
HAL Id: hal-00828596
https://hal.science/hal-00828596v1

Preprint submitted on 31 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymptotic normality of a Sobol index estimator in
Gaussian process regression framework

Loic Le Gratiet

To cite this version:
Loic Le Gratiet. Asymptotic normality of a Sobol index estimator in Gaussian process regression
framework. 2013. �hal-00828596�

https://hal.science/hal-00828596v1
https://hal.archives-ouvertes.fr


Asymptotic normality of a Sobol index estimator in Gaussian

process regression framework

Loic Le Gratiet † ‡

† Université Paris Diderot 75205 Paris Cedex 13

‡ CEA, DAM, DIF, F-91297 Arpajon, France

May 31, 2013

1 Abstract

Stochastic simulators such as Monte-Carlo estimators are widely used in science and engineer-
ing to study physical systems through their probabilistic representation. Global sensitivity
analysis aims to identify the input parameters which have the most important impact on the
output. A popular tool to perform global sensitivity analysis is the variance-based method
which comes from the Hoeffding-Sobol decomposition. Nevertheless, this method requires an
important number of simulations and is often unfeasible under reasonable time constraint.
Therefore, an approximation of the input/output relation of the code is built with a Gaus-
sian process regression model. This paper provides conditions which ensure the asymptotic
normality of a Sobol’s index estimator evaluated through this surrogate model. This result
allows for building asymptotic confidence intervals for the considered Sobol index estimator.
The presented method is successfully applied on an academic example on the heat equation.

Keywords: Sensitivity analysis, Gaussian process regression, asymptotic normality, stochas-
tic simulators, Sobol index.

2 Introduction

Complex computer codes usually have a large number of input parameters. The determination
of the important input parameters can be carried out by a global sensitivity analysis. We
focus on the variance-based Sobol indices [1], [2], [3] and [4] coming from the Hoeffding-Sobol
decomposition [5] which is valid when the input parameters are independent random variables.
For an extension of the Hoeffding-Sobol decomposition in a non-independent case, the reader
is referred to [6], [7], [8], [9] and [10].

Monte-Carlo methods are commonly used to estimate the Sobol indices (see [1], [11] and
[12]). One of their main advantages is that they allow for quantifying the uncertainty related
to the estimation errors. In particular, for non-asymptotic cases, this can be easily carried out
with a bootstrap procedure as presented in [13] and [14]. Furthermore, in asymptotic cases,
useful properties can be shown as the asymptotic normality [12]. The reader is referred to
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[15] for an extensive presentation of asymptotic statistics. Nevertheless, Monte-Carlo meth-
ods require a large number of simulations and are often unachievable under reasonable time
constraints. Therefore, in order to avoid prohibitive computational costs, we surrogate the
simulator with a meta-model and we perform the estimations on it.

In this paper, we consider a special surrogate model corresponding to a Gaussian process
regression. More precisely we consider an idealized regression problem for which we can
deduce a posterior predictive mean and variance tractable for our purpose. In particular, we
can derive the rate of convergence of the meta-model approximation error with respect to the
computational budget.

Therefore, the Sobol index estimations - which are performed with a Monte-Carlo pro-
cedure by replacing the true code with the posterior predictive mean - have two sources of
uncertainty: the one due to the Monte-Carlo scheme and the one due to the meta-model
approximation. The error due to the Monte-Carlo procedure tends to zero when the number
of particles (calls of the meta-model) tends to infinity and the error due to the meta-model
tends to zero when the computational budget (calls of the complex simulator used to build
the meta-model) tends to infinity. A question of interest is whether the asymptotic normality
presented in [14] is maintained. The principal difficulty of the study is that the estimator lies
in a product probability space which takes into account both the uncertainty of the Gaussian
process and the one of the Monte-Carlo sample.

We emphasize that [14] presents such a result for noise-free Gaussian process regression
using a squared exponential covariance kernel (see [16]). They give conditions on the number
of simulations and the number of Monte-Carlo particles which ensure the asymptotic nor-
mality for the Sobol index estimators. A part of our developments is inspired by their work
nevertheless they are different with some important respects. Indeed, the particular case of
noise-free Gaussian process regression with squared exponential covariance kernel allows for
not considering the probability space in which lies the Gaussian process. This significantly
simplifies the mathematical developments. Unfortunately this simplification does not hold in
our general framework.

In this paper, we are interested in stochastic simulators which use Monte-Carlo or Monte-
Carlo Markov Chain methods to solve a system of differential equations through its proba-
bilistic interpretation. Such simulators provide noisy observations with a noise level inversely
proportional to the number of Monte-Carlo particles used by the simulator. Therefore, with a
fixed computational budget, we have to make a trade-off between the number of simulations
and the output accuracy. Actually, we consider the asymptotic case where the number of
observations is large.

The main result of this paper is a theorem giving sufficient conditions to ensure the asymp-
totic normality of the Sobol index estimators based on the Monte-Carlo procedure presented
in [1] and using the presented Gaussian process regression model. We note that the presented
theorem holds for a large class of covariance kernels. The asymptotic normality is of interest
since it allows for giving asymptotic confidence intervals on the Sobol index estimators. This
result is illustrated with an academic example dealing with the heat equation problem.

3 Gaussian process regression for stochastic simulators

We present in Subsection 3.1 the practical problem that we want to deal with. In order
to handle the asymptotic framework of a large number of observations, we replace the true
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problem by an idealized version of it in Subsection 3.2. This idealization allows us to study
the asymptotic normality of the Sobol’s index estimator in Section 4.

3.1 Gaussian process regression with a large number of observations

Let us suppose that we want to surrogate a function f(x), x ∈ Q ⊂ R
d, from noisy observations

of it at points (xi)i=1,...,n sampled from the probability measure µ - µ is called the design
measure and Q is an nonempty open set. Furthermore, we consider that we have r replications
at each point. We hence have nr experiments of the form zi,j = f(xi) + εi,j , i = 1, . . . , n,
j = 1, . . . , r and we consider that (εi,j)i=1,...,n

j=1,...,r
are independently sampled from a Gaussian

distribution with mean zero and variance σ2
ε . A stochastic simulator provides outputs of the

following form

zi =
1

r

r
∑

j=1

zi,j = f(xi) + εi, ∀i = 1, . . . , n

where (εi)i=1,...,n are the observation noises sampled from a zero-mean Gaussian distribution
with variance σ2

ε/r. Therefore, if we consider a fixed number of experiments T = nr, we have
an observation noise variance equal to nσ2

ε/T .
Note that an observation noise variance proportional to n is natural in the framework of

stochastic simulators. Indeed, for a fixed total number of experiments T = nr, we can either
decide to perform them in few points (i.e. n small) but with lot of replications (i.e. r large) or
decide to perform them in lot of points (i.e. n large) but with few replications (i.e. r small).

In a Gaussian process regression framework, we model f(x) as a Gaussian process with a
known mean (that we take equal to zero without loss of generality) and a covariance kernel
k(x, x̃). Therefore, in the remainder of this paper, the function f(x) is random. The predictive
Mean Squared Error (MSE) of the Best Linear Unbiased Predictor (BLUP) given by

ẑT,n(x) = k
′(x)

(

K+
nσ2

ε

T
I

)−1

z
n (1)

is

σ2
T,n(x) = k(x, x) − k

′(x)

(

K+
nσ2

ε

T
I

)−1

k(x) (2)

where z
n = (zi)i=1,...,n denotes the vector of the observed values, k(x) = [k(x, xi)]1≤i≤n

is the n-vector containing the covariances between f(x) and f(xi), 1 ≤ i ≤ n, K =
[k(xi, xj)]1≤i,j≤n is the n×n-matrix containing the covariances between f(xi) and f(xj), 1 ≤
i, j ≤ n and I is the n× n identity matrix.

