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3D finite element simulation of the matter flow by surface diffusion
using a level set method

J. Bruchon1,∗,†, S. Drapier1 and F. Valdivieso2

1LTDS CNRS UMR 5513, France
2PECM CNRS UMR 5146, Ecole des Mines de Saint-Étienne, Centre Sciences des Matériaux et des Structures,

7 158 cours Fauriel—42023 Saint-Étienne—Cedex 2, France

Within the context of the sintering process simulation, this paper proposes a numerical strategy for the 
direct simulation of the matter transport by surface diffusion, in two and three dimensions. The level set 
formulation of the surface diffusion problem is first established. The resulting equations are solved by 
using a finite element method. A stabilization technique is then introduced, in order to avoid the spurious 
oscillations of the grain boundary that are a consequence of the dependence of the surface velocity on 
the fourth-order derivative of the level set function. The convergence and the accuracy of this approach 
are proved by investigating the change in an elliptic interface under surface diffusion. Cases in direct 
relation with the sintering process are analyzed besides: sintering between two grains of the same size or 
of two different sizes. Finally, 3D simulations involving a small number of particles show the ability of 
the proposed strategy to deal with strong deformations of the grain surface (formation of necks) and to 
access directly important parameters such as the closed porosity rate. 

KEY WORDS: surface diffusion; level set method; sintering; curvature; Laplace-Beltrami operator

1. INTRODUCTION

Sintering process is a heating stage consisting of the consolidation of a metal or ceramic powder
compact, which leads to a desired microstructure. During this stage, due to external or inner surface
stress (curvature for the free sintering), necks are formed between particles by atom diffusion (see
Figure 1). This consolidation can be achieved with or without reduction of porosity, depending on
the transport paths of the matter. Roughly speaking, the sketch of a free sintering process in a solid
state can be drawn as following (Figure 1). First, in order to reduce the surface energy, the matter
flows over the grain free surface toward the minimum of curvature, i.e. toward the neck. This
corresponds to the transport by surface diffusion. Owing to the neck formation, stress gradients
appear in the material, giving rise to the grain boundary diffusion and consequently to the volume
diffusion (see [1, 2]).

The general context of this work is the simulation of a sintering process, in a solid state and
at a mesoscopic scale, that is, the direct simulation of the thermo-activated changes in metal or
ceramic grains during a sintering process, including the different transport paths mentioned above.
This paper describes the first step of this work, focusing on the simulation of the matter flow by
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Figure 1. Different paths of matter flow between two grains.

surface diffusion. However, this general context has always to be kept in mind: it justifies why
the numerical methodology presented here is not limited to a surface description of the grains
(sufficient to deal with the surface diffusion), but adopts a more general volume representation.

The surface diffusion phenomenon results in a motion of the surface with a normal velocity,
which is given by the Laplacian of its mean curvature. Such a motion has widely been studied
from a mathematical standpoint (see for example [3, 4] for problems related to the shape stability).
This flow preserves the volume enclosed inside the surface while minimizing its surface area.
Furthermore, the evolution equation associated with this flow is a fourth-order equation, which
leads to difficulties and instabilities when considering approximation techniques. Numerous papers
developing numerical methods for the simulation of surface motion under Laplacian of curvature
can be found in the literature, either in the specific sintering context [5–8] or in a more general
context [9, 10]. The numerical strategies developed in these papers use finite difference or finite
element approximations, and are based on a Lagrangian approach: a surface is described by a
subset of the mesh boundary. However, despite the good results obtained in [10], the Lagrangian
approach presents many difficulties, due to the sensitivity to the fourth-order derivatives of the
position vector. Furthermore, such an approach cannot take into account naturally the topological
changes that occurs during the flow by surface diffusion. In a sintering process, such topological
changes occur when necks are created between grains, or when closed porosity is formed.

To overcome these difficulties, methods based on an Eulerian description of the surface have
been investigated in the last two decades [11–14]. More precisely, these methods are based on the
level set approach [15] that consists of embedding the surface in a higher dimensional function.
The advantage of this technique is that topological changes are handled naturally. Metric prop-
erties of the surface (normal vector, curvature) can then be ‘easily’ deduced from this level set
function [16, 17]. This point is very interesting when considering surface diffusion problems.

This paper presents a level set approach to deal with the flow induced by surface diffusion,
using a finite element strategy. This point constitutes a first originality, since the above references
using a level set approach are based on finite difference techniques. Once again, the reason of
this choice is the general sintering simulation context, and the perspective to couple surface
diffusion and mechanical computation. Another originality of this work is the decoupling between
the computation of the normal velocity and the transport of the level set function. This may be
considered as an ‘engineering’ point of view. The aim is to compute the normal velocity as an
input data of a level set solver that is considered as a black box in a finite element code. The
difficulty is that a straightforward scheme leads to spurious oscillations in the level set function.

This paper is organized as follows. Section 2 introduces the physical model and establishes,
in a general framework, the equation of the surface diffusion. Section 3 details the numerical
strategy developed to solve the surface diffusion problem. The level set description of the grains
is introduced, and the variational formulation of the problem is written in a level set way. This
formulation involves a dependence of the surface velocity on the fourth-order derivative of the
distance function, leading to stability issues. These difficulties are overcame by considering a
‘regularized’ formulation. Finally, various numerical simulations are analyzed in Section 4, ranging

2



from an academic case involving an elliptic grain, to the sintering between two, five, and eight
grains, in two and three dimensions.

