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A study of the flow past an oscillatory rotating cylinder has been conducted, where the frequency of oscillation has been matched to the natural frequency of the vortex street generated in the wake of a stationary cylinder, at Reynolds number 300. The focus is on the wake transition to three-dimensional flow and, in particular, the changes induced in this transition by the addition of the oscillatory rotation. Using Floquet stability analysis, it is found that the fine-scale three-dimensional mode that typically dominates the wake at a Reynolds number beyond that at the second transition to three-dimensional flow (referred to as mode B) is suppressed for amplitudes of rotation beyond a critical amplitude, in agreement with past studies. However, the rotation does not suppress the development of three-dimensionality completely, as other modes are discovered that would lead to three-dimensional flow. In particular, the longer-wavelength mode that leads the three-dimensional transition in the wake of a stationary cylinder (referred to as mode A) is left essentially unaffected at low amplitudes of rotation. At higher amplitudes of oscillation, mode A is also suppressed as the two-dimensional near wake changes in character from a single-to a doublerow wake; however, another mode is predicted to render the flow three-dimensional, dubbed mode D (for double row). This mode has the same spatio-temporal symmetries as mode A.

Introduction

The wake of a circular cylinder immersed in a free stream goes through a series of well-documented transitions with increasing Reynolds number Re = U d/ν, where U is the free-stream velocity, d is the cylinder diameter and ν is the kinematic viscosity. The first of these transitions occurs at Re ≃ 47 [START_REF] Provansal | Bénard-von K árm án instability: transient and forced regimes[END_REF]. This is the primary Hopf bifurcation, where the wake transits from a steady flow to periodic vortex shedding, forming the K árm án-Bénard vortex street. The second transition occurs at Re ≃ 190 [START_REF] Barkley | Three-dimensional Floquet stability analysis of the wake of a circular cylinder[END_REF][START_REF] Williamson | Three-dimensional wake transition[END_REF] when this vortex street becomes three-dimensional.

A number of researchers have focused their attention on the control of the primary bifurcation; in the context of the study presented here, the results of [START_REF] Thiria | Wake of a cylinder performing rotary oscillations[END_REF] and [START_REF] Thiria | Stability properties of forced wakes[END_REF] have shown that a rotational oscillation can effectively suppress the global mode leading to synchronized vortex shedding, depending on the frequency of oscillation.

However, it is the secondary bifurcation which really marks the beginning of the route to turbulence in the wake. A large body of work has been completed, isolating and identifying the modes involved in this transition to three-dimensional flow. The seminal work of [START_REF] Williamson | The existence of two stages in the transition to three-dimensionality of a cylinder wake[END_REF] was the first to identify two distinct three-dimensional modes (modes A and B) occurring in the cylinder wake. The wake initially becomes unstable to mode A [START_REF] Williamson | The existence of two stages in the transition to three-dimensionality of a cylinder wake[END_REF]), which appears to be driven by an elliptic instability of the vortex cores (Leweke & Williamson 1998b;[START_REF] Thompson | The physical mechanism of transition in bluff body wakes[END_REF][START_REF] Julien | Three-dimensional instability and vorticity patterns in the wake of a flat plate[END_REF], although there has been debate about associating such complex transitions with simple generic instability mechanisms [START_REF] Barkley | Three-dimensional Floquet stability analysis of the wake of a circular cylinder[END_REF][START_REF] Henderson | Nonlinear dynamics and pattern formation in turbulent wake transition[END_REF]. A second mode, mode B, has been shown to become linearly unstable at Re ≃ 260 [START_REF] Barkley | Three-dimensional Floquet stability analysis of the wake of a circular cylinder[END_REF]; however, the presence of mode A is destabilizing on mode B [START_REF] Barkley | Bifurcation theory for three-dimensional flow in the wake of a circular cylinder[END_REF]Sheard, Thompson & Hourigan 2003a), and the first sign of mode B is observed experimentally at Reynolds numbers closer to Re = 230 [START_REF] Williamson | Three-dimensional wake transition[END_REF]. Mode B eventually becomes dominant, with streamwise vortical structures on the scale of this mode still present at Re = 1000 [START_REF] Wu | Three-dimensional vortex structures in a cylinder wake[END_REF] and beyond. A third mode exists, dubbed mode QP, due to the fact that it is quasi-periodic. It becomes linearly unstable at Re = 377 [START_REF] Blackburn | On three-dimensional quasi-periodic Floquet instabilities of two-dimensional bluff body wakes[END_REF]. However, due to the presence of mode A and B, clear identification of the influence of mode QP during experiments has proven to be elusive. In fact, the wake appears to be essentially chaotic for Reynolds numbers not much greater than 300 [START_REF] Henderson | Nonlinear dynamics and pattern formation in turbulent wake transition[END_REF].