In this paper, we consider the case n ≫ 1. It corresponds to a massive experimental design
set but with observations with a large noise variance. This case is realistic for stochastic
simulators where the computational cost resulting from one Monte-Carlo particle is very low
and thus can be run in lot of points (xi)i=1,...,n.

3.2 Idealized Gaussian process regression

We assume from now on that the positive kernel k(x, x̃) is continuous and that supx∈Q k(x, x) <

∞ where Q is a nonempty open subset of Rd. We introduce the Mercer’s decomposition of
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k(x, x̃) [17], [18]:

k(x, x̃) =
∑

p≥0

λpφp(x)φp(x̃) (3)

where (φp(x))p is an orthonormal basis of L2
µ(R

d) consisting of eigenfunctions of the integral
operator (Tµ,kg)(x) =

∫

Rd k(x, u)g(u)dµ(u) and λp is the nonnegative sequence of correspond-
ing eigenvalues sorted in decreasing order.

Let us consider the following predictor:

ẑT (x) =
∑

p≥0

λp

λp + σ2
ε/T

zpφp(x) (4)

where zp = fp + ε∗p, fp =
∫

f(x)φp(x) dµ(x), ε
∗
p ∼ N

(

0, σ2
ε/T

)

, ε∗p independent of ε∗q for p 6= q
and (ε∗p)p≥0 independent of (fp)p≥0. Note that we have fp ∼ N (0, λp), fp independent of fq
for p 6= q and f(x) =

∑

p≥0 fpφp(x).
Let us introduce the probability space (ΩZ ,FZ ,PZ) = (Ωf × Ωε, σ(Ff × Fε),Pf × Pε)

where (Ωf ,Ff ,Pf ) corresponds to the probability space where f(x) and the sequence (fp)p≥0

are defined and (Ωε,Fε,Pε) is the probability space where the observation noises (εi)i∈N and
the sequence (ε∗p)p≥0 are defined. Further, let us consider the sequence of independent random

variables (Xi)i∈N with probability measure µ on Q ⊂ R
d and defined on the probability space

(ΩD,FD,PD). The sequence (Xi)i=1,...,n represents the experimental design set considered as
a random variable. Therefore, the predictors ẑT,n(x) in (1) and ẑT (x) in (4) are associated to
the random experimental design set (Xi)i∈N. We have the following convergence in probability
when n → ∞ [19]:

σ2
T,n(x)

PD−→
n→∞

σ2
T (x) (5)

where σ2
T,n(x) = EZ

[

(ẑT,n(x)− f(x))2
]

(2) and σ2
T (x) = EZ

[

(ẑT (x)− f(x))2
]

. Therefore
ẑT (x) in (4) is a relevant candidate for an idealized version of ẑT,n(x) in (1) for the considered
asymptotics n → ∞. The following proposition allows for completing the justification of the
relevance of ẑT,n(x).

Proposition 1. Let us consider f(x) a Gaussian process of zero mean and covariance kernel
k(x, x̃), ẑT,n(x) in (1) and ẑT (x) in (4) both associated to the random experimental design
set (Xi)i∈N. Consequently f(x) =

∑

p≥0 fpφp(x) where fp ∼ N (0, λp), (fp)p≥0 independent
and (φp(x))p≥0 defined in (3). The following convergence holds ∀δ > 0 and for any Borel set
A ⊂ R

2 such that the Lebesgue measure of its boundary is zero:

PD (|PZ ((ẑT,n(x), f(x)) ∈ A)− PZ ((ẑT (x), f(x)) ∈ A)| > δ)
n→∞−→ 0 (6)

Proof of Proposition 1. First of all, we note that for a fixed ωD ∈ ΩD the random vari-
ables (ẑT,n(x), f(x)) and (ẑT (x), f(x)) are Gaussian since they are linear transformations of
((εi)i∈N, (fp)p≥0) and ((ε∗p)p≥0, (fp)p≥0) which are both independently distributed from Gaus-
sian distributions.

Thanks to the equality EZ

[

(ẑT,n(x))
2
]

= k(x, x)− σ2
T,n(x) with k(x, x) =

∑

p≥0 λpφp(x)
2,

to the definition of ẑT (x) in (4) and to the convergence (5), the following convergence holds
in probability when n → ∞:

EZ

[

(ẑT,n(x))
2
] PD−→
n→∞

EZ

[

(ẑT (x))
2
]

(7)
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Furthermore, we also have the equality EZ [ẑT,n(x)f(x)] = k(x, x) − σ2
T,n(x) that leads the

convergence for n → ∞:

EZ [ẑT,n(x)f(x)]
PD−→ EZ [ẑT (x)f(x)] (8)

We can deduce the following convergence of the covariance of the two-dimensional Gaussian
vector (ẑT,n(x), f(x)) to the one of the two-dimensional Gaussian vector (ẑT (x), f(x)) when
n → ∞:

covZ ((ẑT,n(x), f(x)))
PD−→ covZ ((ẑT (x), f(x))) (9)

Furthermore, the following equality holds:

EZ [(ẑT,n(x), f(x))] = EZ [(ẑT (x), f(x))] = (0, 0) (10)

Let us denote by Cn = covZ ((ẑT,n(x), f(x))), for all Borel sets A ⊂ R
2 such that ν(∂A) = 0

(ν denotes the Lebesgue measure and ∂A the boundary of A), we have the following equality
almost surely with respect to (ΩD,FD,PD):

PZ ((ẑT,n(x), f(x)) ∈ A) = φ2

(

C−1/2
n A

)

where φ2 stands for the bivariate normal distribution N (0, I2). We note that Cn is a random
variable defined on the probability space (ΩD,FD,PD). Let us denote by C = covZ ((ẑT (x), f(x))).
The matrix C being nonsingular, the convergence (9) implies the following one when n → ∞:

C−1/2
n

PD−→
n→∞

C−1/2

Therefore, for all Borel sets A ⊂ R
2 such that ν(∂A) = 0, we have when n → ∞:

φ2(C
−1/2
n A)

PD−→
n→∞

φ2(C
−1/2A)

Finally, we can deduce that ∀δ > 0 and for all Borel sets A ⊂ R
2 such that ν(∂(A) = 0, the

convergence in (6) holds.

The function ẑT (x) is the surrogate model that we consider in this paper. We note that
ẑT (x) is not equal to the objective function f(x) since σ2

ε/T 6= 0. In practical applications,
we expect that the idealized model (4) is close enough to the actual surrogate model (1) so
that it provides relevant confidence intervals.

Note that with this formalism f(x) is a random process defined on the probability space
(ΩZ ,FZ ,PZ). The random series (zp)p≥0 is defined on (ΩZ ,FZ ,PZ) as well. In order to study
the convergence of ẑT (x) to the real function f(x), let us consider the following equality:

σ2
T (x) =

∑

p≥0

σ2
ελp/T

σ2
ε/T + λp

φp(x)
2 (11)

Then, let us define the Integrated Mean Squared Error (IMSE):

IMSET =

∫

Rd

σ2
T (x) dµ(x) = EZ

[

||ẑT (x)− f(x)||2L2
µ

]

(12)
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The following equality holds:

IMSET =
∑

p≥0

σ2
ελp/T

σ2
ε/T + λp

(13)

We can link the asymptotic rate of convergence of the IMSE (13) with the asymptotic decay
of the eigenvalues (λp)p≥0 thanks to the following inequalities [19]:

B2
T /2 ≤ IMSET ≤ B2

T (14)

with:

B2
T =

∑

p s.t. λp≤σ2
ε/T

λp +
σ2
ε

T
#{p s.t. λp > σ2

ε/T} (15)

4 Asymptotic normality of a Sobol index estimator

We present in this section the main theorem of this paper about the asymptotic normality of
a Sobol index estimator using Monte-Carlo integrations and the meta-model ẑT (x) presented
in Subsection 3.2. In the forthcoming development, we suppose that T is an increasing se-
quence indexed by the number of Monte-Carlo m particles used to estimate the variance and
covariance terms involved in the Sobol index. We use the notation Tm to emphasize that T
depends on m. First of all, let us define in Subsection 4.1 the Sobol indices and the considered
Monte-Carlo estimator.