2. PHYSICAL MODEL

Let �g be a set of grains, and let Sg be the free surface of this set, as shown in Figure 2. Following
the literature about ceramic sintering process modeling (see [1] and [2, Chapter 7]), the matter
flow by surface diffusion is characterized by a flux js along the free surface Sg , driven by chemical
potential gradients. In turn, these gradients depend on the gradient of the surface mean curvature K .
Consequently, the surface flux can be expressed by

js =−
�s Ds��s

kT
∇s K (1)

where T is the absolute temperature, k is the Boltzmann’s constant, Ds is the surface diffusion
coefficient, �s is the thickness in which the diffusion occurs, �s is the surface free energy, and
finally � is the molar volume of the material. In expression (1), operator ∇s denotes the surface
gradient, defined as the tangential component of the gradient

∇s K =∇K −(∇K ·n)n

where n is the outward-pointing unit vector normal to the free surface Sg (Figure 2). The surface
gradient can easily be rewritten by introducing P , the projection matrix onto the tangent plane
to Sg

∇s K = P∇K

with

P = I −n⊗n (2)

where I is the identity matrix. Of course, the success of our numerical strategy will strongly
depend on the good approximation of this projection matrix P .

The surface flux js results in the deposition or removal of material, which gives rise to a
displacement rate, assumed to be normal to the surface. This surface diffusion velocity is then
written as vs =vnn. The mass balance between, on one hand the matter which flows through the
boundary of an elementary surface S ⊂ Sg (see Figure 2), and on the other hand the displacement
of this surface, is expressed by the relation

∫

�S
js ·nl dl =−

∫

S
vs ·ndS (3)

Figure 2. An elementary surface S of the grain free surface.
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where nl is the outward-pointing unit vector normal to �S (i.e. nl belongs to the plane tangent to
S depicted in Figure 2). By the divergence theorem, expression (3) is equivalent to

∫

S
[∇s ·js +(vnn) ·n]dS =0 (4)

where ∇s · is the surface divergence operator. Since Equation (4) holds for any arbitrary surface
S ⊂ Sg , the integrand is identically equal to zero. Consequently, the surface diffusion displacement
rate is expressed by

vs =−(∇s ·js)n=C0(�s K )n (5)

using Equation (1) with C0 =�s Ds��s/kT . The operator �s , the ‘surface Laplacian’ operator is
the so-called Laplace–Beltrami operator.

Before detailing the numerical method developed to discretize Equation (5), some key points
have to be outlined. First, note that all the physical parameters involved in the description of the
surface diffusion phenomenon, are contained into the parameter C0. In all the simulations presented
in this paper, C0 is assumed to be constant into the computational domain. More precisely, the
temperature will be considered as a constant, which means that only isothermal cases will be
investigated. Second, it is well known in the sintering literature (see [2]) that the transport of
matter by surface diffusion does not lead to shrinkage phenomena, that is, the distance between
the grain centers remains constant under the flow. Furthermore, it is easy to show that the surface
velocity given by Equation (5) preserves the volume. Indeed, if |�g| is the grain volume measure,
its variation during the process is expressed by

d|�g|

dt
=

∫

Sg

vs ·ndS =

∫

Sg

∇s ·js dS

Hence, since the flux is differentiable and Sg is a closed surface, d|�g|/dt =0. Consequently,
the grain volume remains constant. This point, as well as the absence of shrinkage, will be the
criteria to assert the relevancy of our simulations.

3. NUMERICAL STRATEGY

3.1. Level set formulation

Let us consider a computational domain �⊂R
d , the unit square (spatial dimension d =2) or

the unit cube (d =3). The grains evolve into this domain with respect to the velocity given by
Equation (5), and are described by using the level set method introduced in [18], and applied in
different contexts in [19] and [17]. More precisely, and without detailing this method, a smooth
function � :�×R

+ �→R is introduced in the following way:

• At the initial time t =0, � is initialized by

�(x, t =0)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2E

�
sin

( �

2E
d0(x)

)

if d0(x)∈ [−E, E]

−
2E

�
if d0(x)�− E

2E

�
if d0(x)�+ E

(6)

where d0(x) is the initial signed distance from a point x to the grain free surface (d0 is positive
into the grains, negative outside, and is equal to zero along the free surface). Note that this
distance function has to be computed only one time per simulation, during the initialization
step, and that in the case of grains being initially spherical, this computation is very easy. The
parameter E represents the interface ‘width’. As sin(x)≈ x when |x |≪1, the above definition
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means simply that �(x, t) is equal to the signed distance function in a neighborhood of the
grain free surface, while it is extended by a constant value (positive or negative) outside this
neighborhood. The sine allows � to be smooth through the surface {|d0(x)|= E}.

• At a time t , knowing the transport velocity vs(t) defined by Equation (5) in the vicinity of
the free surface and extended to the whole computational domain � (by a way shown in
the following), function � is computed at time t +�t , with �t the time step, by solving a
transport equation of the form

��

�t
+vs ·∇�=0 (7)

Classically (see [15]), even if function � is initially a signed distance function (at least
locally), this property which ensures its smoothness is not preserved by the transport step
when an arbitrary velocity is used. Hence, an additional step, called reinitialization step, is
usually required to recover this property without perturbing the interface. The originality of
the level set method used in this work is to combine the transport step and the reinitialization
step into a single convective reinitialization step, which preserves property (6). Consequently,
transport equation (7) is modified in order to take into account the reinitialization of the level
set function �, ‘far’ from the isovalue zero. Further details can be found in [17–19].