The group theory analysis of [START_REF] Marques | Bifurcations in systems with Z 2 spatiotemporal and O(2) spatial symmetry[END_REF] and [START_REF] Blackburn | Symmetry breaking of two-dimensional time-periodic wakes[END_REF] showed that certain symmetry properties need to be respected by the three-dimensional modes that bifurcate from the two-dimensional K árm án-Bénard vortex street. Only three generic bifurcation symmetries can exist; these correspond to the spatio-temporal symmetries of modes A, B and QP.

However, the aforementioned analysis places no restrictions on the order in which these modes can become unstable. [START_REF] Henderson | Nonlinear dynamics and pattern formation in turbulent wake transition[END_REF] and [START_REF] Karniadakis | Three-dimensional dynamics and transition to turbulence in the wake of bluff objects[END_REF] showed that varying the spanwise extent of the cylinder in a spatially periodic simulation could vary the route to turbulence from a period-doubling cascade led by mode B, to a transition to spatio-temporal chaos led by mode A. This implies that suppression of one mode can influence the route to turbulence. [START_REF] Leontini | Three-dimensional transition in the wake of a transversely oscillating cylinder[END_REF] showed that a transverse oscillation of the cylinder close to the natural vortex shedding frequency could result in mode B naturally leading the three-dimensional transition. In that case, the transverse oscillation effectively suppressed mode A by influencing the size of the vortex cores. Analogous to this, for elongated elliptical leading-edge plates, [START_REF] Ryan | Three-dimensional transition in the wake of bluff elongated cylinders[END_REF] showed that a mode with the same spatio-temporal symmetry as mode B undergoes transition before mode A, once the aspect ratio of the plate becomes sufficiently large.

This raises the question: can the same control be effected on mode B? This is an important question to answer, due to the dominant role that mode B plays in the wake dynamics over a wide range of Re. The results of [START_REF] Poncet | Vanishing of mode B in the wake behind a rotationally oscillating circular cylinder[END_REF] suggest a rotational oscillation can achieve this goal.

The results presented in this paper show that a rotational oscillation, at the natural shedding frequency, effectively suppresses mode B at Re = 300, confirming the result of [START_REF] Poncet | Vanishing of mode B in the wake behind a rotationally oscillating circular cylinder[END_REF]. However, the oscillation has a lesser effect on the other modes present. This is shown using Floquet stability analysis. As well as this direct effect on mode B, an interesting side effect is that at higher rotational oscillation amplitudes, a new mode appears with the same symmetries as the 'classic' mode A, but with a shorter characteristic wavelength. This new mode appears to be a kind of higher spatial resonance, that obeys the symmetry laws of the analysis of [START_REF] Marques | Bifurcations in systems with Z 2 spatiotemporal and O(2) spatial symmetry[END_REF]. This suppression of mode growth, and the emergence of a new mode, has been quantified, and the structure of the new mode is presented.

Numerical formulation

2.1. Flow field calculation The three-dimensional stability of the wake is determined by whether, at any particular Reynolds number, three-dimensional perturbations grow or decay on an imposed twodimensional wake (base) flow. The base flows for the present study were calculated by solving the incompressible, time-dependent Navier-Stokes equations. For the perturbation fields, the equations solved were formed by taking these same equations, splitting the velocity and pressure fields into base and perturbation components, subtracting the original equations for the base flow, and linearizing the result.