4.1 The Sobol indices

Let us suppose that the input parameter is a random vector X with probability measure
µ = µ1 ⊗ µ2 on (Rd1 × R

d2 ,B(Rd1 × R
d2)) with d = d1 + d2. We consider the random vector

(X, X̃) defined on the probability space (ΩX ,FX ,PX) with X = (X1,X2) and X̃ = (X1, X̃2)
where X1 is a random vector with values in R

d1 and with distribution µ1, X
2 and X̃2 are

random vectors with values in R
d2 with distribution µ2, and X1, X2 and X̃2 are independent.

We are interested in the following closed Sobol index of parameter X1 (see [1], [2]):

SX1

=
V X1

V
=

varX
(

EX

[

f(X)|X1
])

varX (f(X))
=

covX

(

f(X), f(X̃)
)

varX (f(X))
(16)

where the random variables f(X) and f(X̃) are defined on the product probability space
(ΩZ ×ΩX , σ (FZ ×FX) ,PZ ×PX) and SX1

, V X1

and V are defined on the probability space
(ΩZ ,FZ ,FZ). The Sobol index SX1

can be simply interpreted as a measure of the part of
variance of f(x) explained by the factor X1. We note that varX (), EX [], covX (, ) stand for
the variance, the expectation and the covariance in the probability space (ΩX ,FX ,PX).

Furthermore, let us consider the sequence (Xi, X̃i)
∞
i=1 of random variables defined on

(ΩX ,FX ,PX) independent and identically distributed such that (Xi, X̃i)
L
= (X, X̃) for all

i ∈ N
∗ (

L
= stands for the equality in distribution). We use the following classical Monte-Carlo

estimator for (16) (see [1]):

SX1

m =
V X1

m

Vm
=

m−1
∑m

i=1 f(Xi)f(X̃i)−m−2
∑m

i,j=1 f(Xi)f(X̃j)

m−1
∑m

i=1 f
2(Xi)−m−2(

∑m
i=1 f(Xi))2

(17)
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where the random variables SX1

m , V X1

m and Vm are defined on the probability space (ΩZ ×
ΩX , σ (FZ ×FX) , PZ × PX).

Furthermore, after substituting f(x) with the meta-model ẑTm(x), we obtain the following
estimator:

SX1

Tm,m =
V X1

Tm,m

VTm,m
=

m−1
∑m

i=1 ẑTm(Xi)ẑTm(X̃i)−m−2
∑m

i,j=1 ẑTm(Xi)ẑTm(X̃j)

m−1
∑m

i=1 ẑ
2
Tm

(Xi)−m−2(
∑m

i=1 ẑTm(Xi))2
(18)

where the random variables SX1

Tm,m, V X1

Tm,m, VTm,m, ẑTm(Xi) and ẑTm(X̃j) are defined on the
product probability space (ΩZ ×ΩX , σ (FZ ×FX) ,PZ × PX).

4.2 Theorem on the asymptotic normality of the Sobol index estimator

The theorem below gives the relation between Tm and m which ensures the asymptotic nor-
mality of the estimator SX1

Tm,m when m → ∞. We note that SX1

Tm,m is the estimator of the

Sobol index SX1

= covX

(

f(X), f(X̃)
)

/varX (f(X)) when we replace the true function by

the surrogate model (4) and when we use the Monte-Carlo estimator (17) for the variance and
covariance involved in the Sobol index.

Theorem 1 (Asymptotic normality of SX1

Tm,m). Let us consider the estimator SX1

Tm,m (18) of

SX1

(16) with Tm an increasing function of m ∈ N
∗. We have the following convergences:

If mB2
Tm

m→∞−→ 0, then for all interval I ∈ R and ∀δ > 0, we have the convergence:

PZ

(∣

∣

∣

∣

PX

(√
m
(

SX1

Tm,m − SX1
)

∈ I
)

−
∫

I
g(x)dx

∣

∣

∣

∣

> δ

)

m→∞−→ 0 (19)

where g(x) is the probability density function of a zero-mean Gaussian random variable
with variance:

varX

(

(f(X)− EX [f(X)])
(

f(X̃)− EX [f(X)]− SX1

f(X) + SX1

EX [f(X)]
))

(varX (f(X)))2
(20)

with B2
Tm

given by (15).

If mB2
Tm

m→∞−→ ∞, then ∀δ > 0, ∃C > 0 such that :

PZ

(∣

∣

∣
PX

(

B−1
Tm

(

SX1

Tm,m − SX1
)

≥ C
)

− 1
∣

∣

∣
> δ
)

m→∞−→ 0 (21)

Theorem 1 is of interest since it gives how fast Tm has to increase with respect to m so
that the error of the surrogate modelling and the one of the Monte-Carlo sampling have the
same order of magnitude. Indeed, for a given size m of the Monte-Carlo sample, it is not
necessary to use a too large Tm otherwise the Monte-Carlo estimation error will dominate
(it corresponds to the case mB2

Tm

m→∞−→ 0). On the other hand, if Tm is taken too large (it

corresponds to the case mB2
Tm

m→∞−→ ∞), the estimation error is dominated by the meta-model
approximation.

Furthermore, we see that when mB2
Tm

m→∞−→ 0, the asymptotic normality is assessed for

the estimator SX1

Tm,m with an explicit variance given in equation (20). By studying in (20) the

7



cases SX1

= 0 and SX1

= 1 we see that the given estimator is more precise for large values of
Sobol indices than for small ones. A more efficient estimator for small index values is given
in [11].

We show in Section 5 that the product mB2
Tm

can easily be handled when we have an
explicit formula for the asymptotic decay of the eigenvalues of the Mercer’s decomposition
of k(x, x̃). The proof of Theorem 1 is given in Appendix A. It is based on the Skorokhod’s
representation theorem [20], the Lindeberg-Feller central limit theorem, and the Delta method
[15].

5 Examples of asymptotic normality for Sobol’s index

According to the previous developments, the desired asymptotic normality is assessed under
the assumption mB2

Tm

m→∞−→ 0. In the remainder of this section, we present relations between

Tm and m which lead the convergence mB2
Tm

m→∞−→ 0 for some usual kernels.