We have to outline that with this method, as with any level set method, the interface, i.e. the
grain free boundary, is characterized by the zero level set of �. By definition, the value of �(x, t)
gives the position of a point x (e.g. a node of the mesh) at a time t with respect to the interface.
Furthermore, and it is a key point for the surface diffusion simulation, the unit vector n� normal
to the interface and the mean curvature K� of this interface, can be expressed in a level set way
by the two following relations (see [15, 16]):

n� =
∇�

‖∇�‖
(8)

and

K� =∇ ·
∇�

‖∇�‖
(9)

where ‖·‖ denotes the Euclidian norm in R
d . Hence, if the level set function is known, then the

curvature can be calculated, at least theoretically. Note that expressions (8) and (9) define the
normal vector and the mean curvature in all the computational domain �, and not only over the free
surface {�=0}. Of course, parameters n� and K� vanish outside the narrow band [−E, E] around
the interface, while they correspond to the usual normal vector n and curvature K in the vicinity
of the interface (see [17]). Following [20], the surface diffusion velocity (5) can be rewritten in a
level set form as

vs =vn
∇�

‖∇�‖
(10)

and

vn =C0
1

‖∇�‖
∇ ·(‖∇�‖P�∇K�) (11)

where the projection matrix is now defined by

P� = I −
∇�

‖∇�‖
⊗

∇�

‖∇�‖

Velocity (10) is defined in the whole computational domain, and corresponds, in the vicinity of
the zero level set of �, to the surface diffusion velocity. The differential operators (gradient and
divergence) involved in Equation (11) are now expressed explicitly with the Cartesian coordinates
(x, y, z), and can therefore be computed within the context of an Eulerian description of the grains.
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3.2. Finite element discretization

Formulation (11) is discretized by using a finite element approach. Hence, let the computational
domain �⊂R

d be discretized by a simplex mesh Th(�). An element e∈Th(�) is a triangle if
d =2, and a tetrahedron if d =3. The unknowns �, K and vn are approximated by �h , Kh and vnh ,
respectively, chosen as being continuous and piecewise linear over �. Furthermore, the partition
0= t0<t1< · · ·<t� =� of the time interval [0,�] is introduced. A field X evaluated at the time t
is then denoted by X t .

Regarding Section 3.1, all seems easy: if �t
h is assumed to be known, then K t

h and vn
t
h can be

computed by using the variational forms of (8), (9), and (11). However, two difficulties appear and
must be clearly understood. First, the velocity vnh depends on the fourth-order spatial derivative
of �h . Since �h is piecewise linear, the gradient ∇�h is piecewise constant, and ∇(n)�h ≡0 when
n�2. Equations (9) and (11) must therefore be considered in a weak sense, as in [20, 21]. The
second difficulty is the nonlinear coupling between the level set function �, the curvature and
the surface diffusion velocity. At this point, we have to mention that within the general context
of this work, the simulation of the sintering processes, expression (11) represents only the first
contribution to the ‘global’ sintering velocity, which is the sum of the displacement rates involved
by the different paths of matter transport. Consequently, in order not to develop a numerical method
which would be dedicated only to the surface diffusion, velocity is treated in an explicit way in
the transport equation (7). In other words, �t+�t

h is computed by solving Equation (7) with the
velocity vs

t
h , i.e. evaluated on the configuration corresponding to �t

h (see Section 3.3).

3.2.1. A fully explicit formulation. The first approach for solving system (7)–(9) and (11) is to
solve each equation successively in an explicit way. Furthermore, additional diffusion terms εK �K
and εv�vn are then considered in the left-hand side of Equations (9) and (11), respectively (elliptic
regularization, see [22]), where εK and εv are two numerical parameters. The regularization effect
of the term εK �K is shown in Figure 3. In this example �h is the distance to the circle of radius
R =0.2. The curvature Kh is calculated by using the regularized weak form of (9)

∫

�

Kh�h d�+εK

∫

�

∇Kh ·∇�h d�=−

∫

�

∇�h

‖∇�h‖
·∇�h d�

for all test functions �h continuous and piecewise linear on �. Kh is therefore a field defined in
each point of the computational volume, and should be equal to the circle curvature (K =5) in the
vicinity of the level set {�h =0}. When no regularization is considered (εK =0) as in Figure 3(a),
the level set {Kh =5} is shown to be scattered in a wide band around the interface. Clearly, the
curvature is not computed with accuracy. However, if a small diffusion parameter is considered
(εK =10−4 in Figure 3(b)), the level sets {�h =0} and {Kh =5} are perfectly superimposed, showing
the accuracy of the curvature computation. Note that an additional level set {Kh =5} appears inside
the grain. This second level set corresponds to a discontinuity of the second-order derivative of

Figure 3. Level set {�h =0} (circle of radius R =0.2, black line), and level set {Kh =5=1/R}: influence
of the regularization parameter εK . (a) εK =0 and (b) εK =10−4.
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�h , induced by the extension of �h by a constant value. However, this discontinuity is far from
the interface and does not disturb its motion.

This example shows clearly that introducing a regularization parameter is necessary for the
curvature computation. Nevertheless, the regularization of Equation (11) is shown to be much more
complex: if εv is too ‘large’ (with respect to the values of the velocity), the solution is stable but
the computed velocity is underestimated (see Section 4.1). In contrast, taking a ‘small’ value of εv

leads to an accurate computation of the velocity in the early steps of the simulation, before giving
rise to spurious oscillations of the interface as shown in Figure 4. Although these oscillations can
be prevented by using a ‘small’ time step, this unstable behavior, and the two additional numerical
parameters introduced, encourage us to develop the more implicit and stable formulation presented
in the following section.