The discretization method employed was a spectral element method, using fifthorder Lagrange polynomials as shape and weighting functions over each element, associated with Gauss-Lobatto-Legendre quadrature points for efficient calculation of the required integrals. The time integration was executed using a three-step splitting scheme [START_REF] Karniadakis | High-order splitting methods of the incompressible Navier-Stokes equations[END_REF]Thompson et al. 2006a), employing an explicit third-order Adams-Bashforth scheme for the convective substep, a centred scheme for the pressure correction term and an implicit Crank-Nicholson method with the theta-correction [START_REF] Canuto | Spectral Methods in Fluid Dynamics[END_REF] for the diffusion term. First-order pressure boundary conditions result in second-order time accuracy for the predicted velocity field.

A computational domain extending 25d downstream, 15d upstream and 15d to either side of the cylinder was split into 518 elements, the majority of which were concentrated in the boundary layer and wake regions. The resolution, element distribution and domain size are consistent with those used successfully in previous similar studies [START_REF] Thompson | Three-dimensional instabilities in the wake of a circular cylinder[END_REF][START_REF] Thompson | The physical mechanism of transition in bluff body wakes[END_REF][START_REF] Leontini | Three-dimensional transition in the wake of a transversely oscillating cylinder[END_REF].

Free-stream (Dirichlet) boundary conditions were enforced at the upstream and lateral boundaries, while a Neumann-type boundary condition was employed at the outlet, which is sufficient for vortices to freely exit the domain at the Reynolds numbers under consideration in this paper. At the cylinder surface, a time-dependent Dirichlet condition was utilized that varied sinusoidally in time according to a driven rotational oscillation,

θ = A θ sin(2πf θ t),
(2.1) where A θ is the amplitude of rotation in radians, and the frequency (f θ ) and time (t) are non-dimensional quantities using U and d. The frequency of oscillation was selected to match the Strouhal frequency for a fixed cylinder at the same Reynolds number according to the functional fit given by [START_REF] Williamson | A series in 1/ √ (Re) to represent the Strouhal-Reynolds number relationship of the cylinder wake[END_REF], which returns a frequency of f θ = 0.210453 for Re = 300. This tangential velocity at the cylinder boundary needs to be taken into account with the implementation of the pressure boundary condition to maintain second-order accuracy of the velocity field.

The description of the methodology is purposefully brief because of descriptions given in previous papers. Details of the method in general can be found in [START_REF] Karniadakis | Spectral/hp Methods for Computational Fluid Dynamics[END_REF], and details of the implementation used here in [START_REF] Thompson | Three-dimensional instabilities in the wake of a circular cylinder[END_REF]. The code employed has been well proven for use in bluff body problems and Floquet stability analysis (Sheard, Thompson & Hourigan 2003b;[START_REF] Ryan | Three-dimensional transition in the wake of bluff elongated cylinders[END_REF][START_REF] Leontini | Three-dimensional transition in the wake of a transversely oscillating cylinder[END_REF]).

Floquet stability analysis

Floquet stability analysis is a linear method designed to deduce the stability of periodic solutions. Here, it is used to analyse the stability of a periodic two-dimensional flow to three-dimensional perturbations. The stability is deduced by calculating the Floquet multiplier µ which can be thought of as the ratio of growth in amplitude of a perturbation from one period to the next, for a perturbation of a given spanwise wavelength, λ. If this ratio is such that |µ| > 1, the perturbation grows each period, and the two-dimensional base flow is said to be unstable. Conversely, if |µ| < 1, the perturbation decays each period, and will eventually die away, meaning the base flow is stable. Generally, this relies on the fact that a random perturbation of a given wavelength can be decomposed into a summation of eigen or Floquet modes, each of which grow or decay at a certain rate. It is the fastest growing or slowest decaying Floquet mode -the dominant mode -which dominates asymptotically with time. That is, after a long time, a perturbation decays to the dominant Floquet mode, with the size of the Floquet multiplier relative to unity determining the stability of the base flow. Details of the formulation can be found in [START_REF] Barkley | Three-dimensional Floquet stability analysis of the wake of a circular cylinder[END_REF], [START_REF] Ryan | Three-dimensional transition in the wake of bluff elongated cylinders[END_REF] and [START_REF] Leontini | Three-dimensional transition in the wake of a transversely oscillating cylinder[END_REF].