5.1 Asymptotic normality with d-tensorised Matérn-ν kernels

We focus here on the d-tensorised Matérn-ν kernel with regularity parameter ν > 1/2 [21],
[16]:

k(x, x̃) =

d
∏

i=1

21−ν

Γ(ν)

(√
2ν|xi − x̃i|

θi

)ν

Kν

(√
2ν|xi − x̃i|

θi

)

where Kν is the modified Bessel function [22]. The eigenvalues of this kernel satisfy the
following asymptotic behavior [23]:

λp = φ(p), p ≫ 1

where φ(p) =
(

log(1 + p)2(d−1)(ν+1/2)
)

p−2(ν+1/2) (1 + O(1/p)). Therefore, for Tm ≫ 1:

B2
Tm

≈ log(Tm/σ2
ε)

d−1

(

σ2
ε

Tm

)1−1/2(ν+1/2)

Section 4 suggests that the asymptotic normality of the Sobol’s index estimator is assessed
when:

mB2
Tm

m−→ 0

Let us consider that Tm is such that:

log(Tm/σ2
ε)

d−1

(

σ2
ε

Tm

)1−1/2(ν+1/2)

= 1/m (22)

It corresponds to the critical point mB2
Tm

≈ 1. In this case, the error originates both from the
meta-model approximation error and the Monte-Carlo estimation error. Equation (22) leads
to the following critical budget:

Tm

σ2
ε

= σ2
εm

1/(1−1/2(ν+1/2))log (m)(d−1) , (23)

8



and, the asymptotic normality is assessed for:

Tm

σ2
ε

= σ2
εm

1/(1−1/2(ν+1/2))+αlog (m)(d−1) , ∀α > 0 (24)

In practice, we want to minimize the budget allocated to the simulator and thus consider the
case α tends to zero. As a consequence, for applications we will consider the allocation of the
critical point (23).

5.2 Asymptotic normality for d-dimensional Gaussian kernels

Let us consider the d-dimensional Gaussian kernel:

k(x, x̃) = exp

(

−1

2

d
∑

i=1

(xi − x̃i)2

θ2i

)

(25)

Thanks to [24], we have the following upper bound for the eigenvalues:

λp ≤ c′exp
(

−cp1/d
)

(26)

with c and c′ constants. From this inequality, we can deduce that ∃C > 0 such that:

B2
Tm

≈ Clog(Tm/σ2
ε)

d

(

σ2
ε

Tm

)

Therefore, the critical budget corresponding to the critical point mB2
Tm

≈ 1 is given by

Tm/σ2
ε = mlog (m)d (27)

and the asymptotic normality for the Sobol index estimator is assessed with:

Tm/σ2
ε = m1+αlog (m)d , ∀α > 0 (28)

We note that the condition is only sufficient since we have an inequality in (26).

5.3 Asymptotic normality for d-dimensional Gaussian kernels with a Gaus-

sian measure µ(x)

Let us consider a Gaussian measure µ ∼ N (0, σ2
µI) in dimension d and the Gaussian kernel

(25). As presented in [25], we have analytical expressions for the eigenvalues and eigenfunctions
of k(x, x̃):

λp =

d
∏

i=1

√

2a

Ai
Bp

i

φp(x) = exp

(

−
d
∑

i=1

(ci − a)(xi)2

)

d
∏

i=1

Hp(
√
2cix

i)

where Hp(x) = (−1)p exp(x2) dp

dxp exp(−x2) is the pth order Hermite polynomial (see [26]),
a = 1/(2σµ)

2, bi = 1/(2θ2i ) and

ci =
√

a2 + 2abi, Ai = a+ bi + ci, Bi = bi/Ai.

9



Therefore, the eigenvalues satisfy the following asymptotic behavior

λp ∝ exp (−pξd) (29)

where ξd =
∑d

i=1 log (1/Bi). For Tm ≫ 1, we have:

B2
Tm

≈
(

σ2
ε/Tm

)

log
(

Tm/σ2
ε

)

/ξd (30)

Let us consider the critical point B2
Tm

= 1/m. Then, the critical budget is given by

Tm

σ2
ε

= ξdm log(m)

and the asymptotic normality is assessed for:

Tm

σ2
ε

= ξdm
1+α log(m), ∀α > 0 (31)

6 Numerical illustration

The purpose of this section is to perform a global sensitivity analysis of a stochastic code
solving the following heat equation:

∂u

∂t
(x, t)− 1

2
∆u(x, t) = 0 (32)

with x ∈ R
d and u(x, 0) = g(x) = exp(−∑d

i=1 x
2
i /(2σ

2
g,i)). The function u(x, t) has the

following probabilistic representation:

u(x, t) = EWt[g(x +Wt)] (33)

where Wt is the 1-dimensional Brownian motion. We evaluate the function u(x, t) through
the following stochastic code:

ucoder (x, t) =
1

r

r
∑

i=1





1

s

s
∑

j=1

g(x+Wt,i,j)



 (34)

where the number of replications r tunes the precision of the output, s = 30 and (Wt,i,j)i=1,...,r
j=1,...,s

are sampled from a Gaussian random variable of mean zero and variance t.
We note that there is a closed form expression for the solution of the considered heat

equation, that will allow is to compute exactly the Sobol indices and to assess the quality of
our estimate:

u(x, t) =

d
∏

i=1

(

σ2
g,i

σ2
g,i + t

)1/2

exp

(

− x2i
2(σ2

g,i + t)

)

(35)
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6.1 Exact Sobol indices

Let us consider that x is a random variable X defined on (ΩX ,FX ,PX) such that X ∼
N
(

0, σ2
µI
)

. We are interested for the application in the first order Sobol indices, i.e. the
contribution of (Xj)j=1,...,d. By straightforward calculations it can be shown that:

SXj

=
V Xj

V
=

varX(EX [u(X, t)|Xj ])

varX(u(X, t))
=

Bj − 1
(

∏d
i=1Bi

)

− 1
(36)

where Xj is the jth component of the random vector X with j = 1, . . . , d and

Bj = σµ





2

t
− 2

t2

(

1

t
+

1

σ2
g,i

)−1

+
1

σ2
µ





− 1

2





1

t
+

1

σ2
µ

− 1

t2

(

1

t
+

1

σ2
g,i

)−1




Therefore, the importance measure of the jth input is directly linked with the dispersion
parameter σ2

g,i of the function g(x). Furthermore, when t tends to the infinity, the response
u(x, t) tends to zero as the variance of the main effect. In this section, we consider the response
at t = 1.

6.2 Model selection

Let us consider a Gaussian process of covariance ku(x, x̃) and mean mu to surrogate u(x, t)
at t = 1. We consider the predictive mean and variance presented in equations (1) and (2).
As the response u(x, t) is smooth, we choose a squared exponential covariance kernel:

ku(x, x̃) = σ2 exp

(

−1

2

d
∑

i=1

(xi − x̃i)2

θ2i

)

Furthermore, as u(x, t) tends to zero when x tends to the infinity, we consider that mu = 0.
Indeed, we want that the model tends to zero when we move away from the design points.

The experimental design set D is composed of n = 3000 training points xtraini sampled
from the multivariate normal distribution N

(

0, σ2
µI
)

with σµ = 2 and d = 5. Furthermore,
the initial budget is T0 = 3000. It corresponds to a unique repetition r0 = 1 at each point of
D. The n observations of ucoder0 (x, 1) at points in D are denoted by u

n.
The hyper-parameters σ2, θ and σ2

ε are estimated by maximizing the marginal Likelihood
[16]:

−1

2
(un)′

(

σ2
K+ σεI

)−1
u
n − 1

2
det
(

σ2
K+ σεI

)

where K = [ku(xi, xj)]i,j=1,...,n. To solve the maximization problem, we have first randomly
generated a set of 1,000 parameters (σ2, θ, σε) on the domain (0, 10) × (0, 2)d × (0, 1) and we
have started a quasi-Newton based maximization from the 10 best parameters using the BFGS
method. We obtain the following parameter estimations.