3.2.2. A mixed K/�s K formulation. Assuming that �t
h is known (at a time t), the numerical

method proposed in this section consists of building a system, the unknowns of which are the
curvature K t

h and the normal velocity vn
t
h (which is equal to C0�s Kh regarding Equation (5)).

In order to introduce implicitly a regularization term in this formulation, the following first-order
Taylor’s expansion is considered:

�
t+ 1

2
h =

de f.
�t

h +
��t

h

�t
�t =�t+�t

h +o(�t)

Hence, �
t+ 1

2
h is a first-order approximation of �t+�t

h . Since the level set function � is solution
of the transport equation (7), ��/�t =−vs ·∇�, and the previous relation can be turned into

�
t+ 1

2
h =�t

h −vs
t
h ·∇�t

h�t

Finally, since ∇�t
h ·∇�t

h =‖∇�t
h‖2, taking into account expression (10) of the velocity leads to

�
t+ 1

2
h =�t

h −vn
t
h‖∇�t

h‖�t (12)

The system with unknowns K and �s K can now be constructed by considering �
t+ 1

2
h instead

of �t
h in relation (9) giving the curvature of the discretized level set function. Hence, at a time t ,

assuming that �t
h is known, the system to be solved for both curvature K t

h and normal velocity
vn

t
h , is given by

K t
h +∇ ·

(

�t

A
∇vn

t
h

)

= ∇ ·

(

1

A
∇�t

h

)

vn
t
h‖∇�t

h‖−C0∇ ·(‖∇�t
h‖P�t

h
∇K t

h) = 0

(13)

Figure 4. Zero level set of the level set function (grain surface, black line) and isovalues of the curvature
(alternatively negative and positive), in an unstable case εv =εK =10−4.
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Since � is a distance function in the vicinity of the interface {�=0}, ‖∇�h‖ is approximatively
equal to 1 near this interface. This is why ‖∇�h‖ does not appear in the second term of the first
equation of (13) (we will see that this term is only a regularization term). Furthermore, the term

denoted by A in this equation is normally equal to ‖∇�
t+ 1

2
h ‖. However, to avoid to deal with

this nonlinear term, the computations presented in this paper have been performed by doing the
approximation A=‖∇�t

h −�t∇vn
t−�t
h ‖.

The key point of this approach is that using �
t+ 1

2
h instead of �h to compute the curvature

induces an additional term in the left-hand side of the first equation of (13). This K/vn coupling
term is equivalent to a regularization term �vnh with the regularization parameter �t/A. Hence,
unlike the previous fully explicit formulation, only one regularization term is necessary to compute
the curvature and the surface diffusion velocity. Furthermore, the corresponding regularization
parameter appears naturally and depends on the time step only.

Formulation (13) shows strong similarities with the one developed by Bänsch within the context
of a Lagrangian description of the particles [21]. The stability of this formulation will be not
mathematically established in this paper, contrary to [21]. However, the good behavior of (13) is
shown through various simulations.

Finally, the effective computation of Kh and vnh is carried out by considering the finite element
discretization of (13). As previously, a simplex mesh on � is considered, while �h , Kh , and vnh
are chosen belonging to the space of continuous and piecewise linear functions on �, denoted
Vh . The mixed weak formulation of (13) is then written as: at time t , assuming �t

h known, find
(K t

h,vn
t
h)∈Vh ×Vh solution of

∫

�

Kh�h d�−�t

∫

�

1

A
∇vn

t
h ·∇�h d� = −

∫

�

1

A
∇�t

h ·∇�h d�

∫

�

‖∇�t
h‖vn

t
h�h d�+

∫

�

C0‖∇�t
h‖(P�t

h
∇K t

h) ·∇�h d� = 0

(14)

for all �h ∈Vh . Note that one single type of weighting functions �h has been used for the curvature
equation and for the velocity one, since both curvature and velocity belong to the same functional
space Vh . Furthermore, previous equation (14) does not require the enforcement of any Dirichlet
condition: since �h is constant in the vicinity of ��, Kh , and vnh vanish over the domain boundary.

3.3. Time stepping strategy

The above developments are summarized by the following time-stepping strategy, adopted for the
simulation of the matter flow by surface diffusion.

0. Given a computational domain � (the unit square or the unit cube) discretized with a fixed
unstructured simplex mesh, achieve the initialization of the level set function �h at t =0 by
Equation (6).

1. At time t = tn , assuming �t
h is known, achieve

(a) Mesh adaptation with respect to the level set function �t
h .

(b) Computation of the normal surface diffusion velocity vnh by solving system (13).
(c) Computation of the surface diffusion velocity vsh by Equation (10).
(d) Computation of �t+�t

h by solving the transport equation (7) in its reinitialization-
convection form.

2. tn ← tn+1. If tn+1<� (the final time), back to step 1.

A remeshing step appears in the above scheme. This step is based on the metric properties of
the level set function �h , and aims to improve the description of the interface {�h =0} by refining
the mesh within the interface vicinity. In this way, the description of the interfaces is improved,
while the CPU time cost is preserved. In the simulations presented in this paper, the mesh size
is isotropic: a minimal mesh size hmin is imposed when |�h |�dmin, a maximal mesh size hmax is
imposed when |�h |�dmax, and the mesh size is assumed to be continuous and linear between these
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extrema. The above parameters hmin, hmax, dmin, and dmax are defined by the user (they are not
related to any error analysis). At each remeshing step, the level set function �h is projected from
the ‘old’ mesh onto the new one by P1 interpolation. The influence of this projection is evaluated
in Section 4. Further details can be found in [17].