The code employed has been used previously for Floquet stability analysis, employing a power method to resolve the most dominant Floquet mode (and the magnitude of the largest Floquet multiplier). While this method can be effective when there is a single clearly dominant mode, it does not allow for the separation of two or more modes that may have equal-amplitude Floquet multipliers for a given spanwise wavelength. This happens if the dominant mode Floquet multiplier is complex, in which case it occurs as a complex pair, in order to enable real perturbation fields to be constructed. Therefore, a Krylov subspace method has been implemented, using an Arnoldi decomposition to resolve the full complex Floquet multipliers. The implementation used here is essentially the same as that used in [START_REF] Blackburn | On three-dimensional quasi-periodic Floquet instabilities of two-dimensional bluff body wakes[END_REF].

The use of this implementation allows modes with similar growth rates to be effectively separated, and the resolution of the real and complex components of the Floquet multipliers associated with each mode. It should be noted that for this study, the amplitude of the perturbation fields only within 10d of the cylinder are allowed to contribute to the computed dominant Floquet multipliers, ensuring the Floquet multipliers are computed on a region of the base flow that is periodic (or close to periodic). Further downstream the wake is not necessarily periodic, or at least not with the same frequency as the near wake due to vortex pairing and secondary instabilities [START_REF] Williamson | A new mechanism for oblique wave resonance in the natural far wake[END_REF][START_REF] Johnson | Predicted low frequency structures in the wake of elliptical cylinders[END_REF].

It is strictly true that Floquet stability analysis requires the base flow to be periodic. However, even if the flow is only approximately periodic, a linear stability analysis can provide valuable information about the nature of the modes that lead to the flow becoming three-dimensional. The choice of limiting the downstream domain of the perturbation field to 10d provided such an approximately periodic base flow for all calculations for this study. [START_REF] Johnson | Predicted low frequency structures in the wake of elliptical cylinders[END_REF] showed by Fourier analysis for similar low-Reynolds-number wakes that upstream of the vortex pairing/remerging, there is virtually no frequency content apart from the Strouhal frequency, consistent with the picture that pairing has little effect on the upstream flow. Thus, this seems a reasonable approach provided the perturbation field grows predominantly only within the near wake. The veracity of this assumption will be examined in the results section.

Validation

For validation of the methods employed, the grid resolution, the domain size and the Floquet stability analysis, the wake transitions for a fixed cylinder in a uniform flow were analysed. Floquet multipliers were calculated for a range of wavelengths at Re = 280. The results are compared with those from [START_REF] Barkley | Three-dimensional Floquet stability analysis of the wake of a circular cylinder[END_REF] and [START_REF] Blackburn | On three-dimensional quasi-periodic Floquet instabilities of two-dimensional bluff body wakes[END_REF] in figure 1. The match is excellent, with |µ| and λ at the peaks of the curves for each mode faithfully reproduced.

These results validate that the method is correctly implemented, and that the mesh resolution is adequate to resolve the physics of the problem. Note, as mentioned before, similar meshes, mesh resolutions and domain sizes have been used previously for similar studies.

To further validate the choice of the current computational resolution at the Reynolds number of the current study, a further resolution studied was performed, in which the order (p) of the element interpolating polynomials was varied. This study indicates that the choice of polynomial order selected for the simulations (p = 6) resolves the mode B multiplier to within about 2 % at Re = 300.

Results and discussion

3.1. Effect of the amplitude of rotation on the base flow Figure 2 depicts contours of vorticity of the two-dimensional base flow past a rotationally oscillating cylinder at Re = 300. For these wakes, there are three downstream stages; single row, double row and a long-wavelength wake. Initially, by increasing the amplitude of rotation, the distances downstream where the double-row configuration and the long-wavelength configuration begin are decreased (A θ < 0.60).