• θ̂ =
(

1.01 1.02 1.03 1.00 1.07
)

• σ̂2 = 1.46

• σ̂2
ε = 6.74.10−2

Furthermore, the dispersion term of g(x) are set to:

• (σ2
g,i)i=1,...,d = (5, 3, 2, 1, 1)

11



6.3 Convergence of IMSET

As presented in Subsection 3.2 and Section 4, the asymptotic normality of the Sobol index
estimator is closely related to the convergence of the generalization error IMSET (12). There-
fore, in order to effectively estimate the confidence intervals of the estimators, we have to
characterize this convergence. Especially, we have to take into account the initial budget
used to select the model. The value of IMSET0

where T0 corresponds to the initial budget
allocated to D is estimated to IMSET0

= 6.06.10−1. According to (30), we have the following
convergence rate for IMSET with respect to T :

IMSET ∼
(

σ2
ε/T

)

log
(

T/σ2
ε

)

/ξd

Therefore, from an initial budget T0 we expect that IMSET as a function of T decays as:

IMSET = IMSET0

T0 log
(

T/σ2
ε

)

T log (T0/σ2
ε)

The critical ratio mB2
T = 1 presented in Section 5 leads to the following budget:

T =
m

C
log

(

m

Cσ2
ε

)

(37)

with C = log
(

T0/σ
2
ε

)

/(T0IMSET0
).

6.4 Confidence intervals for the Sobol index estimations

According to Theorem 1, if T follows the relation in (37), the Sobol index estimator presented
in Subsection 4.1 is asymptotically distributed with respect to a Gaussian random variable
centered on the true index and with variance given in (20). We use this property to build
90% confidence intervals on the estimations of (Sj)j=1,...,d (36). The exact values of the Sobol
indices (36) are given by:

(Sj)j=1,...,d = (0.052, 0.088, 0.124, 0.194, 0.194)

Remember that m represents the number of particles for the Monte-Carlo integrations
and T is the budget used to construct the surrogate model ẑT (x). In order to illustrate the
relevance of (37), we consider the following equation:

T = σ2
ε

mα

C
log
(m

C

)

with different values of α - the right value being α = 1 - and different values of m. For
each combination (α,m), we estimate the Sobol indices with the estimator (18) and from 500
different Monte-Carlo samples (xMC

i )i=1,...,m. For each sample we evaluate the 90% confidence
intervals thanks to (20) and we check if the estimations are covered or not. The result of the
procedure is presented in Table 1.
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m α S1 S2 S3 S4 S5

1,000 0.8 88.00 86.20 87.60 88.20 86.40
1,000 0.9 89.00 91.80 89.60 86.20 86.00
1,000 1.0 88.40 87.00 89.40 87.60 90.80
1,000 1.1 88.00 89.40 88.80 87.00 88.60
1,000 1.2 90.00 91.00 86.60 88.80 89.00

3,000 0.8 88.00 87.60 86.60 87.80 87.20
3,000 0.9 89.80 87.80 87.40 88.60 88.00
3,000 1.0 89.40 90.40 89.20 89.40 89.60
3,000 1.1 90.40 90.60 91.00 91.60 90.80
3,000 1.2 92.00 91.80 92.00 91.40 91.40

5,000 0.8 87.60 86.20 87.40 88.20 86.40
5,000 1.0 89.20 89.40 90.80 89.80 89.60
5,000 1.2 92.00 91.40 92.80 90.60 92.20

Table 1: Coverage rates for (Sj)j=1,...,d in percentage. The confidence intervals are built from
the variance presented in (20) in Theorem 1. The theoretical rates is 90% and the estimations
is performed from 500 different Monte-Carlo samples.

We see in Table 1 that the asymptotic behavior is not reached for m = 1, 000 Monte-Carlo
particles since the coverage is globally too low in this case for every α. Furthermore, for
m = 3, 000 and m = 5, 000, we see that the coverage is globally better for α = 1 than for the
other values. Indeed, the covering rate is underestimated for α < 1 and often overestimated
for α > 1 whereas it is always around 90% for α = 1. Furthermore, the confidence intervals
seem to be well evaluated either for large values of Sj with S4 and S5, for intermediate values
of Sj with S3 or for small values of Sj with S1 and S2. Therefore, this example emphasizes the
relevance of the asymptotic normality for the Sobol index estimators presented in Theorem 1.

7 Conclusion

This paper focuses on the estimation of the Sobol indices to perform global sensitivity analysis
for stochastic simulators. We suggest an index estimator which combines a Monte-Carlo
scheme to estimate the integrals involved in the index definition and a Gaussian process
regression to surrogate the stochastic simulator. The surrogate model is necessary since the
Monte-Carlo integrations require an important number of simulations.

In a stochastic simulator framework, for a fixed computational budget the observation noise
variance is inversely proportional to the number of simulations. In this paper, we consider the
special case of a large number of observations with an important uncertainty on the output.
This choice allows us to consider an idealized version of the regression problem from which we
can define a surrogate model which is tractable for our purpose.

In particular we aim to build confidence intervals for the index estimator taking into
account both the uncertainty due to the Monte-Carlo integrations and the one due to the
surrogate modelling. To handle this point, we present a theorem providing sufficient conditions
to ensure the asymptotic normality of the suggested estimator. The proof of the theorem is the
main point of this paper. It gives a closed form expression for the variance of the asymptotic
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distribution of the estimator. From it we can easily estimate the desired confidence intervals.
Furthermore, a strength of the suggested theorem is that it gives the relation between the
number of particles for the Monte-Carlo integrations and the computational budget allocated
to the surrogate model so that they have the same contribution on the error of the Sobol index
estimations.
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A Proof of Theorem 1

Let us denote by SX1

Tm
= covX

(

ẑTm(X), ẑTm(X̃)
)

/varX (ẑTm(X)) the variance of the main

effect of X1 for the surrogate model ẑTm(x) (4). The random variables SX1

and SX1

Tm
are

defined on the probability space (ΩZ ,FZ ,PZ) and the random variables SX1

Tm,m, ẑTm(X) and
f(X) are defined on the product probability space (ΩZ × ΩX , σ(FZ ×FX),PZ ⊗ PX).

Let us consider the following decomposition:

SX1

Tm,m − SX1

= SX1

Tm,m − SX1

Tm
+ SX1

Tm
− SX1

(38)

In a first hand we deal with the convergence of
√
m
(

SX1

Tm,m − SX1

Tm

)

. We handle this prob-

lem thanks to the Skorokhod’s representation theorem, the Lindeberg-Feller theorem and the

Delta method. In a second hand, we study the convergence of
√
m
(

SX1

Tm
− SX1

)

through the

Skorokhod’s representation theorem.
In the forthcoming developments, we consider that mB2

Tm

m→∞−→ 0. Therefore, there exists

g(Tm) such that g(Tm)
m→∞−→ 0 and mB2

Tm
g−2(Tm)

m→∞−→ 0. The function g(Tm) considered in
the remainder of this section satisfies this property.

A.1 The Skorokhod’s representation theorem

Let us consider the following random variables defined on the probability space (ΩZ ,FZ ,PZ):

aTm(x) = (ẑTm(x)− f(x))B−1
Tm

g(Tm) (39)

bTm(x) = (ẑTm(x)− f(x))g(Tm)1/3B
−1/3
Tm

(40)

Markov’s inequality and (14) give us ∀δ > 0:

PZ(||aTm(x)||2L2
µ
> δ) ≤ EZ(||aTm(x)||2L2

µ
)/δ ≤ g(Tm)2/δ

Therefore, we have the following convergence in probability in (ΩZ ,FZ ,PZ):

lim
m→∞

||aTm(x)||2L2
µ
= 0

and the inequalities in (14) ensure the following one:

||aTm(x)||2L2
µ
≥ g(Tm)2/2 (41)
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Furthermore, the following equality stands since f(x) is a Gaussian process:

EZ [(ẑTm(x)− f(x))6] = 15σ6
Tm

(x)

Cauchy-Schwarz inequality leads to:

EZ [||ẑTm(x)− f(x)||6L6
µ
] ≤ 15

∫

σ6
Tm

(x) dµ(x) ≤ 15B2
Tm

sup
x

k2(x, x)

Therefore, thanks to Markov’s inequality we have:

PZ(||bTm(x)||6L6
µ
> δ) ≤ 15g(Tm)2 sup

x
k2(x, x)/δ

and the following convergence stands in probability in (ΩZ ,FZ ,PZ):

lim
m→∞

||bTm(x)||6L6
µ
= 0

Therefore, we have the following convergences in probability in (ΩZ ,FZ ,PZ) when m → ∞:











f(x)

aTm(x) = (ẑTm(x)− f(x))g(Tm)B−1
Tm

bTm(x) = (ẑTm(x)− f(x))g(Tm)1/3B
−1/3
Tm

L6
µ×L2

µ×L6
µ−→

m→∞





f(x)
0
0





As L6
µ × L2

µ × L6
µ is separable we can use the Skorokhod’s representation theorem [20]

presented below.