4. NUMERICAL SIMULATIONS

This section presents several direct simulations of change in free surface by surface diffusion,
using the numerical strategy developed previously. These simulations have been carried out by
using the CIMLIB finite element library. This C++ library, which is highly parallel, is developed
at the Centre de Mise en Forme des Matériaux (Mines ParisTech, CNRS UMR 7635) by Coupez
and co-workers (see [18, 23, 24]).

First, based on a case proposed in [13], Figure 5 shows a star shape flowing under Laplacian of
curvature. In this example, the star shape is composed of 3 ellipses with a ratio between the major
and minor axes equal to 10. Parameter C0 (Equation (5)) is taken equal to 2×10−3, while the time
step for this calculation is �t =5×10−4. The shape becomes roughly circular within 5000 iterations
(Figure 5(d)). Furthermore, this case is used to evaluate the influence of the remeshing step on the
calculation, that is, the influence of the amount of diffusion introduced by the P1 projection, on
the evolution of the free surface. Hence, two simulations are compared in Figure 5. The first one,
in dashed line in Figure 5, has been achieved by using an unstructured mesh with a uniform mesh
size equal to 6.25×10−3, and without mesh adaptation; the second simulation, in black solid line,
uses the mesh adaptation strategy with a minimal mesh size of 6.25×10−3, a maximal one equal
to 8.0×10−2, and a remeshing step applied every three time steps (which is a high remeshing
frequency regarding the investigated case). The evolution of the star shape is shown to be similar
in both cases. Hence, perturbation in the free surface evolution, due to the remeshing step, seems
to be acceptable. In fact, the remeshing step works well when considering adaptation with respect
to the distance function, because this function can be assumed to be nearly linear in the vicinity
of the free surface (if this last one is smooth enough). In this case, P1 interpolation from mesh to
mesh is then exact. Further finite element simulations involving very accurate descriptions of free
surfaces with mesh adaptation can be found in [18].

4.1. Change in an ellipsoid interface by surface diffusion

The simulations presented in this section investigate the evolution of an ellipsoid shape under
surface diffusion. This ‘academic’ case aims to assert the efficiency of the methodology presented
in this paper by comparing the simulation results with an analytical model. The computational
domain � is the unit square (two-dimensional case), and let d0 (see Equation (6)) be the function
defining the signed distance with respect to an oval shape. In the first time, and following [13],
this case is used to verify the convergence and conservation properties of our method. Since the
matter transport by surface diffusion tends to minimize the surface energy while preserving the
volume, starting with a ratio between the major and minor axes equal to 4 (and using C0 =2×10−6,
�t =5×10−4), the interface {�h =0} adopts progressively a circular shape. This evolution will be
discussed in more details in the following. Here, Figure 6 points out the convergence properties

Figure 5. Evolution of star shape (at times t =0, 0.3, 1.25, and 2.5): without mesh adaptation (black solid
line) and with mesh adaptation (dashed line).
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Figure 6. Computation of oval at time t =2.5 with different spatial resolutions (number of elements for
structured mesh or (local) mesh size for unstructured mesh).

of our method by showing the zero level set of �h obtained after 5000 time steps with different
space discretizations. Several structured meshes have been used (80×80, 160×160, and 320×320
meshes), as well as one unstructured meshes with a mesh size of 6.25×10−3 (which corresponds
to the mesh size of the 160×160 mesh) and another one with a mesh size of 10−3. Beside the
convergence in shape, the convergence in the area conservation property can also be observed
in Figure 6. The area loss is equal to 40, 2.8, and 0.9% of the initial area respectively for the
three structured meshes, while it is equal to 2.4% for the unstructured mesh having a uniform
mesh size of 6.25×10−3 (without mesh adaptation, 34 000 nodes), and to 6% when the remeshing
technique is applied with hmin =6.25×10−3 (approximatively 2200 nodes). However, when using
the mesh adaptation method with hmin =10−3 (12 000 nodes), the area loss drops to 1%. Hence,
to complete the previous section, even if the mesh adaptation introduces an additional numerical
diffusion which can lead to a gain or loss in mass, the previous star shape (Figure 5) and oval
shape (Figure 6) studies show that there are convergence in shape as well as in mass conservation
when using a remeshing technique.

Next, we propose to analyze in more details the change of an ellipsoid shape in a circular shape
under Laplacian of curvature. Figure 7 shows the simulation of this flow, for an ellipse of axes 0.3
and 0.2, performed by solving the mixed formulation (13) with the value C0 =10−3. This parameter
is constant and therefore acts as a scale parameter in space and time. The time step is �t =10−3,
while the mesh size varies from 5.0×10−3 in the vicinity of the interface to 3.0×10−2 elsewhere.
It can be verified in Figure 7 that the interface, represented by the line in bold, evolves toward a
circular shape as expected. Furthermore, the curvature, which has its non-zero isovalues presented
in Figures 7(a) and (b) in a narrow band around the interface, tends to become homogeneous and
to converge toward the value K f =4.08. This is the expected equilibrium value: the square of
the corresponding radius R f =1/K f =0.245 is equal to 0.06, which is the value of the product
between the initial minor and major axes. Hence, once again, the volume is well preserved during
the simulation. Finally, the normal velocity obtained by solving system (13) is shown in Figure 7(c)
at time t =0. As expected, the velocity is extremal where the variations of curvature are extremal.