Conversely, as the amplitude of rotation is further increased, the distance downstream where the long-wavelength wake configuration begins is increased. For all the cases considered, the near wake (up to at least 10d) was synchronized to the forcing frequency. The forcing frequency was the Strouhal frequency for a fixed cylinder at the same Reynolds number according to the relationship of [START_REF] Williamson | A series in 1/ √ (Re) to represent the Strouhal-Reynolds number relationship of the cylinder wake[END_REF]. Similar effects on the wake configuration for a different forcing mechanism (e.g. forced crossflow oscillation) can be found in [START_REF] Leontini | Wake state and energy transitions of an oscillating cylinder at low Reynolds number[END_REF]. For forcing amplitude A θ > 1 the base flow was not periodic on any sub-domain, precluding any Floquet analysis.

3.2. Effect of the amplitude of rotation on the different modes Figure 3 shows the moduli of the Floquet multipliers µ versus spanwise wavelength λ for the three-dimensional instability modes at Re = 300. The control case of the fixed cylinder is shown in figure 3(a), and the results are certainly consistent with those at Re = 280 shown in figure 1.

Figure 3 shows the dependence of the growth rate for each of the modes on A θ . Figure 3 also shows, indirectly, the dependence of the characteristic wavelength for each mode (i.e. the wavelength at which the maximum growth rate occurs, λ char = λ(|µ| max )) on A θ . Of note, comparing figures 3(a) and 3(b) shows that as the amplitude of rotation is increased from the control case of A θ = 0-0.2, the growth rates of the modes are varied, but the same classic modes are present. However, increasing the amplitude of rotation to A θ = 0.4 sees mode B diminish to the point where it cannot be resolved, leaving only modes A and QP. Further increasing the amplitude of rotation to A θ = 0.8 sees both of these modes also disappear, and a new mode (dubbed mode D) arise. Only mode D is resolved for A θ > 0.8, and hence only the curve representing this mode is shown in figures 3(e) and 3(f ).

Because mode D forms on a base flow that is not strictly periodic, the approach adopted to obtain Floquet multipliers (where only the near wake is considered in the calculation of the growth rate) perhaps requires further justification. Importantly, figure 4 shows that the perturbation field is mainly restricted to the near wake, prior to pairing. If the full domain is used to determine the (approximate) dominant Floquet multiplier using Arnoldi decomposition with the Krylov subspace approach, it is found to be constant to within less than ±1 % compared to the case of truncating the domain at 10d, and therefore agrees with the approach using the truncated domain.

To ensure consistency, a similar validation study was carried out for mode A at A θ = 0.6. In this case, the approximate dominant Floquet multiplier was calculated over: the full domain; the domain truncated at 10d; the domain truncated at 6d. The multipliers calculated on the whole domain and on the domain truncated at 6d were then compared to the multiplier calculated on the domain truncated at 10d. In both cases, the variation was within ±5 %. It should also be noted that the growth rate and characteristic wavelength for mode A vary smoothly with A θ all the way to A θ = 0.6, as shown in figure 5. These facts provide a high level of confidence in the truncated domain method.