Theorem 2 (Skorokhod’s representation theorem). Let µn, n ∈ N be a sequence of probabil-
ity measures on a topological space S; suppose that µn converges weakly to some probability
measure µ on S as n → ∞. Suppose also that the support of µ is separable. Then there exist
random variables Xn and X defined on a common probability space (Ω,F ,P) such that:

(i) µn is the distribution of Xn

(ii) µ is the distribution of X

(iii) Xn(ω) → X(ω) as n → ∞ for every ω ∈ Ω.

Therefore, there is a probability space denoted by (Ω̃Z , F̃Z , P̃Z) such that

(f̃Tm(x), ãTm(x), b̃Tm(x))
L
= (f(x), aTm(x), bTm(x)), ∀m (42)

with (f̃Tm(x), ãTm(x), b̃Tm(x)), f̃(x) defined on (Ω̃Z , F̃Z , P̃Z) and (f(x), aTm(x), bTm(x)) de-
fined on (ΩZ ,FZ ,PZ) - and ∀ω̃Z ∈ Ω̃Z the following convergence holds for m → ∞:

(f̃Tm(x), ãTm(x), b̃Tm(x))
L6
µ×L2

µ×L6
µ−→

m→∞
(f̃(x), 0, 0) (43)

First, let us build below the analogous of zTm(x) in (Ω̃Z , F̃Z , P̃Z). For a fixed Tm > 0, we have

the equality aTm(x)g(Tm)−1BTm = bTm(x)g(Tm)−1/3B
1/3
Tm

. Therefore, we have

||aTm(x)g(Tm)−1BTm − bTm(x)g(Tm)−1/3B
1/3
Tm

||L2
µ
= 0
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and
PZ

(

||aTm(x)g(Tm)−1BTm − bTm(x)g(Tm)−1/3B
1/3
Tm

||L2
µ
= 0
)

= 1

The equality (ãTm(x), b̃Tm(x))
L
= (aTm(x), bTm(x)) ∀Tm leads to the following one

P̃Z

(

||ãTm(x)g(Tm)−1BTm − b̃Tm(x)g(Tm)−1/3B
1/3
Tm

||L2
µ
= 0
)

= 1

Thus, for almost every ω̃Z in Ω̃Z , we have

||ãTm(x)g(Tm)−1BTm − b̃Tm(x)g(Tm)−1/3B
1/3
Tm

||L2
µ
= 0 (44)

If we consider such a ω̃Z we have the equality ãTm(x)g(Tm)−1BTm = b̃Tm(x)g(Tm)−1/3B
1/3
Tm

for µ-almost every x.
Let us denote by

z̃Tm(x) = f̃Tm(x) + g(Tm)−1BTm ãTm(x),

z̃Tm(x) is defined on (Ω̃Z , F̃Z , P̃Z). For ω̃Z such that (44) holds we have the equality z̃Tm(x) =

f̃Tm(x) + g(Tm)−1/3B
1/3
Tm

b̃Tm(x) for µ-almost every x.

A.2 Convergences with a fixed ω̃Z ∈ Ω̃Z

Let us consider a fixed ω̃Z ∈ Ω̃Z such that (44) holds. We aim to study the convergence of√
m
(

S̃X1

Tm,m − S̃X1

Tm

)

and
√
m
(

S̃X1

Tm
− S̃X1

)

in (ΩX ,FX ,PX) with:

S̃X1

= covX(f̃(X), f̃ (X̃))/varX(f̃(X)), (45)

S̃X1

Tm
= covX(z̃Tm(X), z̃Tm(X̃))/varX(z̃Tm(X)) (46)

and

S̃X1

Tm,m =
m−1

∑n
i=1 z̃Tm(Xi)z̃Tm(X̃i)−m−2

∑n
i,j=1 z̃Tm(Xi)z̃Tm(X̃j)

m−1
∑n

i=1 z̃
2
Tm

(Xi)−m−2(
∑n

i=1 z̃Tm(Xi))2
(47)

A.2.1 Convergence of
√
m
(

S̃X1

Tm,m − S̃X1

Tm

)

in (ΩX ,FX ,PX)

Let us denote by YTm,i = z̃Tm(Xi), Y
X1

Tm,i = z̃Tm(X̃i) and

UTm,i =
(

(YTm,i − EX [YTm,i])(Y
X1

Tm,i − EX [YTm,i]),

YTm,i − EX [YTm,i], Y
X1

Tm,i − EX [YTm,i], (YTm,i − EX [YTm,i])
2
) (48)

Since ω̃Z ∈ Ω̃Z is fixed, YTm,i, Y
X1

Tm,i and UTm,i are defined on the probability space (ΩX ,FX ,PX).
For each m, (UTm,i/

√
m)i=1,...,m is a sequence of independent random vectors such that for

any ε > 0:

m
∑

i=1

EX

[

||UTm,i||2/m1{||UTm,i||>ε
√
m}
]

= EX

[

||UTm,1||21{||UTm,1||>ε
√
m}
]

≤ EX

[

||UTm,1||3
]

/(ε
√
m)
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since ||UTm,1|| > ε
√
m.

We aim below to find an upper bound for supTm
EX

[

||UTm,i||3
]

. First, for any m, let us

consider the component (YTm,i−EX [YTm ])(Y
X1

Tm,i−EX [YTm ]). We have the following inequality:

EX

[

|(YTm,i − E[YTm,i])(Y
X1

Tm,i − E[YTm,i])|3
]

≤ CEX

[

|YTm,i|6
]

with C > 0 a constant. Minkowski inequality and the equality z̃Tm(x) = (f̃Tm(x)+g(Tm)−1/3B
1/3
Tm

b̃Tm(x))
for µ-almost every x give that there exists C,C ′ > 0 such that:

EX

[

|YTm,i|6
]

≤ C||f̃Tm(x)||6L6
µ
+ C ′B2

Tm
g(Tm)−2||b̃Tm(x)||6L6

µ

The convergence (f̃Tm(x), b̃Tm(x))
L6
µ×L6

µ−→
m→∞

(f̃(x), 0) implies that there exists C > 0 such that

for any m:

EX

[

|(YTm,i − EX [YTm,i])(Y
X1

Tm,i − EX [YTm,i])|3
]

≤ C (49)

Second, following the same guideline, we find that there exists C,C ′, C ′′ > 0 such that for any
m:

EX

[

|(YTm,i − EX [YTm,i])
2|3
]

≤ C (50)

EX

[

|YTm,i − EX [YTm,i]|3
]

≤ C ′ (51)

EX

[

|Y X1

Tm,i − EX [YTm,i]|3
]

≤ C ′ (52)

Third, the inequalities (49), (51), (51) and (52) give that supTm
EX

[

||UTm ||3
]

< ∞.

