and we also miss the
existing repositories on which there is no activity.

Three classical approaches exist for the study of network
dynamics. The first one consists in studying the growth of
the graph over time, displayed in a cumulative way. For
instance the cumulative number of nodes is shown in Figure 3]
where the number of nodes is plotted as a function of the
total number of links observed since the beginning of the
capture. This plot displays a regular growth with a regime
change at the end, but we obtain little information on the
underlying dynamics. The second approach consists in splitting
the stream using contiguous time windows to build a series of
sub-graphs, as illustrated in Figure ] We then compute the
selected statistical property on each sub-graph. For instance,
the number of nodes of each sub-graph captured over time
is shown in Figure [5] This plot displays a regular trend and
a few spikes, however we may miss more subtle events and
the precise moment of their appearance. So we use a third
approach, which is the generalized version of this approach.
It consists in extracting consecutive sub-graphs from a sliding
time window, as illustrated in Figure @

Our approach is as follows: given a stream of links, we
measure a given statistical propertyE] of the graph observed
inside a sliding time window. Let {eq, €1, ..., e, } be a stream
of links. Let a sliding window of width w. If w is a function
of time, e.g. a value in seconds, the sliding window is the
multiset which contain all links observed during w seconds.

As far as we know, all studies on evolving networks which
make use of a sliding window define its width in seconds.
The apparent simplicity of this approach brings little attention
because it is easy to set up and involves a common time unit.
However it raises non-trivial questions (detailed in sections IV
and V) which are not addressed in most studies. On the other
hand, the width w of the sliding window may correspond to a
number of links (independently of the time intervals between
those links); in this case, the sliding window is defined as
follows:

A relevant property for bipartite graphs is studied in Section VI



Let {eg,e1,...,e,} be a stream of links. Let a sliding
window of width w links: E; = {e;—w41,...,€;}. Any link
e; of the series belongs to E;, E; 41, ..., i 4,—1. We compute
the value of the studied property over the series of graphs,
where each graph is made from the set of links in the time
window: Let the graph G; = (V;, E;) where V; is the set
of nodes attached to the links in E;. Let a series of graphs
Guw,Guwy1, .-, Gg| where |E| is the total number of links.

This sliding window, whatever the width unit used, allows
us to build a time series corresponding to the evolution of the
studied graph property over time.

The use of a sliding window for the analysis of graph
dynamics raises several questions: which of these time units
(traditional time-based or link-based) should we use to detect
events? Moreover, what is the impact of the window length
on the evolution of the property? In the following sections we
empirically study the impact of these different concepts of time
as well as various time scales on a trivial statistical property:
the number of nodes observed in the network over time. We
aim at determining the consequences of such choices on our
ability to characterize dynamics, and to detect statistically
significant events. We have found that these parameters have
an important impact on the observed results.

IV. WHICH TIME UNIT?
A. Concept

Time is a controversial concept that one can see as a
dimension in which changes occur in sequence. In this per-
spective, time is considered as absolute, i.e. changes happen
independently from the flow of time [§]], [9]. But if we consider
time as a relative concept, time then depends on space. This
debate remains open, however in practice time is experienced
as relative because we can only measure it through the relative
movements of bodies (in space). Many techniques exist to
measure it. The unit adopted by the International System of
Units is the second, which is defined as the transition between
two states of the caesium 133 atom [|10]. This unit is therefore
related to movements measured in the physical space.

However networks make the physical space transparent by
connecting elements whatever their geographical distances. In
graph theory, the distance between two nodes (also called
geodesic distance) is indeed defined as the number of links
in a shortest path connecting them. Under the hypothesis
that network distances are independent from geographical
distances, we consider the physical space as absolute in a
network point of view. Conversely if we reject this hypothesis
and correlate network distances to physical distances, the
observation of such effects may hide the effects which are
not related to the physical space. In the first case, measuring
the distances with physical units is not relevant. In the latter
case, it brings little information on the network itself. This
question is difficult because effects have been found even
for social networks and the Web, which are designed to
abolish the physical distances between people. For instance,
there is a higher probability on Facebook to be friend with
someone from the same country [[11]. On Github, open source
developers based in North America receive a disproportionate
amount of attention [12]]. These studies shed light on the
way the geographical location of users influences the network,

but they do not address the reciprocal question of how the
network allows users to be connected to one another despite
geographic boundaries. Therefore existing works do not study
the endogenous effects at stake in the network (i.e. which come
from inside).