These results shown in figure 3 are summarized in figure 5(a) for the maximum growth rates and in figure 5(b) for the associated characteristic wavelengths. Figure 5(a) demonstrates the rapid suppression of mode B with increasing A θ , and that mode A is suppressed, but not as effectively. The growth rate of mode QP is relatively unaffected by the oscillation, and the amplitude of the multipliers remains less than unity for the entire range of rotational amplitudes at this Reynolds number. Figure 5(b) demonstrates that the amplitude of oscillation has a marked effect on the characteristic wavelength of modes A and QP, with almost a 50 % reduction in the mode A wavelength as the rotational amplitude is increased to 0.6. This presumably reflects the decreasing length scales in the wake as the shed vortices become more compact. Both plots show that for A θ > 0.65, only the new mode can be resolved, and it has a Floquet multiplier greater than unity. It is proposed to call this mode D, because it occurs when the rotational oscillation is sufficiently strong to force the occurrence of a double-row vortex street almost from the beginning of the wake.
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In effect, this also explains the seemingly sudden change in the three-dimensional wake stability between A θ < 0.6 and A θ > 0.8. This is consistent with the near wake changing from a single-row to a double-row wake as the two-dimensional vortices grow in strength because of the increased vorticity flux into the forming vortices caused by the rotational oscillation. Figure 6 presents the streamwise vorticity of the three-dimensional modes A and B for increasing rotational amplitude. These modes for A θ = 0 are identical to those of [START_REF] Barkley | Three-dimensional Floquet stability analysis of the wake of a circular cylinder[END_REF] and [START_REF] Blackburn | Symmetry breaking of two-dimensional time-periodic wakes[END_REF]. From inspection of figure 6 it is clear that the structure of these modes is essentially unaffected by the rotational oscillation. Some similarities on the mode topology also occurs for a normal flat plate wake (c), which also has a double-row vortex street. In the latter case λ = 2 plate heights and Re = 126.

Mode A presents a spatio-temporal symmetry (spatial reflection and half-period evolution), (U, V , W )(x, y, t) = (U, -V , W )(x, -y, t + T /2). It has been proposed that the underlying mechanism is a cooperative elliptic instability [START_REF] Thompson | The physical mechanism of transition in bluff body wakes[END_REF]Leweke & Williamson 1998a,b;[START_REF] Julien | Three-dimensional instability and vorticity patterns in the wake of a flat plate[END_REF] of the vortex cores in the near wake. Mode B breaks the latter symmetry, instead obeying (U, V , W )(x, y, t) = (U, V , -W )(x, -y, t + T /2) as can be seen in figure 6(g). The dominant physical cause of mode B has been proposed to be due to various instability types such as a hyperbolic instability of the braids (Leweke & Williamson 1998a) or a centrifugal instability of the forming vortex cores amplified in the braids [START_REF] Ryan | Three-dimensional transition in the wake of bluff elongated cylinders[END_REF].

Mode D

Figure 7 presents the previously unreported mode associated with high amplitudes of rotation. This mode possesses the same symmetries as mode A, however it has additional features on a shorter length scale, notably in the cores of the vortices.

A mode with some similar features to mode D occurs for a flat plate wake (Thompson et al. 2006b), and this is represented in figure 7(c). This flow also has the double-row vortex street due to the stronger and more compact wake vortices. The figure represents the mode behind a flat plate at Re = 126.

From the figure it is clear that this flat plate mode and mode D share some of the same basic shape structure and spatio-temporal symmetries. However, a close inspection of the mode behind the flat plate reveals that the initial growth is located between the second and third wake vortices, whereas mode D (as shown in figure 8) grows predominantly between the first and second vortices. Despite this difference, it is possible that the underlying instability mechanism for the two modes is the same. The local flow in the region of high growth for both modes is at least qualitatively similar; in both cases the modes are most energetic in the region of high strain between two wake vortices. Further study is required to fully compare these two modes, and to try to identify the physical mechanism that causes them.

Figure 8 shows the variation of the near wake topology with increasing A θ . The longitudinal spacing of the vortices is reduced as the rotational amplitude is increased. The boundary layer at the rear of the cylinder becomes much thinner as A θ is increased. However, mode D grows predominantly in the region between the first and second wake vortices, approximately 1d away the centre of the cylinder. This suggests that the inter-vortex spacing is the critical topological factor concerning the rapid destabilization of mode D as A θ is increased beyond 0.65.