The inequality
∑m

i=1 EX

[

||UTm,i||2/m1{||UTm,i||>ε
√
m}
]

≤ EX

[

||UTm,1||3
]

/(ε
√
m) and the

uniform boundedness of EX

[

||UTm ||3
]

lead to the following convergence ∀ε > 0 when m → ∞:

m
∑

i=1

EX

[

||UTm,i||2/m1{||UTm,i||>ε
√
m}
]

= EX

[

||UTm,i||21{||UTm,i||>ε
√
m}
]

m→∞−→ 0 (53)

and thus ||UTm,i||2 is uniformly integrable.

Now, we aim to show the convergence in probability of UTm,i
m→∞−→ Ui in (ΩX ,FX ,PX).

Let us denote by

Ui =
(

(Yi − EX [Yi])(Y
X1

i − EX [Yi]), Yi − EX [Yi], Y
X1

i − EX [Yi], (Yi − EX [Yi])
2
)

with Yi = f̃(Xi) and Y X1

i = f̃(X̃i). The random variables Ui, Yi and Y X1

i are defined on
(ΩX ,FX ,PX) since ω̃Z ∈ Ω̃Z is fixed.

First, we study the term EX

[∣

∣

∣
U

(1)
Tm,i − U

(1)
i

∣

∣

∣

]

where U
(1)
i = (Yi − EX [Yi])(Y

X1

i − EX [Yi])

and U
(1)
Tm,i = (YTm,i − EX [YTm,i])(Y

X1

Tm,i − EX [YTm,i]). We have the following equality:

EX

[∣

∣

∣
U

(1)
Tm,i − U

(1)
i

∣

∣

∣

]

= EX

[∣

∣

∣
(YTm,i − EX [YTm,i])

(

(Y X1

Tm,i − EX [YTm,i])− (Y X1

i − EX [Yi])
)

+ (Y X1

i − EX [Yi])
(

(YTm,i − EX [YTm,i])− (Yi − EX [Yi])
)∣

∣

∣

]
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from which we deduce the inequality:

EX

[∣

∣

∣
U

(1)
Tm,i − U

(1)
i

∣

∣

∣

]

≤ EX

[∣

∣

∣
(YTm,i − EX [YTm,i])

(

(Y X1

Tm,i − EX [YTm,i])− (Y X1

i − EX [Yi])
)∣

∣

∣

]

+ EX

[∣

∣

∣
(Y X1

i − EX [Yi])
(

(YTm,i − EX [YTm,i])− (Yi − EX [Yi])
)∣

∣

∣

]

and from Cauchy-Schwarz inequality there exists C,C ′, C ′′ > 0 such that:

EX

[∣

∣

∣
U

(1)
Tm,i − U

(1)
i

∣

∣

∣

]

≤ CEX

[

(YTm,i − EX [YTm,i])
2
]1/2

EX

[

(Y X1

Tm,i − Y X1

i )2
]1/2

+ C ′
EX

[

(Y X1

i − EX [Yi])
2
]1/2

EX

[

(YTm,i − Yi)
2
]1/2

≤ C ′′
EX

[

(YTm,i − Yi)
2
]1/2

(

EX

[

(Y X1

i )2
]1/2

+ EX

[

(YTm,i)
2
]1/2

)

The equality YTm,i − Yi = g(Tm)−1BTm ãTm(Xi) for PX-almost every ωX ∈ ΩX implies that

EX

[

(YTm,i − Yi)
2
]1/2

= g(Tm)−1BTmEX

[

(ãTm(Xi))
2
]1/2

. Since ãTm(x)
m→∞−→ 0 in L2

µ, we have

the convergence EX

[

(YTm,i − Yi)
2
]1/2 m→∞−→ 0.

Furthermore, there exists C,C ′ > 0 such that EX

[

(Y X1

i )2
]1/2

< C and EX

[

(YTm,i)
2
]1/2

<

C ′ since z̃Tm(x) = f̃Tm(x) + g(Tm)−1BTm ãTm(x), f̃Tm(x)
m→∞−→ f̃(x) in L6

µ and ãTm(x)
m→∞−→ 0

in L2
µ. Therefore, we have the following convergence:

EX

[∣

∣

∣
U

(1)
Tm,i − U

(1)
i

∣

∣

∣

]

m→∞−→ 0 (54)

Then, if we consider the terms U
(4)
i = (Yi − EX [Yi])

2 and U
(4)
Tm,i = (YTm,i − EX [YTm,i])

2.
Following the same guideline we find the convergence:

EX

[∣

∣

∣
U

(4)
Tm,i − U

(4)
i

∣

∣

∣

]

m→∞−→ 0 (55)

Furthermore, denoting by U
(2)
i = (Yi − EX [Yi]), U

(2)
Tm,i = (YTm,i − EX [YTm,i]), U

(3)
i = (Y X1

i −
EX [Yi]) and U

(3)
Tm,i = (Y X1

Tm,i − EX [YTm,i]), we have the following inequalities:

EX

[∣

∣

∣
U

(2)
Tm,i − U

(2)
i

∣

∣

∣

]

≤ CEX

[

(YTm,i − Yi)
2
]1/2

EX

[∣

∣

∣U
(3)
Tm,i − U

(3)
i

∣

∣

∣

]

≤ C ′
EX

[

(Y X1

Tm,i − Y X1

i )2
]1/2

with C,C ′ positive constants. The convergences f̃Tm(x)
L6
µ→ f̃(x) and ãTm(x)

L6
µ→ 0 when m → ∞

ensure that:
EX

[∣

∣

∣U
(2)
Tm,i − U

(2)
i

∣

∣

∣

]

m→∞−→ 0 (56)

and
EX

[∣

∣

∣
U

(3)
Tm,i − U

(3)
i

∣

∣

∣

]

m→∞−→ 0 (57)

Finally, the convergences presented in (54), (55), (56) and (57) imply the desired one:

EX [||UTm,i − Ui||] m→∞−→ 0 (58)
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Markov’s inequality gives ∀δ > 0:

PX (||UTm,i − Ui|| ≥ δ) ≤ EX [||UTm,i − Ui||] /δ (59)

The equations (58) and (59) imply the convergence UTm,i
m→∞−→ Ui in probability in (ΩX ,FX ,PX).

This convergence in probability and the uniform integrability of ||UTm,i||2 implies that

UTm,i
m→∞−→ Ui in L2(ΩX) and thus covX(UTm,i)

m→∞−→ covX(Ui) = Σ. We note that we have
also the convergence EX [UTm,i] → EX [Ui] = µ since the convergence in L2(ΩX) implies the
one in L1(ΩX).

The condition (53) and the convergence
∑m

i=1 covX(UTm,i)/m = covX(UTm,i)
m→∞−→ Σ allow

for using the Lindeberg-Feller Theorem (see [15]) which ensures the following convergence in
(ΩX ,FX ,PX):

m
∑

i=1

(UTm,i/
√
m− EX [UTm,i/

√
m]) =

√
m

(

m
∑

i=1

(UTm,i)/m− EX [UTm,i]

)

L−→
m→∞

N (0,Σ)

Furthermore, we have the following equality:

S̃X1

Tm,m = Φ(ŪTm)

where ŪTm =
∑m

i=1 UTm,i/m and Φ(x, y, z, t) = (x−yz)/(t−y2). Therefore, the Delta method
gives that in (ΩX ,FX ,PX):

√
m
(

S̃X1

Tm,m − S̃X1

Tm

) L−→
m→∞

N
(

0,∇ΦT (µ)Σ∇Φ(µ)
)

(60)

where µ = EX [Ui] =
(

covX(Yi, Y
X1

i ), 0, 0, varX(Yi)
)

. We note that the assumption varX(Yi) 6=
0 justifies the use of the Delta method. A simple calculation gives that:

∇ΦT (µ)Σ∇Φ(µ) =
varX

(

(Yi − EX [Yi])
(

Y X1

i − EX [Yi]− S̃X1

Yi + S̃X1

EX [Yi]
))

(varX(Yi))2
(61)

with S̃X1

= covX(Yi, Y
X1

i )/varX(Yi) = varX(EX [Yi|X1])/varX(Yi).