Notwithstanding the high potential impact of a time unit
derived from the physical space, most studies use the absolute
time in evolving networks: statistical properties are measured
as a function of the second and its derivative units (e.g. days
and years). As a consequence, they detect exogenous activities
on these networks (i.e. which come from outside) [13[]-[16].
For instance, click-stream data of Web traffic naturally reveal
a day-night pattern in the network because of usual human
activity [17]. While this finding may be of interest, it provides
more information on the users activity than on the network
itself. Such trends may hide the patterns which are only related
to the network, preventing us to characterize the endogenous
dynamics of the network.

We thus introduce a concept of relative time in a network
point of view, called intrinsic time of the network, as opposed
to the extrinsic time, which is a concept of absolute time. Let
the extrinsic time of the network be the time measured using
the second. We call it extrinsic because its flow is independent
from the changes that occur in the network. Let the intrinsic
time of the network be the time measured by the transition
between two states of the network. The unit is thus the (spatial)
change of the network, i.e. the addition or removal of one node
or one link. This unit is minimal because nothing can happen
in the network between two consecutive changes. We call it
intrinsic because time depends on the changes that occur in
the network, and changes depend on such time to happen. The
relation between time and space in networks is however out
of scope of this paper.

Whereas the extrinsic time is broadly used without notice,
we find out in the following section that using it has a high
impact on the measurement of statistical properties of evolving
networks, and on our ability to detect statistically significant
events. We will see that using the intrinsic time avoids biases
and allows us to reveal network dynamics. In the remainder of
the paper, the unit of intrinsic time is the appearance of a link,
because our datasets consists in streams of observed links.

B. Empirical Impact

We conducted our experiment on the two datasets described
in Section II for various network metrics. We report the results
related to the evolution of the number of nodes, because they
are representative of the impact of both time concepts. We in-
deed obtain similar results for the following metrics, which are
classical properties of networks: the evolution of the number
of distinct links’| the number of connected component the
average degred| and the maximum degre

2The number of links is the window width, thus it is constant.

3Let C(G) be a connected component of G(V, E) (where V is the set of
nodes and E is the set of links): it is a connected sub-graph of G, i.e. for each
pair of nodes (u,v) € C(G), a path exists between u and v. The number of
connected components is therefore [{C' € C(G)}|.

“Let d(u) be the degree of the node w, i.e. its number of neighbors. The
average degree of the graph G(V, E) is 2 x |E|/|V].

SLet d(u) be the degree of the node u. The maximum degree of the graph
G(V, E) is the maximum number of neighbors of nodes in the graph, i.e.
max(D), D = {d(u),Yu € V}.
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Fig. 9. Github: number of nodes in a sliding window of 10,000 links, for each set of 1000 links.

The observed number of nodes corresponds to the sum
of both top and bottom nodes in our bipartite graphs. In the
Github dataset, the total number of nodes therefore reflects
both the number of users and the number of projects, whereas
in the P2P dataset it represents the number of users and the
number of requested files. The temporal evolution of this
statistical property when considering extrinsic time reveals a
daily and weekly pattern. On the contrary, the overall number
of nodes is very stable when intrinsic time is used, which con-
firms that different types of dynamics are observed according
to the time unit. The events which correspond to peaks may
clearly be extracted from the overall trend: this shows that
the graph has normal dynamics in the statistical sense (i.e.
the mean value is a relevant indicator for the description of
the distribution of values) and that statistical anomalies (i.e.
values which deviate significantly from the mean) may be
identified. Although some events also seem to appear in the
curve obtained with extrinsic time, their characterizations are
in practice much more difﬁculﬂ Intrinsic time therefore seems
to be more relevant to perform dynamic measures.