3.4. Stabilization of mode B Of the three-dimensional modes described, mode B is the most heavily influenced with regard to its growth rate by the rotational oscillation amplitude. This is clear from inspection of figure 5(a), despite the fact that the base flow is almost unaffected in basic structure in the near wake for small amplitudes of rotation. This is most likely due to the fact that mode B is an instability of the braid shear layer between the forming and shed vortices (see figure 7g) or at least relies on amplification in the braids. While the wake structure appears essentially the same at small amplitudes of oscillation, it is clear from the sequence in figure 2, and the sequence in figure 8 that rotational oscillation does make the vortices increasingly compact and reduces the wake formation length. Thus, an effect of the oscillation is to reduce the length scale of the vortex cores of the base flow and, in turn, the braid length scale. This is important because whether an instability mode decays or grows depends on the balance between the inviscid growth mechanism and viscous damping. For example, mode A growth depends on whether an elliptic instability of the cores can overcome viscous damping at a particular spanwise wavelength linked to the core size (Leweke & Williamson 1998b). These two effects can be considered linearly additive (e.g.see [START_REF] Landman | The three-dimensional instability of strained vortices in a viscous fluid[END_REF]Leweke & Williamson 1998b). Viscous damping depends on the reciprocal of the square of the selected wavelength [START_REF] Landman | The three-dimensional instability of strained vortices in a viscous fluid[END_REF]. This can be qualitatively understood because the viscous term in the Navier-Stokes equations depends on the local curvature of the velocity field. Thus, reducing the length scales of base flow features such as the braid shear layer, which in turn determine the selected wavelengths of instability modes, will have a much greater influence on shorter wavelength instabilities; so mode B will be damped more efficiently than mode A as the oscillation amplitude is increased. Support for this hypothesis can be found by looking at the perturbation energy balance. Integrating the perturbation energy over the entire domain for a cycle gives where T defines a period of oscillation, Ω is the computational domain, ûi is the perturbation velocity field and U i is the base velocity field. Here, E is the energy change, and the first and second terms on the right-hand side are the production (P) and the dissipation (D), respectively. These quantities have been calculated over a range of amplitudes for mode B, for the fastest growing wavelength. The results are presented in table 1. The results indicate that as the rotation rate increases both the production and dissipation decrease strongly, but that dissipation decreases less slowly. Notice that the change in the preferred wavelength from A θ = 0.2-0 is approximately 12 %. Given the dissipation varies with the square of the length scale, this indicates that the percentage change in the dissipation between these two cases should be 2 × 12 = 24 %, consistent with the observed change of 25 % shown in the last column of the table. Thus, the suppression of mode B appears to be due to the substantial reduction in the controlling length scale as the rotation rate is increased.

Conclusions

A study of the flow past a rotationally oscillating cylinder was undertaken, where the frequency of oscillation was matched to the natural vortex-shedding frequency from a fixed cylinder at the same Reynolds number. It was found that, for Re = 300, the primary frequency of the near wake remained synchronized to the driving frequency for amplitudes of rotational oscillation where A θ 6 1. The effect of rotational oscillation on the two-dimensional base flow is substantial, changing the wake from a single-row to a double-row vortex street in the near wake at high amplitudes of oscillation.

The three-dimensional modes that grow on these periodic base flows were investigated using Floquet stability analysis. It was found that the rotational oscillation dramatically suppressed mode B, even for small amplitudes of oscillation. Mode A was also damped, but not as significantly as mode B. This is due to the reduction of wake length scale and the much larger effect of viscous damping at smaller scales. When the double-row wake occurs in the near wake for high rotational oscillation amplitudes, a new three-dimensional transition mode has been identified, which has been dubbed mode D and has the same symmetries as mode A.

Figure 1 .

 1 Figure1. Moduli of the Floquet multipliers µ versus spanwise wavelength λ (spanwise wavenumber k = 2π/λ) for the three-dimensional instability modes of the two-dimensional wake of a circular cylinder at Re = 280. The current results (solid line) are compared with those from[START_REF] Barkley | Three-dimensional Floquet stability analysis of the wake of a circular cylinder[END_REF] (open squares) and[START_REF] Blackburn | On three-dimensional quasi-periodic Floquet instabilities of two-dimensional bluff body wakes[END_REF] (open circles).

Figure 2 .

 2 Figure 2. Contours of vorticity of the two-dimensional base flow past a cylinder undergoing several amplitudes of rotation at Re = 300. The flow is from left to right. The amplitudes of the imposed rotation are expressed in radians. Amplitude of rotation (A θ ) increases as: A θ = 0, 0.20, 0.40, 0.60, 0.80, 1.00 from (a) to (f ), respectively. All the images are taken at θ = 0. White (black) represents positive (negative) vorticity. For all the cases considered the near wake was synchronized to the forcing frequency.