A.2.2 Convergence of
√
m
(

S̃X1

Tm
− S̃X1

)

in (ΩX ,FX ,PX)

Analogously to [12], we have the equality:

S̃X1

Tm
− S̃X1

=
varX(δ̃Tm,i)

1/2Cδ̃Tm,i

varX(Yi) + 2covX(Yi, δ̃Tm,i) + varX(δ̃Tm,i)

where δ̃Tm(x) = g(Tm)−1BTm ãTm(x),

Cδ̃Tm,i
= 2varX(Yi)

1/2(corX(Yi, δ̃Tm,i)− corX(Yi, Y
X1

i )corX(Yi, δ̃Tm,i))

+varX(δ̃Tm,i)
1/2(corX(δ̃Tm,i, δ̃

X1

Tm,i)− corX(Yi, Y
X1

i ))
(62)
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δ̃Tm,i = δ̃Tm,i(Xi) and δ̃X
1

Tm,i = δ̃Tm,i(X̃i). The random variables δ̃Tm,i and δ̃X
1

Tm,i are defined on

the product space (Ω̃Z ×ΩX , σ(F̃Z ×FX), P̃Z ⊗ PX) and S̃X1

, δ̃Tm(x) and Cδ̃Tm,i
are defined

on (Ω̃Z , F̃Z , P̃Z). We still consider a fixed ω̃Z ∈ Ω̃Z such that (44) holds. The assumption

varX(Yi) 6= 0 ensures that the denominator is not equal to zero and the convergences f̃Tm(x)
L6
µ→

f̃(x) and ãTm(x)
L2
µ→ 0 give that supm Cδ̃Tm,i

< ∞. Furthermore, since ãTm(x)
L2
µ→ 0 we have

the following inequalities:

varX(δ̃Tm,i) ≤ CEX [(BTmg(Tm)−1ãTm(Xi))
2] ≤ C ′g(Tm)−2B2

Tm

with C,C ′ positive constants.
Thanks to Slutsky’s theorem, the convergence mg(Tm)−2B2

Tm

m−→ 0 ensures the following
asymptotic normality when m → ∞ in (ΩX ,FX ,PX):

√
m
(

S̃X1

Tm,m − S̃X1
) L−→

m→∞
N
(

0,∇ΦT (µ)Σ∇Φ(µ)
)

(63)

A.2.3 The case mB2
Tm

m→∞−→ ∞.

Let us suppose that mB2
Tm

m→∞−→ ∞. We consider the convergences of

B−1
Tm

(

S̃X1

Tm,m − S̃X1

Tm

)

(64)

and
B−1

Tm

(

S̃X1

Tm
− S̃X1

)

in (ΩX ,FX ,PX) with a fixed ω̃Z ∈ Ω̃Z such that (44) holds. We have the following equality:

B−1
Tm

(

S̃X1

Tm,m − S̃X1

Tm

)

= (
√
mBTm)

−1√m
(

S̃X1

Tm,m − S̃X1

Tm

)

The convergence (
√
mBTm)

−1 m→∞−→ 0 and the convergence in (60) (which does not depend on
the convergence of the ratio between B−2

Tm
and

√
m) imply the following one:

B−1
Tm

(

S̃X1

Tm,m − S̃X1

Tm

)

m→∞−→ 0

Finally, thanks to the inequality (41), there exists C,C ′ > 0 such that

B−1
Tm

(

S̃X1

Tm
− S̃X1

)

= B−1
Tm

g(Tm)−1BTmvarX(ãTm(Xi))
1/2Cδ̃Tm,i

varX(Yi) + 2covX(Yi, δ̃Tm,i) + varX(δ̃Tm,i)

≥ Cg(Tm)−1
g(Tm)Cδ̃Tm,i

varX(Yi) + 2covX(Yi, δ̃Tm,i) + varX(δ̃Tm,i)

≥ C ′Cδ̃Tm,i

Therefore, if we have Cδ̃Tm,i
> 0, the asymptotic normality is not reached and the estimator is

biased. Regarding the expression of Cδ̃Tm,i
in (62) and assuming that varX(Yi) 6= 0, Cδ̃Tm,i

= 0

could happen if:

• corX(Yi, Y
X1

i ) = 1, i.e. all the variability of f̃(x) is explained by the variable X1.

• varX(δ̃Tm,i) = 0, i.e. the surrogate model error is null.
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A.3 Convergence in the probability space (ΩZ × ΩX , σ(FZ ×FX),PZ ⊗ PX).

We have proved that for almost every ω̃Z ∈ Ω̃Z :

If mB2
Tm

m→∞−→ 0, then

∀I ∈ R, PX

(√
m
(

S̃X1

Tm,m − S̃X1
)

∈ I
)

m→∞−→
∫

I
g̃(x)dx

If mB2
Tm

m→∞−→ ∞, then

∃C > 0 s.t. PX

(

B−1
Tm

(

S̃X1

Tm,m − S̃X1
)

≥ C
)

m→∞−→ 1

where g̃(x) is the probability density function of a random Gaussian vector of zero mean
and covariance ∇ΦT (µ)Σ∇Φ(µ) (61). Therefore, in the probability space (Ω̃Z ×ΩX , σ(F̃Z ×
FX), P̃Z ⊗ PX) we have

If mB2
Tm

m→∞−→ 0, then

∀I ∈ R,∀δ > 0, P̃Z

(∣

∣

∣

∣

PX

(√
m
(

S̃X1

Tm,m − S̃X1
)

∈ I
)

−
∫

I
g̃(x)dx

∣

∣

∣

∣

> δ

)

m→∞−→ 0

If mB2
Tm

m→∞−→ ∞, then

∀δ > 0,∃C > 0 s.t. P̃Z

(∣

∣

∣PX

(

B−1
Tm

(

S̃X1

Tm,m − S̃X1
)

≥ C
)

− 1
∣

∣

∣ > δ
)

m→∞−→ 0

and the equalities (f̃Tm(x), ãTm(x), b̃Tm(x))
L
= (f(x), aTm(x), bTm(x)) and f̃(x)

L
= f(x) for

all m give us in the probability space (ΩZ × ΩX , σ(FZ ×FX),PZ ⊗ PX):

If mB2
Tm

m→∞−→ 0, then

∀I ∈ ΩX ,∀δ > 0, PZ

(∣

∣

∣

∣

PX

(√
m
(

SX1

Tm,m − SX1
)

∈ I
)

−
∫

I
g(x)dx

∣

∣

∣

∣

> δ

)

m→∞−→ 0

If mB2
Tm

m→∞−→ ∞, then

∀δ > 0,∃C > 0 s.t. PZ

(∣

∣

∣
PX

(

B−1
Tm

(

SX1

Tm,m − SX1
)

≥ C
)

− 1
∣

∣

∣
> δ
)

m→∞−→ 0

where g(x) is the probability density function of a random Gaussian vector of zero mean and
variance

varX

(

(f(X)− EX [f(X)])
(

f(X̃)− EX [f(X)]− SX1

f(X) + SX1

EX [f(X)]
))

(varX (f(X)))2

This completes the proof.
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