Figure[7]and Figure [8|represent the evolution of the number
of nodes over time, where the size of the sliding window is
one hour and ten minutes, on the P2P and Github dataset
respectively. Both plots display a daily fluctuation of the
number of nodes. We thus observe more nodes during the day
than during the night. The Github plot also displays a weekly
fluctuation. We thus observe a greater number of nodes during
the week than during the weekend.

6Section VII is dedicated to the interpretation of detected events.

Figure [0 represents the same property, but the size of
the sliding window is 10,000 appearing links, on the Github
dataset. This plot does not display such fluctuations. On the
contrary, we observe that the number of nodes is globally stable
with a few variations and spikes.

While we study the same property, the choice of time
unit has a high impact on the resulting curves. We thus show
that so-called observed results are bound to an underlying
concept of time. Using the intrinsic time of the network
instead of the traditional extrinsic time, we reveal totally
different dynamics for the total number of nodes, which is
a trivial property. We also observed different dynamics for the
other properties that we have studied further in this paper.
This study is hence of primary importance in metrology. Our
results support the hypothesis that the intrinsic dynamics of the
network is not captured by measures bound to an extrinsic time
unit. An extrinsic time unit seems indeed more likely to capture
the dynamics of exogenous activities on the network (i.e. which
come from the outside), like the day-night and weekly patterns.

C. Discussion

The number of nodes in the Github and P2P network is
very stable in the case of intrinsic time, which is also the
case for other properties like the number of distinct links, the
number of connected components, the average degree and the
maximum degre

7We have conducted experiments but do not include the corresponding
figures in the paper as the results are similar.



The day-night and weekly patterns which occur in the
case of extrinsic time while using a sliding window reveal
the dynamics of users activities on the network. Hence one
can see the network as an artifact which is able to capture and
reveal phenomena that happen outside of it.

Based on these observations, our intuition is as follows:
one should use an intrinsic time unit to capture an endogenous
phenomenon of the network (i.e. which come from inside);
one should use an extrinsic time unit to capture an exogenous
phenomenon of the network (i.e. which come from outside).
Further studies with other datasets are however necessary to
draw a firm conclusion (see perspectives in Section VIII).

V. WHICH TIME SCALE?
A. Concept

In the case of a stream of links, the evolution is usually
captured by the measure of statistical properties of the network
over a sliding time window, as explained in Section III. Many
studies assume a specific time scale for the measurement of
statistical properties [[18]—[21]. Some other studies address the
issue of time scale. For instance, Benamara et al. propose a
methodology to estimate the size of the observable window
for a rigorous characterization of any network property [22].
Papadimitriou et al. compute an optimal scale for pattern
detection in time series [23]. Reeves et al. raise the issue of
downsampling time series for storage, while preserving the ca-
pacity to detect anomalies [[24]. Assuming specific properties,
Zhang et al. explore a multi-resolution approach to anomaly
detection for the internet [25]]. But all of these studies assume
an extrinsic time unit.

We report our preliminary observations on the detection
of events using a wide range of time scales on real-world
networks, for both intrinsic and extrinsic time.

B. Empirical Impact

We have studied the variation of different metrics at various
time scales for both extrinsic and intrinsic times, i.e. for
different sizes w of the sliding window. We report the results
for the evolution of the number of nodes, because this property
is representative of the time scale’s impact.

1) Extrinsic Time: We computed the number of nodes as a
function of time for a sliding window of size w = 10 minutes
(Figure [8), 1 hour (Figure [I2), 12 hours (Figure [T1] and 24
hours (Figure [10) on the Github dataset. Each plot for w from
10 minutes to 12 hours clearly exhibits a daily trend. A weekly
trend is also observable for all studied w. These patterns are
exogenous activities as explained in Section IV. Spikes appear
clearly for w equal to 10 minutes and 1 hour; they are less
extreme for w = 12 hours, and most of them have disappeared
for w = 24 hours. Surprisingly, the two remaining spikes for
w = 24 hours are more extreme than for smaller w.