Figure 3 .

 3 Figure 3. Moduli of the Floquet multipliers µ versus spanwise wavelength λ for the threedimensional instability modes of the two-dimensional wake of a rotationally oscillating circular cylinder at Re = 300. The amplitude of rotation spans the range 0 < A θ < 1. Amplitude of rotation (A θ ) increases as: A θ = 0, 0.20, 0.40, 0.60, 0.80, 1.00 from (a) to (f ), respectively. Filled symbols (open symbols) represent modes with purely real (complex) Floquet multipliers. Filled squares represent mode A; filled circles represent mode B; filled triangles represent mode D; open circles represent mode QP. Oscillation suppresses mode B but does not suppress all three-dimensional instabilities.
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 45 Figure 4. Perturbation energy field for mode D for A θ = 0.8 and λ/d = 0.9, showing that the perturbation field is of high amplitude mainly in the region prior to pairing. Greyscale contours show perturbation energy, solid lines show base flow vorticity at ±0.5.

Figure 6 .

 6 Figure 6. Streamwise perturbation vorticity for (a) Mode A when λ = 3.5 (k = 1.80) at A θ = 0; (b) Mode A when λ = 3.2 (k = 1.96) at A θ = 0.1; (c) Mode A when λ = 3.0 (k = 2.09) at A θ = 0.2; (d ) Mode A when λ = 2.5 (k = 2.51) at A θ = 0.4; (e) Mode A when λ = 2.2 (k = 2.85) at A θ = 0.5; (f ) Mode A when λ = 1.9 (k = 3.31) at A θ = 0.6; (g) Mode B when λ = 0.8 (k = 7.85) at A θ = 0; (h) Mode B when λ = 0.8 (k = 7.85) at A θ = 0.1; (i ) Mode B when λ = 0.7 (k = 8.97) at A θ = 0.2. White (black) represents positive (negative) streamwise vorticity. Solid lines represent base flow vorticity at ω = ± 1. The basic structures of the modes are unaffected by the forcing amplitude.

Figure 7 .

 7 Figure 7. Contours of streamwise perturbation vorticity for (a) λ = 0.9 (k = 6.98) mode D at A θ = 0.8; (b) λ = 0.8 (k = 7.85) mode D at A θ = 1.0; (c) flat plate transition mode. White (black) represents positive (negative) streamwise vorticity. Solid lines represent base flow vorticity at ω = ±1.The general mode structure is unaffected by the forcing amplitude. This previously undocumented mode possesses the same symmetries as mode A, yet has a finer spatial scale. Some similarities on the mode topology also occurs for a normal flat plate wake (c), which also has a double-row vortex street. In the latter case λ = 2 plate heights and Re = 126.

Figure 8 .

 8 Figure8. Variation of the near wake topology with increasing A θ : 0.4, 0.5, 0.6, 0.7, 0.8, 1.0 from (a) to (f ), respectively. Represented are the base flow vorticity (solid lines) and the perturbation energy for mode D (black and white contours). Note that mode D could only be resolved for A θ > 0.65. Images (d ), (e) and (f ) show that mode D is the most energetic in the area between the first and second wake vortices.

Table 1 .

 1 , Perturbation energy dissipation (D/E ′ ) and production (P/E ′ ) over a cycle of oscillation (both scaled by the initial perturbation energy E ′ ) over a range of amplitude of rotation for mode B. Note that |µ 2 | gives the energy growth over the period. With increasing amplitude, the relative importance of the dissipation increases.

	A θ 0 0.10 0.80 2.64 -7.76 λ |µ| 2 D/E ′ 0.83 4.00 -8.97 11.97 P/E ′ D/E ′ + P/E ′ |D/P| 3.00 0.75 9.40 1.64 0.83 0.20 0.74 0.99 -4.82 4.81 -0.01 1.00
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