Until now, only the final shape of the interface, that is the steady state, has been studied.
However, it is possible to compare the interface position with the predictions provided by an
analytical model all along the simulation. Let a(t) and b(t) be the major and minor axes of the
ellipse at time t , with a(0)=0.3 and b(0)=0.2. The surface Laplacian of the ellipse curvature can
‘easily’ be calculated (for instance by using a symbolic computation software), and the velocity
of the major axis (the point (a(t),0)) is given by

vs(a)=C0
3(b2−a2)a

b6

Hence, at time t +�t , a can be evaluated by an explicit Eulerian scheme, a(t +�t)=a(t)+
�tvs(a(t)), while b is simply obtained by b=a(0)b(0)/a. Figure 8 presents a comparison over
time between the values of a and b by three different ways: the analytical model, from the level
set approach when system (13) is solved (red lines), and from the fully explicit formulation (blue
lines, with εv =εK =10−3 and still �t =10−3). The results provided by the mixed method show
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Figure 7. Change in the interface {�h =0} (line in bold), initially an ellipse, toward a circular shape by
surface diffusion. (a) Curvature at t =0; (b) curvature at t =1; and (c) normal velocity at t =0.
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Figure 8. Change in the major and minor axes of the interface over time: analytical model, simulation
with the mixed approach, and simulation with the fully explicit approach (εv =εK =10−3).

a good behavior of the interface, with a maximal error on both major and minor axes lower than
3%. The fully explicit method does not exhibit such a behavior, with an important error on the
interface position. Furthermore, as already mentioned, this method appears to be unstable when, for
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instance, εv =εK =10−4 and �t =10−3, or when εv =εK =10−4 and �t =10−4. Finally, note that
1000 time steps have been carried out with the mixed approach for a CPU time of approximatively
600 s on one processor of 2.2 GHz and with a mesh of approximatively 4800 nodes.

4.2. Change in two grains of the same size by surface diffusion

From this section, simulations in direct relation with sintering process are investigated. The first
case involves two spherical grains of equal radii R =0.2, as depicted in Figure 9. As in every
simulation presented in this paper, one single level set function �h is used to represent the set of
grains. This function is initialized at each mesh node, as the maximum of the level set functions
associated with each spherical grain (because of the sign convention adopted in Equation (6)). As
shown in Figure 9(a), the grains are initially nearly tangential. It has to be pointed out that there
is no special algorithm to deal with either the contact surface or the singularities of the level set
function that is not differentiable on the triple junction. However, despite the initial ‘roughness’ of
the area of contact between the grains, and due to the matter diffusion, this area becomes quickly
smooth as shown in Figure 9. This phenomenon is specifically outlined in Figure 10: the triple
junction (contour of the contact surface) appears to be very irregular when the computation starts
(its shape depends on the mesh size), while it has been greatly smoothed after only 10 time steps,
and it has become a perfect circle within 20 increments. Furthermore, the flow under Laplacian
of curvature has a physical meaning only if the curvature and its second-order derivatives exist,
that is, only if the triple junction is smooth enough. Hence, this early stage of the simulation
allows us to obtain a triple junction in a ‘natural’ and easy way. Our simulations and the study
presented below prove that this stage does not affect the subsequent evolution of the grain cluster.
Furthermore, the rate of change in grain volume is presented in Table I. Of course, this rate depends

Figure 9. Change in the interface {�h =0} during the sintering by surface diffusion between two grains
of equal size (radius R =0.1). (a) t =0; (b) t =10−2; and (c) t =3.

Figure 10. Triple junction (contour of the contact surface) at times t =0,
t =10−2 and t =2×10−2, respectively.
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on the mesh size (and on the time step) as studied previously. However, the values of Table I show
that the formation of a neck between the grains (for a time t<0.05) does not change the grain
volume. Here, the grain volume is well preserved, with a variation of 0.8% in 1000 increments.
As expected, no shrinkage phenomenon occurs since the grain centers do not move.

The radius x of the circular contact area is called the neck radius. Theoretical models, based on
geometrical assumptions and established within the context of sintering process modeling (see [2]),
predict that the adimensional neck radius x/R behaves as the power 1/7 of the time:

x(t)

R
=

(

56C0

R4
t

)1/7

=1.78t ′1/7 (15)

where t ′ is an adimensional time, defined by t ′ = (C0/R4)t . Figure 11 shows, in logarithmic scales,
the evolution of the adimensional radius x/R, obtained by direct simulation for different values
of the grain radius, ranging from 0.1 to 2.5. As predicted by Equation (15), this evolution over
t ′ does not depend on the grain radius R, and behaves as t1/7. Hence, despite an initial contact
surface between the grains which is not well defined as already mentioned, the radius x/R provided
by each simulation tends quickly toward a same curve of the same form as (15). Instead of the
coefficient 1.78 given by the analytical model, our simulations provide a coefficient equal to 1.3.
The curves corresponding to these two values are denoted in Figure 11 by ‘Analytical model, 1/7’
and ‘Simulation, 1/7’, respectively. It has to be underlined that this result is shown to be stable
with respect to the time step (ranging from 10−6 to 10−2), with respect to the mesh size (ranging
from 10−4 to 10−2, with isotropic or anisotropic remeshing), and thus with respect to the initial
neck radius: in all the investigated cases, the neck radius x/R obtained by direct simulation, tends
quickly toward a ‘master curve’ of the type given in Equation (15) with a coefficient approxima-
tively equal to 1.3. However, in Equation (15), the two key parameters that characterize the surface
diffusion from the grain surface toward the neck, are, on one hand the power 1/7, and on the other
hand, the power 4 applied to R in the denominator (see [2]). The differences between the simula-
tions and the analytical model can be explained by the geometrical approximations made in this
latter.