We expect that a large window width smoothes the re-
sulting curve. The plot corresponding to a 24 hours window
(Figure [T0) confirms this intuition: a regular variation can
be observed, which looks more disrupted with the 12 hours
window (Figure [TI) and 1 hour window (Figure [I2). This
“noise” is due to users daily activities on the system; 5 os-
cillations may be identified during the week and 2 oscillations

during the week-end, see Figure [[3] The plot using 24 hours
window therefore only reflects the Monday to Friday period,
displaying lower user activity during the week-end. However
we may observe the appearance of events or the growth of
their amplitude (positive peaks) when the size of the window
increases (circled spikes in these figures). The consequences
of these results are the following:

e Selecting a large window size in order to smooth the
curve is not a good option, as it modifies the shape of
the plot and changes the perception of events.

e Selecting a very small window size in order to detect
all events is not a good option either, as events taking
place at higher time scales are missed. Moreover, this
approach is extremely costly in terms of computing
time.

As explained below, the same statements hold for curves
based on intrinsic time: the curve is smoother when the size
of the window increases. However an event (increasing peak)
appears also.

2) Intrinsic Time: We computed the number of nodes as
a function of time for a sliding window of size w = 50,000
links (Figure and 1000 links (Figure [I5). We observe in
these figures that the global trend and the regime changes (i.e.
sudden changes of the mean of the time series) are similar for
all studied w. Spikes observed on small w values disappear
progressively when w increases.

Our intuition led us to set a large w for removing non-
significant events in order to smooth the global trend while
keeping significant events. But we discovered that this strategy
alters the trend because spikes not present for smaller w can
appear. One should thus consider the duration of expected
events to set the size of the sliding window accordingly, and
consider the results to be valid for the specific time scale only.
In our data, w = 10,000 is a good tradeoff to observe all
events, see Figure [0

In this section we have discussed which concept of time is
relevant to characterize the intrinsic dynamics of the system.
We have also seen that there is no optimal time scale for the
characterization of events. In the following section we propose
a specific property for studying the stability of bipartite graphs
and therefore monitor user-system interactions.

VI. MONITORING DYNAMICS OF USER-SYSTEM
INTERACTIONS

The property we suggest to consider for the monitoring of
the dynamics of user-system interactions is the number of in-
ternal links. The intrinsic bipartite notion of internal links has
been introduced recently and studied for static networks [26]] to
bring novel insights on the characterization of these networks.
An internal link is such that its removal does not change the
projection of the graph for a given set of nodes, either top
or bottom. In the example of an information system of users
(i.e. top nodes) interacting with services (i.e. bottom nodes), an
internal link from the fop (resp. bottom) point of view is a link
which is not mandatory to connect two users (resp. services) in
the corresponding projection. One can interpret internal links
as a measure of links redundancy.
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Fig. 12. Github: number of nodes in a sliding window of 1 hour, for each 5 minutes. Spikes which are significant at larger scales are circled. We zoom on the

dotted area in Figure [T3]
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Fig. 13. Github: number of nodes in a sliding window of 1 hour, for each

5 minutes. Zoom during the 6th week.

T-internal (resp. _L-internal) links are links which may be
removed from E without altering the T-projection (resp. L-
projection), as shown in Figure Let (u,v) € L x T with
(u,v) € E and let G' = G — (u,v), (u,v) is a L-internal link
if and only if G, = G’ where G’ is the L-projection of G'.
T-internal links are defined dually.

Whereas it has been shown that internal links are able to
capture interesting statistical properties of bipartite networks,
this notion has never been used for the study of evolving
networks. We measure the number of T-internal links using
a sliding window of 10,000 links®] We observe on Figure
that the number of T-internal links is globally stable around
2400 links, thus 24% of links inside the sliding windows are
internal links. This result is interesting because it provides us a

8This is the size selected in Section V.

characterization of a normal behavior of the system. We also
observe significant events with fast increases and decreases
of the values which are statistical anomalies of the system’s
behavior. These events are however not new to us: we find
them also in the evolution of the number of nodes, or in the
evolution of the number of distinct links (which plot is not
shown because similar to the number of nodes). So the number
of internal links is proportional to the number of distinct links.