Table I. Surface diffusion between two grains of radius R =0.2: rate of
change in volume of grains (C0 =10−6, �t =10−3, hmin =8.0×10−3).

Time 0 0.02 0.06 0.1 0.4 0.6 1
Change (%) 0 +0.023 +0.0005 −0.011 −0.18 −0.44 −0.79
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Figure 11. Change in the adimensional neck radius x/R over adimensional time t ′ (logarithmic scale) for
different values of R, and with C0 =10−7.
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4.3. Change in two grains of different size by surface diffusion

A simulation involving two grains of different sizes (R1 =0.1 and R2 =0.2) is described in
Figure 12. Except the size, exactly the same conditions as previously are considered. First of all,
it has to be outlined that the grain centers do not move during the sintering by surface diffusion:
there is no shrinkage. As the sizes of the two grains are different, the neck radius x cannot be
considered a priori in a dimensionless form, and the evolution of x is directly plotted over time
t in Figure 13. However, Pan et al. [25] and Martin et al. [26] propose to define an equivalent
radius R by

R =
2R1 R2

R1 + R2

In the present case, the direct simulation permits us to show the relevancy of this definition.
Indeed, the temporal change in the neck radius involved by two grains of the same radius R =0.1333
(the equivalent radius for R1 =0.1, R2 =0.2) is also plotted in Figure 13. This change is shown to
perfectly fit the one induced by the two grains of radii 0.1 and 0.2.

Figure 12. Change in the interface {�h =0} during the sintering by surface diffusion between two grains
of different radii (R =0.1 and R =0.2). (a) t =0 and (b) t>0.
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Figure 13. Temporal change in the neck radius x for two grains of different radii (R1 =0.1 and R2 =0.2)
and for two grains of the same equivalent radius (R =0.133).
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4.4. Change in a small cluster of grains by surface diffusion

This section presents two simulations that involve a small cluster of grains. The first simulation
deals with the sintering by surface diffusion of five grains disposed as in Figure 14. The key points
of this two-dimensional simulation are as following. First, there is no shrinkage and the grain
volumes are preserved during the simulation. Second, the neck formation and the evolution of the
cluster toward a steady state by surface diffusion is clearly observed. Furthermore, a kind of closed
porosity (in two dimensions) appears in this simulation. Hence, the numerical strategy based on a
level set approach developed in this paper allows us to take into account automatically any complex
topological change in the grain free surface, and then to have a direct access to parameters of
first interest for the microstructure control, such as the porosity ratio. It has to be pointed out
that the accuracy of the interface description is largely improved by the mesh adaptation strategy
previously mentioned. For example, the adapted mesh at t =0 can be seen in Figure 14(a). The
isovalues of the initial curvature defined by (13) are superimposed in this same figure. As expected,
the curvature is extremal in the neck vicinity.

Finally, Figure 15 shows the temporal change, by surface diffusion, in eight grains in a three-
dimensional configuration. The computational domain is the unit cube, discretized with an unstruc-
tured meshed made up of 350 000 tetrahedrons (60 000 nodes). The numerical strategy previously
detailed and a mesh adaptation method are still considered. The parameter C0 has been taken equal
to 10−7, while the time step is �t =10−2. Neck formation is observed, and the cluster evolves

Figure 14. Change in 5 grains under surface diffusion (two-dimensional case, C0 =10−7,
�t =5.0×10−3). (a) Adapted mesh and curvature, and (a)–(c) Interface {�h =0} (solid line).

(a) t =0; (b) t =0.1; and (c) t =5.
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Figure 15. Change in 8 grains under surface diffusion (three-dimensional case, �t =10−2, C0 =10−7).
(a) t =0; (b) t =1; and (c) t =5.

toward an equilibrium state. The CPU time of this computation which involves 500 time steps, is
of 2 h by using a parallel computing strategy on four cores (Intel Xeon 2.2 GHz processor).

5. CONCLUSION

Within the general context of the sintering process simulation, a finite element level set formulation
of the surface diffusion problem has been proposed. The main difficulty induced by this approach,
the dependence of the surface velocity on the fourth-order spatial derivative of the level set
function, has been overcome by considering a mixed system in curvature/surface Laplacian of
the curvature. This formulation induces implicitly a stabilization term �vn with an associated
stabilization parameter depending on the time step. The resulting discretized formulation is shown
to be stable in all our simulations. Several simulations have been carried out and analyzed in
details. On one hand, convergence properties in shape and area conservation have been studied by
considering several structured and unstructured mesh. The relevancy and accuracy of the developed
numerical methodology have then been shown by comparing the simulations with analytical models
(evolution of an ellipsoid surface, sintering of two grains). On the other hand, the large possibilities
of the adopted approach (taking into account an ‘arbitrary’ number of grains without restrictions
on their shape, in two or three dimensions, capturing automatically the closed porosity) have been
exposed for the context of the sintering simulation.