This led us to study the normalized number of internal
links, which is the number of internal links divided by the
number of distinct links in the sliding window. This property
gives the ratio of internal links observed in the sliding window.
This ratio is different from the ratio we can compute on the
previous property because only distinct links are counted. It is
relevant because the measure of internal links is independent
from the fact that more than one link exist between two nodes.
We annotate the plot on Figure[T8] with a rectangle around each
set of abnormal values in the plot, or which are abnormal in
other plots, and we label the events with a capital letter.

We identify one new event, the small event A, while events
E and G have disappeared. The event [ is interesting: it is the
only one with an increasing spike on the plot of the number
of internal links, and it is also revealed by the plot of the
maximum degree (not shown in this paper). We interpret this
event in Section VII. Moreover, we discover that all decreasing
spikes in the plot of the number of links are instead increasing
in this plot. The ratio of internal links increases when the
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Fig. 16. Example of _L-internal link. Left to right: a bipartite graph G,
the bipartite graph G’ obtained by removing link (B, j) from G, and the
L-projection of them. As G, = G 1, (B, j) is a L-internal link of G.

number of distinct links decreases. This effect is due to an
intrinsic bias of this property, which counts as internal links
the links attached to nodes of degree equal to 1ﬂ We finally
remove this bias by ignoring the nodes of degree 1. We thus
obtain the proportion of internal links among the links that
connect nodes which have at least two neighbors. We see in
Figure that this filter removed most events, thus keeping
the most significant connections.

In conclusion, we have seen that a property based on the
measures of internal links reveals events of a novel kind, and
confirms known events. In the following section we see how
to detect such events automatically in a real-time fashion.

VII. REAL-TIME EVENT DETECTION
A. Methodology

How can we automatically and reliably detect events
in a real-time fashion? We propose in this section to use
the Outskewer method which we developed recently [27].
Outskewer is indeed able to detect statistically significant out-
liers (i.e. values which deviate significantly from the remainder
of the values) in samples and in time series. It is easy to
interpret because values are classified as outliers, potential
outliers or not outliers. The class to assigned values is unknown
when there is no normal behavior in the sample. This method
is also easy to use because it requires no prior knowledge on
data, and the only parameter is the width of the time window
for time series over which the outliers are detected. This width
may be different from the one used to measure the property.
An implementation of the method can take a stream of values
as input for a real-time monitoring.

9A node of degree 1 is a node with 1 single neighbor in the graph.
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Github: number of nodes in a sliding window of w = 1000 links, for each 100 links.

We applied our method on the evolution of the normalized
number of internal links. In Figure [I8] points of the curve
are colored as a function of their outlying class: red for
outliers, orange for potential outliers, blue for not outliers,
green for unknown. We observe that Outskewer is able to detect
automatically all events we identified manually. They are either
identified by a set of outliers, or by a set of unknown values.
The latter case happens when there is no normal behavior in
the related sliding windows, but we consider that something
unexpected happens at this moment. We can thus use this
method to detect events automatically, allowing us to monitor
the system in a real-time fashion.

B. Results and Interpretation of Events

The methodology we presented for the automatic detec-
tion of events in the graph dynamics allows us to identify
some events associated to specific parts of the curve (which
correspond to groups of values of the studied property, see
Figure [T8). Each value of the time series represents the prop-
erty of the sub-graph which is visible within the corresponding
window. Several steps are then needed to interpret the detected
event and check the validity of our detection method:

1)  We extract the sub-graph associated to the detected
event and analyze it by computing the normalized
number of T-internal links.

2)  We perform a mapping between the event’s intrinsic
time and the corresponding extrinsic -absolute- time,
as this information is available in Github data.

3)  We look for abnormal interactions between users and
the system at the time of the event.

For example, we found out that event I in Figure [I§]
is correlated with a sudden increase of the maximum node
degree in the graph. We also discover in the 1000 nodes sub-
graph that the node-migrator-bot projec interacts with 95
users, which is an unusually high number of neighbors for
a node in the graph within a window time. When looking
at the Web page of this project on Github, we learnt that
this project aims at monitoring the updates of another project,
called Node]its:ﬂ We discover that node-migrator-bot sent a
PullRequestEvent message on June 26th, 2012 at midnight to

10https://github.com/node- migrator-bot
Whttps://nodejitsu.com/
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the other projects on the Github platform which use an older
version of NodelJitsu. This bot thus manages the dependencies
of other projects with NodelJitsu, providing them a patch to
apply on their own code. This observation explains the increase
in the maximum degree in the graph: we recall that a link in
the graph represents an interaction between a project and a
user. In this case there are many interactions between the bot
and users who own a project which needs an update.

Let us also interpret the event J in Figure [I8] This event is
also correlated to a sudden increase in the maximum degree of
the sub-graph. We discover in the 1000 nodes sub-graph that
the Try-Git project interacts with 506 users, which explains
this high degree. We find out on this project’s Web page
that it is a tutorial for Git, one of Github’s underlying tools;
the first action required from the user in this tutorial is to
create a clone with a new project (by sending this user a
CreateEvent message). The instant of the event detected by
our tool corresponds to the moment when Try-Git was made
public, on July 4th, 2012 at 5 pm (this information was
confirmed by a post on the Github.com bloézb.

We showed with the two example interpretations above that
the events automatically detected with our method correspond

2https://github.com/blog/1183-try- git-in-your-browser

indeed to extraordinary activity on the Github platform and that
they actually represent events. All the events detected on the
curve could be interpreted this way, demonstrating the validity
of our monitoring of the user-system interactions dynamics.

VIII. CONCLUSION AND FUTURE WORK

A. Conclusion

We proposed in this paper a novel approach for the
characterization and monitoring of user-system interactions
and especially their evolution over time. We model these
interactions as a bipartite graph, where fop and bottom nodes
represent users and system elements respectively, and links
correspond to the interaction between these two types of
nodes. We study the evolution of these graphs to characterize
normal behavior and to detect abnormal dynamics, through the
measurement of specific statistical properties over a sliding
window. This approach is easy to set up but raises difficult
questions which are barely addressed in the literature. Which
time unit should we use? Using an absolute reference of
time such as seconds, the current body of research fails at
capturing the intrinsic dynamics of the network and focuses
on evolution due to exogenous factors (e.g. day-night patterns).
We thus introduce a novel concept of time, called the intrinsic
time of the network based on link appearance, which reveals
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totally different dynamics. Then, which time scale should we
set to calibrate the measurement, i.e. which width for the
sliding window? We see that there is no optimal time scale
because events can appear at various scales, which is counter-
intuitive. The smallest resolution is thus not able to capture
all events. Using this approach, we successfully capture the
normal behavior of the system, and detect abnormal evolution.

We applied our approach on two large real-world systems:
the Github social platform where users interact with coding
projects, and a peer-to-peer system where users search for files
to download. We monitored these systems using a property
called the internal links which is able to capture the core
interactions and reveal significant events.

We finally monitored the system in a real-time fashion
using the Outskewer method, to raise alerts automatically when
abnormal behaviors occur.

B. Future Work

In the future, we will consider the combination of this mon-
itoring of user-system interaction dynamics with an innovative
approach in method engineering, called intention mining [28].
Intention mining aims at discovering users current and future
intentions from the analysis of activity traces. The joint use of
both methods could be applied to various types of information
systems, in particular pervasive information systems [29], [30].

We will also dig further in the use of intrinsic time to
explore its potential and its implications for the study of
networks. In particular, we have seen that the properties com-
puted from the Github and P2P network are very stable. Such
phenomenon may be a property of our datasets, however it
could also be a side effect of the way we observe the property.
The time window is indeed of fixed width w, thus it contains
at most w distinct links and 2 X w nodes. Further studies
are required to determine if such phenomenon is necessarily
caused by the method of observation.

Finally, events are sometimes difficult to interpret. Data
visualization is a promising approach to the characterization
of events. A few network visualization software like Gephi [31]]
and VIENA [32]] provide a graphical user interface to explore
temporal networks, but they are not designed for event analy-
sis. We will consider novel techniques of visual investigation.
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