The outlooks to this work are numerous. First of all, the simulation results involving two grains
or more have to be confronted to experimental results. Such confrontations are complex to do,
making necessary the choice of a reference material for the surface diffusion and the use of
statistical methods to achieve the comparison. However, this step is mandatory to examine the
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ability of the numerical simulation to help the scientist in controlling the final microstructure of a
sintered material. Furthermore, as the aim of this work is precisely to develop a numerical tool for
the sintering process simulation, the next steps in the development of this work are to take into
account the different paths of matter transport. First, the grain-boundary diffusion which requires
the description (by a level set function) of the boundary separating two particles. Second, the
volume diffusion that introduces the mechanical response of the material to a given loading.

REFERENCES

1. Ashby MF. A first report on sintering diagrams. Acta Metallurgica et Materialia 1974; 22(3):275–289.
2. Rahaman MN. Ceramic Processing and Sintering. Marcel Dekker Inc.: New York, 1995.
3. Bernoff AJ, Bertozzi AL, Witelski TP. Axisymmetric surface diffusion: dynamics and stability of self-similar

pinch-off. Journal of Statistical Physics 1998; 93(3–4):725–776.
4. Escher J, Mayer UF, Simonett G. The surface diffusion flow for immersed hypersurfaces. SIAM Journal on

Mathematical Analysis 1998; 29(6):1419–1433.
5. German RM, Lathrop JF. Simulation of spherical powder sintering by surface diffusion. Journal of Materials

Science 1978; 13(5):921–929.
6. Pan J, Cocks ACF, Kucherenko S. Finite element formulation of coupled grain-boundary and surface diffusion

with grain-boundary migration. Proceedings of the Royal Society A 1997; 453(1965):2161–2184.
7. Bouvard D, McMeeking RM. Deformation of interparticle necks by diffusion-controlled creep. Journal of the

American Ceramic Society 1996; 79(3):665–672.
8. Darcovich K, Shinagawa K, Walkowiak F. A three-dimensional dual-mechanism model of pore stability. Materials

Science and Engineering A 2004; 373(1–2):107–114.
9. Barrett JW, Garcke H, Nürnberg R. A parametric finite element method for fourth order geometric evolution

equations. Journal of Computational Physics 2007; 222(1):441–467.
10. Barrett JW, Garcke H, Nürnberg R. On the parametric finite element approximation of evolving hypersurfaces in

R
3. Journal of Computational Physics 2008; 227(9):4281–4307.

11. Adalsteinsson D, Sethian JA. A level set approach to a unified model for etching, deposition, and lithography—III:
redeposition, reemission, surface diffusion, and complex simulations. Journal of Computational Physics 1997;
138(1):193–223.

12. Li Z, Zhao H, Gaoz H. A numerical study of electro-migration voiding by evolving level set functions on a
fixed cartesian grid. Journal of Computational Physics 1999; 152(1):281–304.

13. Chopp DL, Sethian JA. Motion by intrinsic Laplacian of curvature. Interfaces and Free Boundaries 1999;
1(1):107–123.

14. Smereka P. Semi-implicit level set method for curvature and surface diffusion motion. Journal of Scientific
Computing 2003; 19(1–3):439–456.

15. Sethian JA. Level sets methods and fast marching methods. Cambridge Monograph on Applied and Computational
Mathematics, vol. 3, 1999.

16. Osher S, Fedkiw F. Level set methods: an overview and some recent results. Journal of Computational Physics
2001; 169(2):463–502.

17. Bruchon J, Digonnet H, Coupez T. Using a signed distance function for the simulation of metal forming processes:
Formulation of the contact condition and mesh adaptation. From a Lagrangian approach to an Eulerian approach.
International Journal for Numerical Methods in Engineering 2009; 78(8):980–1008.

18. Ville L, Silva L, Coupez T. Convected level set method for the numerical simulation of fluid buckling. International
Journal for Numerical Methods in Engineering. DOI: //dx.doi.org/10.1002/fld.2259.

19. Bernacki M, Chastel Y, Coupez T, Logé RE. Level set framework for the numerical modelling of primary
recrystallization in polycrystalline materials. Scripta Materialia 2008; 58(12):1129–1132.

20. Burger M, Hausser F, Stöcker C, Voigt A. A level-set approach to anisotropic flows with curvature regularization.
Journal of Computational Physics 2007; 225(1):183–205.

21. Bänsch E, Morin P, Nochetto RH. A finite element method for surface diffusion: the parametric case. Journal
of Computational Physics 2005; 203(1):321–343.

22. Marcellini P, Miller K. Elliptic versus parabolic regularization for the equation of prescribed mean curvature.
Journal of Differential Equations 1997; 137(1):1–53.

23. Digonnet H, Coupez T. Object-oriented programming for ‘fast-and-easy’ development of parallel applications in
forming processes simulation. In Second MIT Conference on Computational Fluid and Solid Mechanics, Bathe
KJ (ed.). Massachusset Institute. Elsevier: Amsterdam, 2003; 1922–1924.

24. Mesri Y, Digonnet H, Coupez T. Advanced parallel computing in material forming with CIMLib. European
Journal of Computational Mechanics 2009; 18(7–8):669–694.

25. Pan J, Kucherenko LH, Yeomans JA. A model for sintering of spherical particles of different sizes by solid state
diffusion. Acta Metallurgica et Materialia 1998; 46(13):4671–4690.

26. Martin CL, Bouvard D, Shima S. Study of particle rearrangement during powder compaction by discrete element
method. Journal of the Mechanics and Physics of Solids 2003; 51(4):667–693.

17


